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ABSTRACT. In this paper, we study the motion of a circular cylinder freely falling in a channel 
under the action of gravity parallel to the wall. The fixed parameters of the study are the 
cylinder diameter to channel width ratio, D/d = 3.3, and the fluid to particle density ratio, 
� = 2. The varying parameters are the initial position (in or out of the middle axis) and the 
Galileo number (151 � Ga � 300). An automatic chimera method is implemented in a Navier-
Stokes solver to simulate this moving confined configuration. The presence of the wall 
accelerates the oscillations of the motion. The initial position has an influence on the 
amplification of transverse oscillations. If the cylinder is out of the middle axis, transverse 
oscillations appear earlier and reach rapidly the amplitude of the terminal periodic 
oscillations. A relation between the Strouhal and Reynolds numbers is proposed. 

RÉSUMÉ. Dans cet article, nous étudions le mouvement d’un cylindre en chute libre dans un 
canal sous l’action du champ de gravité parallèle aux parois. Les paramètres fixes sont le 
rapport entre le diamètre du cylindre et la largeur du canal (D/d = 3,3), puis le rapport entre 
la densité du fluide et celle de la particule (� = 2). Les paramètres variants sont la position 
initiale (sur l’axe médian ou hors de cet axe) et le nombre de Galilée (151 � Ga � 300). Une 
méthode chimère automatique est mise en place dans un solveur des équations de Navier-
Stokes pour simuler cette configuration mobile confinée. Les parois du canal accélèrent les 
oscillations du mouvement du cylindre. La position initiale a une influence sur l’amplification 
des oscillations transverses. Si la particule est hors du plan médian, l’oscillation transverse 
apparaît plus tôt et atteint plus rapidement son amplitude finale. Une relation entre le nombre 
de Strouhal et le nombre de Reynolds est proposée. 
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1. Introduction

We are interested in the influence of the vortex shedding on the fall of a particle in

a sedimentation problem. In this paper we focus on the free fall of a circular cylinder

between two vertical walls. The latter is dominated by the well-known vortice shed-

ding in the cylinder wake. The understanding of vortex dynamics in the cylinder wake

is due to several works (Tritton, 1959; Braza et al., 1986; Dušek et al., 1994; Per-

sillon et al., 1998; Williamson et al., 1998). The flow around the cylinder becomes

unsteady with the Von Kármán vortex shedding at the Reynolds number of 46. The

oscillating wake leads to the oscillation of the induced force in a cross flow direction.

The vortex shedding can induce an oscillatory response of a structure (Govardhan et

al., 2000; Shiels et al., 2001; Placzek et al., 2009) and a cross flow motion of the

cylinder can control the vortex shedding frequency (Koopmann, 1967; Williamson et

al., 1988; Anagnostopoulos, 2000; Nobari et al., 2006; Placzek et al., 2009).

A fairly complete numerical investigative of the free fall of cylindrical bodies be-

tween vertical walls was presented by Feng et al. ((Feng et al., 1994)). They evidence

several regimes in the interval of terminal Reynolds numbers up to 600. They con-

sider a circular and an elliptic cross-section of the cylinder and they tackle even the

simultaneous fall of two bodies. Their investigation does not, however, recognise the

role of the Galileo number and does not mention the solid/fluid density ratio of the

simulation. This limits the quantative relevance of their results.

Jenny et al. (Jenny et al., 2004) studied the free fall of an unconfined spheri-

cal particle. They characterized the problem of a fall caused by gravity by two pa-

rameters, the density ratio β = ρ/ρb (with ρb the density of the particle and ρ the

fluid density) and the Galileo number Ga =
√

gd3ρ(ρb − ρ)/(µ2) (with g the grav-

ity force, d the particle diameter and µ the dynamic viscosity). Their numerical and

experimental studies focused on the falling or rising sphere with the identification of

different kinds of trajectories depending the both parameters (Ga, β). Horowitz and

Williamson (Horowitz et al., 2006) studied experimentally a falling or rising cylinder

and showed that the transverse amplitude of the falling cylinder motion is about 5% of

the diameter of the cylinder for a density ratio about 1.4 and 2.0. Recently Namkoong

et al. (Namkoong et al., 2008) took up the two-dimensional numerical simulation of

the free fall of an unconfined cylinder. They focused their work on the frequency of

the trajectory for Ga < 163 i.e. the terminal Re < 188. The vortex shedding causes a

periodic transverse displacement of the cylinder. Namkoong et al. related its Strouhal

number to the Reynolds number by a simple formula.

We have performed a numerical study of a falling particle under the action of

gravity field. The configuration is similar to that of Feng et al. (Feng et al., 1994) : a

freely falling cylinder with a diameter d in a channel of width of D. The cylinder falls

under the gravity field parallel to the channel walls (Figure 1). The fluid in the channel

is at rest and the flow is induced by the motion of the cylinder. The fixed parameters

are the ratio diameters D/d equal to 3.3 and the density ratio equal to 2.
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We provide quantitatively reproducible results by specifying the relevant param-

eters of the problem. The simulations demonstrate the applicability of the chimera

method having a strong potential for simulations of sedimenting particles.

y

x

g

D/2
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d

Figure 1. Configuration of the cylinder falling in a channel

In the first section, we provide of details the numerical method and explain the

implemented fully automatic chimera method. In the second part, we discuss the

validation of this numerical tool to simulate the movement of a body. In the last

section, we focus on the fall of a cylinder between two walls with an interest in the

influence of the number of Galileo and the initial position on trajectories.

2. Numerical method

The chimera method is used for the simulations of a moving cylinder. The chimera

method is based on the very simple concept of overlapping grids (Benek et al., 1983),

however its implementation is quite complicated. In this study an automatic, flexible

and accurate fast chimera method for moving geometries is implemented in the NSMB

solver (Navier-Stocks MultiBlocks, (Vos et al., 1998; Vos et al., 2002)).

The first step of the chimera method is to determine the overlapped region. When

dealing with huge grids or multiple overlapping grids, finding the overlapped cells is a

long process. It can be done as a pre-processing step, but, when dealing with moving

grids, it has to be done inside the solver. In NSMB, this operation is accelerated by

using the Box algorithm of Siikonen et al. (Siikonen et al., 2000). This algorithm

is based on the creation of a virtual uniform cartesian grid which links mesh coordi-

nates. Each grid point belongs to a box I,J,K of this virtual grid. Each virtual cell

contains a limited number of physical grid points (overlapped or not) and the search

of overlapped cells is done inside this virtual cell which is much faster than searching

in the whole grid. Another issue concerns the points that are inside a solid body. In

the case of a cylinder for example, the cells inside the cylinder are not overlapped but

they are not fluid cells either. To remove these cells two methods are implemented :

for simple cases (cylinder, sphere) we use an analytical function and for general cases,

we compute the dot product of the vector from the cell center to the nearest wall cell

center and of the associated wall normal vector. If the dot product is positive, the cell



578 EJCM – 19/2010. Fluid-structure interaction

is in the solid region and blanked, otherwise the cell is out of the solid region and is

considered as belonging to the computational domains.

The second step of the method is to determine the nature of the overlapped regions.

There are two kinds of overlapped cells : the first one is a ’donor’ cell (or a ’dominant’

cell) where the Navier-Stokes equation are solved, the second is the ’receptor’ cell

(or ’nondominant’) where the state variables are obtained by interpolation from the

’donor’ cells. This classification of overlapped regions has gained less attention of

the researchers and in many studies, it has been simplified to the definition of an

overlapped hierarchy of each block. For example, the configuration of the flow past an

unconfined circular cylinder is defined by a dominant polar mesh around the cylinder

over a nondominant cartesian mesh. All the cells of the polar grid are dominant over

the background cartesian grid. The definition of this criterion is simple but it applies to

the block as a whole and it is therefore less flexible. For a complex configuration like

interactions between two walls, this criterion is unsuitable. Siikonen et al. (Siikonen

et al., 2000) or Liao et al. (Liao et al., 2007) or (Landmann et al., n.d.) proposed a

criterion based on the volume of the cell. The smallest of two overlapping cells is the

’donor’ and the biggest is the ’receptor’. This criterion is defined for each cell and it

is more flexible than block hierarchy criterion and allows, for example, the simulation

of the flow past two tandem circular cylinders in 2D. For similar overlapped meshes,

this criterion works well but, for different geometries, attention must be paid to the

mesh quality. For example, this criterion does not work properly in the case of the

simulation of the flow past a cylinder near a plane wall. The cell aspect ratio of the

near wall mesh is not the same as that of the polar wall mesh. For this reason the cell

volume criterion is not sufficient.

We developed a third criterion based on the distance of a cell to the nearest local

wall. The nearest local wall is the wall in the same block or the same group of blocks

where the cell is defined (Figure 2). The cell which has the smallest distance to its

nearest local wall is a donor cell and the other becomes a receptor. This approach

guarantees the resolution of Navier-Stokes equations in the near wall region by the

block to which this latter belongs and where the grid resolution is more suitable.

We use all these three criteria in our solver. The first is the hierarchy of the block.

If overlapped cells have the same hierarchy, the next criterion is based on the nearest

local wall distance then on the volume of the cell. The detection of donor and receptor

cells is fully automatic and allows the treatment of relative moving grids.

A chimera method allows us to mesh the space with two distinct overlapped grids

(Figure 3). The first one is usually a cartesian grid and spans the whole computational

domain. It is refined in the proximity of walls and its defined in Cartesian coordi-

nates. The second grid is a polar grid with a refinement close to the cylinder. The

final chimera grid is a combination of both meshes. The polar mesh is defined as the

dominant grid and the solution obtained on the polar grid is interpolated on the carte-

sian grid for the overlapped cells. The boundary conditions are classical boundary

conditions for the cartesian grid with an inlet condition and outlet/wall boundary con-

ditions. The wall boundary conditions of the polar mesh are a no-slip wall condition
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Mesh 1 Mesh 2

C1

Global nearest wall distanceLocal nearest wall distance

Figure 2. Definition of local nearest wall distance and global nearest wall distance

for the cell C1 of the mesh 1 in the configuration of two overlapped polar meshes

for the cylinder wall and a chimera boundary condition representing the link with the

cartesian grid.

Figure 3. Combination of a cartesian mesh and a polar mesh for a simulation of an

unconfined cylinder (a 5 times coarser mesh than in the simulation is represented)

The creation of the mesh is similar for the confined configuration. Two distinct

overlapped meshes are used. The first is the polar mesh and the second is the cartesian

grid with two walls. The upstream length Lu is equal to 10d, and the downstream

length Ld is equal to 25d. The number of cells is equal to 354 964 cells. The Confined

configuration does not use a basic criterion of chimera method and, in this case, the

criterion of local wall distance is essential (Figure 4).

NSMB is a compressible solver with artificial preconditionner (Chorin, 1968). A

second order central scheme is used for the diffusive terms and the convective terms

are also discretised with a second order central scheme with artificial dissipation of

Jameson (Jameson, 1995). For the time scheme, the dual time stepping scheme with

backward second order interpolation is used. The system is solved with an implicit
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(a) (b)

Figure 4. Automatic definition of chimera mesh for the confined configuration D/d =
3.3, and for two positions of the cylinder, y0/d = 0 (a) and y0/d = −0.65 (b) (a 5

times coarser mesh than in the simulation is represented)

LU-SGS (Lower-Upper Symmetric Gauss Seidel) scheme. NSMB is fully parallelized

with MPI message passing communication.

The results are decomposed into two parts. The first part concerns the validation

of the moving chimera method on a moving cylinder in an infinite flow. In the second

part, the flow over a moving cylinder confined by two flat walls is examined. The

motion of the cylinder is compared for both the confined and unconfined configuration.

3. Validation of the chimera method for moving body

Three cases are used to validate the numerical method for moving bodies. The first

case is a forced transverse oscillation of a cylinder in an infinite flow. The oscillation

is defined by Equation [1] and two parameters are used for this study : A, the am-

plitude of the oscillations, and f/f0, the ratio between the frequency of the imposed

motion and the Von Kármán wake frequency for the fixed cylinder. Numerous pub-

lications (Koopmann, 1967; Williamson et al., 1988; Anagnostopoulos, 2000; Nobari

et al., 2006; Placzek et al., 2009) deal with this issue and the behavior of the vortex

shedding is well known. Two different states are defined : the ”lock-in” case where

the frequency of the vortex shedding takes the frequency of the cylinder motion and

the ”lock-out” case where the vortex shedding has its own frequency, different from

the one of the motion. In our study, only a ”lock-in” simulation will be used to validate

the moving chimera method.

y(t) = A sin(2π f t) [1]

The second case studied is a VIV case of a free elastic cylinder. The motion of

the cylinder is modelled by a harmonic system composed of an oscillating mass (di-

mensionless value given by mass ratio m = πρb

2ρ
), spring (dimensionless stiffness
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k = kdim/( 1

2
ρU2

∞
)) and damping (nondimensionalised by b = bdim/( 1

2
ρU2

∞
D)).

The system has one degree of freedom which is the translation in the vertical direc-

tion. The equation of motion of the cylinder is given by the differential equation

written in dimensionless form in Equation [2]. An interaction between the fluid and

the movement of the cylinder occurs. Williamson et al. (Govardhan et al., 2000),

Shiels et al. (Shiels et al., 2001) and also recently Placzek et al. (Placzek et al., 2009)

have studied the different responses of the cylinder to the parameters (m, b, k). We

have simulated four different cases without damping. The solution of the second order

differential equation (Equation [2]) is obtained by using a Newmark algorithm with a

first-order extrapolation of the lift coefficient Cy .

mÿ + bẏ + ky = Cy(t) [2]

The last comparison is the free fall of a cylinder under gravity in an infinite space.

The cylinder has three degrees of freedom : two translational (x and y) and one rota-

tional (α). The movement is governed by the second law of Newton which has been

nondimensionalized and written for the circular cylinder (Equation [3]). The key pa-

rameters for the falling of a body in a fluid are the density ratio (β) and the Galileo

number (Ga). The coupling methodology to simulate a freely falling cylinder is a

weak coupling with a first-order temporal extrapolation of the lift coefficient.

ẍ = g (1 − β) +
2U2

∞
β

πd2
Cx , ÿ =

2U2

∞
β

πd2
Cy , α̈ =

16U2

∞
β

πd4
Cm [3]

The obtained results are summarized in Table 1 and they are in good agreement

with the literature. For forced transverse motion of the cylinder, the vortex shedding

frequency is the same as the motion frequency. The mean drag coefficient and the

maximum of lift coefficient are in good agreement with Placzek et al. (Placzek et

al., 2009). For the freely vibrating cylinder, the amplitude and the frequency of the

transverse motion characterize the motion of the cylinder. The response of the cylinder

depending on the damping and mass parameters are in the good agreement with the

results of Shiels et al. (Shiels et al., 2001). For the last test case, the freely falling

cylinder, two cases are considered. The first set of parameters (Ga;β) = (12.331; 6.5)
results in a straight fall of the cylinder and its terminal velocity is in good agreement

with the value of Cruchaga et al. (Cruchaga et al., 2008). When the Galileo number

increases the velocity of the cylinder increases and a vortex shedding appears in the

wake of the falling cylinder. The results of Namkoong et al. (Namkoong et al., 2008)

are available in this case for the set of parameters (Ga;β) = (151; 2). The obtained

values of the mean terminal velocity and of the Strouhal number are in agreement with

the bibliographic results.

4. Free cylinder falling in a channel

In this section, the movement of a 2D cylinder falling in a channel is simulated with

the chimera approach. The influence of the initial position and the Galileo number is
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Table 1. Results for the validation test cases

Placzek et al., 2009 Present study

Forced (A; f/f0) Cx Cy,max Cx Cy,max

motion (0.25; 0.90) 1.50 0.28 1.48 0.29

(0.25; 1.10) 1.75 1.44 1.71 1.60

Shiels et al., 2001 Present study

Freely (m, k) Ay fy Ay fy

vibrating (4; 0) 0.05 0.16 0.05 0.166

cylinder (5; 4.74) 0.46 0.16 0.454 0.153

(0.5; 1) 0.56 0.19 0.554 0.188

(5; 9.88) 0.57 0.2 0.565 0.197

Cruchaga et al., 2008 Present study

Freely (Ga; β) Rex Rex

falling (12.331; 6.5) 7.8525 8.22

cylinder Namkoong et al., 2008 Present study

(Ga; β) Rex Str Rex Str
(151; 2) 168.5 0.1761 167.11 0.1774

studied. The two fixed parameters are the diameter ratio (D/d) equal to 3.3 where D
is the channel height and d the cylinder diameter, the density ratio (β = ρ/ρb) equal

to 2. The varying parameters are the Galileo number Ga and the initial transverse

position y0. The range of the Galileo number studied is 151 ≤ Ga ≤ 300. The results

are compared to the simulation of a unconfined falling cylinder in order to determine

the influence of the wall.

4.1. Trajectories

The trajectory for Ga = 200 (Figure 5) is different depending whether the cylinder

is confined or not, and for the confined configuration, if the initial position is in the

middle plane or not. For the unconfined falling cylinder, a deviation of the transverse

position appears in the first part. In the second part of the trajectory, the transverse

position oscillates around a value that is not equal to the initial transverse position.

For the confined falling cylinder with y0 = 0, the deviation doesn’t exist and for the

periodic pattern, the transverse oscillation is located around the initial value (i.e. the

middle axis). For the confined falling cylinder with y0/d = −0.65, the first part is

different when the cylinder is placed symmetry axis. The second part of the periodic

oscillation is similar to the one with y0 = 0, with an oscillation around the middle

axis and the same frequency and amplitude.

The temporal variation of the velocity components is represented in Figure 6. The

dimensional time (t∗) is nondimensionalised with the terminal velocity Ut by the re-
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Figure 5. Trajectories for Ga = 200

lation t = t∗d/Ut. The behavior of the x-component is linear and dominated by

the strong gravity effect. The y-component is dominated by the wake induced force.

In this case, the Von Kármán vortex shedding produces a periodic oscillations. For

Ga = 200, the amplitude of the transverse oscillation is equal to 0.09801 for uncon-

fined configuration and 0.08155 for the both confined configurations. Those ampli-

tudes are less than 3% of the distance between the channel walls. The confinement

decreases the amplitude of the transverse oscillations but increases its frequency. We

will discuss in 4.3 the correlation between the Strouhal and the Reynolds number.

Moreover, the confinement fixes the axis of the oscillation to the center axis between

the two walls.
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Figure 6. Components of the position x/d and y/d versus the dimensionless time for

Ga = 200
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4.2. Velocities of the cylinder

The velocity is represented by the Reynolds number Re = U.d/ν, with ν the kine-

matic viscosity. The x-component of the velocity (gravity direction) is represented

by Rex and the y-component (transverse direction) by Rey . The variation of Rex is

composed of three parts (Figure 7). When dropped the cylinder has no velocity and

the first part is an acceleration phase with a strong increase of the falling velocity. The

second step, called over-shoot, is a phase during which the increase of velocity stops

and even decreases due to the the onset of the vortex shedding. This over-shoot is

more visible for the unconfined falling cylinder than for the confined configuration.

The last phase of the motion is a periodic oscillation of the velocity about a constant

mean value (Rex).

t

R
e

0 50 100 150
0

50

100

150

200

250

unconfined
confined, y = -0.65
confined, y = 0.00

0
0

x

Figure 7. X-component of the velocity defined by Rex = Uxd/ν versus dimensionless

time for Ga = 200

The influence of the Galileo number on the mean terminal velocity and on its

amplitude is represented in Figure 8. The amplitude of the oscillations of the velocity

increases with the increase of the Galileo number in the unconfined case. To the

contrary, for the confined falling cylinder, the amplitude of oscillations of the falling

velocity does not increase with the increase of Galileo. The relation between the mean

falling velocity and the Galileo number is practically linear. We found the relation

Rex = 1.092Ga + 2 for the unconfined case and Rex = 0.915Ga − 12 for the

confined cylinder. For the unconfined configuration, Re > Ga and for the confined

case Re < Ga.

The transverse velocity is represented by Rey . The first observation is that its

value is lower than 10% of the falling velocity. This velocity is just induced by the

vortex shedding forces which are weaker than gravity force. The Figure 9 show the

time evolution of the transverse velocity for the confined and the unconfined cylinder

with Ga = 200. The behaviour of the transverse velocity is similar for the uncon-

fined cylinder and for the confined configuration with an initial position at tha middle

axis. Oscillations increase progressively and these oscillations appear faster in the

confined case. For the confined configuration with an initial position out the middle
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Figure 8. Rex and amplitude of Rex versus Galileo number for a confined and an

unconfined falling cylinder and for Ga = 200

axis (y0/d = −0.65), the oscillations appear immediately with an amplitude close to

the final amplitude. The wall effect creates an asymmetric geometry, a powerful force

appears, and the asymmetric geometry facilitates the onset of the vortex shedding.
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Figure 9. Y -component of the velocity defined by Rey = Uyd/ν versus dimensionless

time for Ga = 200
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The evolution of Rex and Rey versus the transverse position y/d for the falling

cylinder in the unconfined and confined cases for Ga = 200 during the periodic state

is presented in (Figure 10). The maximum of the transverse velocity appears when

the cylinder is on the mean transverse position and the transverse velocity is equal

to zero when the cylinder is at the extreme position of the motion. The behaviour

of the falling velocity is opposite with a maximum velocity for the extreme position,

and minimum velocity when the cylinder is at the mean position. The variation of

the angular velocity is different and the maximum appears for 1/4 of the maximum

displacement.
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Figure 10. Relation between velocity (Re) and position (y/d) and between the trans-

lation velocities for Ga = 200

4.3. Frequencies of the falling cylinder

The frequency defined by the Strouhal number (St = fd/Ux) was first linked to

the Reynolds number by Williamson et al. (Williamson et al., 1998) for the fixed

cylinder by the following function :

St = A +
B

√
Re

+
C

Re
[4]

This function can be simplified with C = 0 for the range of Reynolds number

Re < 188. With the present results, the coefficients are determined and we have

obtained the following coefficients :

unconfined : St = 0.2086 +
0.0548
√

Re
−

5.9004

Re
[5]

confined : St = 0.2527 +
0.8581
√

Re
−

9.3165

Re
[6]

fixed cylinder : St = 0.27661 −
1.1129
√

Re
−

0.4821

Re
[7]
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The fitted functions and the data are plotted in Figure 11. The behavior of the the

Strouhal number is well represented by the function [4]. The confinement accelerates

the oscillation and the frequency is higher. The difference with the unconfined case is

significant. The flow in the gap between the wall and the cylinder is more accelerated

and drives the vortex out more rapidly.
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Figure 11. Data and fitted functions of the Strouhal number versus Galileo number
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Figure 12. Isovorticities for unconfined falling cylinder and for Ga = 200
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4.4. Structure of the flow

The wake of the cylinder is due to the motion of the cylinder. The speed of the

cylinder is such that the vortices at the rear of the cylinder are not steady but they

are detached periodically resulting in the Von Kármán vortex shedding. This vortex

shedding induces the oscillation of the position. In the unconfined case for Ga = 200,

we choose the starting time t1 when the cylinder is at the maximum transverse position

and we examine the vortex structures over one period of oscillation (Figure 12). The

transverse position is directly linked to the vortex shedding. At the time t = t1,

the vortex VS,5 is ejected from the cylinder. This vortex is a clock-wise vortex with

negative vorticity. At this time the lift is minimum. Then the vortex VS,6 grows. It’s

a counter clock-wise vortex associated to positive vorticity and due to viscous effects

it will attract the cylinder to it so that the cylinder will move to a negative y position.

As a result of this positive vorticity the lift increases. At the time t = t1 + T/4, the

cylinder is at the axis. At the time t = t1 + T/2 the vortex VS,6 is ejected, the lift is

maximum and the cylinder has reached its minimum position. The vortex VS,7 grows.

The negative associated vorticity will attract the cylinder to positive y positions. Again

at t = t1 + 3T/4 the cylinder crosses the y axis, the lift is zero.

5. Conclusion

We have implement a fast and efficient automatic chimera method for the simu-

lation of flow around moving bodies. This method allows for a relative motion of

a mesh over a second one thanks to data interpolation at the overlapped boundaries.

This method was validated on three different body motions (forced motion, elastic mo-

tion and free motion), and the results are in good agreement with the literature. This

method was then used to simulate the fall of a circular cylinder in a channel under

the action of a gravity field parallel to the wall plates. The parameters characterising

the problem, (Ga, β), are chosen in order to obtain vortex shedding in the wake of the

falling cylinder. The range of the studied Galileo numbers is 151 ≤ Ga ≤ 300 and

the density ratio is fixed to 2. The effects of the presence of walls are : a decrease of

mean terminal vertical velocity, a light decrease of the transverse motion amplitude, a

decrease of the over-shoot and a radical increase of the frequency of the motion. The

initial position determines the transients but not the periodic terminal motion. In the

case of the cylinder dropped out the middle axis, the transverse oscillation appears al-

most immediately with the amplitude close to the terminal amplitude. For all periodic

motions, the transverse motions are in opposite phase to the vortex shedding.
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