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ABSTRACT. In this work, the Proper Generalized Decomposition (PGD) method will be 
considered in order to solve Navier-stokes equations with a stream-vorticity formulation by 
looking for the solution as a sum of tensor product functions. In the first stage, PGD will be 
applied to a model equation in order to test the capacity of the method to treat some time-
dependent problem. Then, we will solve the Navier-Stokes problem in the case of the lid-
driven cavity for different Reynolds numbers (Re = 100, 1000 and 10000). Finally, the PGD 
method will be compared to the standard resolution technique, both in terms of CPU time and 
accuracy. 

RÉSUMÉ. L’objectif de ce travail est d’appliquer la méthode Proper Generalized 
Decomposition (PGD) pour résoudre les équations de Navier-Stokes en formulation ligne de 
courant-vorticité. Par cette technique la solution est recherchée comme une somme de 
produits tensoriels de chacune des variables du problème (espace, temps…). Afin de tester les 
capacités de la méthode pour la résolution de problème instationnaire, la PGD sera tout 
d’abord appliquée à l’équation de diffusion instationnaire. Dans un second temps elle sera 
appliquée pour simuler l’écoulement dans une cavité entraînée. Les résultats obtenus seront 
comparés à ceux obtenus par une méthode de résolution standard aussi bien en termes de 
précision que de temps de simulations. 
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1. Introduction

Fluid-structure interactions play an important role in many applications which
present a coupling between movements of a structure in a fluids flow. Different
methods to treat these problems has been extensively investigated : see(Dowell et
al., 2001) for a comprehensive review. The numerical resolution of such a problem
could combine the resolution of the fluid and the structural equations, which requires
an important CPU time andstockage capacity. With traditional methodsof resolution,
effectuate optimization or parametric analyses is not possible. That’s the reason why
some methods called Reduced Order Models (ROM), which dealswith reducing this
cost, appear these least years. The most well -known ROM method used is the POD
(Proper Orthogonal Decomposition). For example, in order to modelizeflow around
an oscill ating cylinder, Liberge et al.(Libergeet al., 2010) compute the POD modes
for a global velocity field (fluid and solid), and then construct a low-order dynamical
system obtained by usingamultiphasemethodsimilar to thefictitiousdomainmethod.
This multiphase methodextends the Navier-Stokes equations to the solid domain by
using a penalisation methodand a Lagrangian multiplier. Plazcek et al. in (Placzek
et al., 2008) study with the hybrid POD method cases of introduction of structural
damping and a nonlinear force applied at the free end of rod. Lieu et al. in (Lieu
et al., 2006) apply POD to model a complete F-16 fighter configuration, in order to
assessitspotential for thesolution of realistic aeroelastic problems.

The main drawback of this previous technique is the need of a snapshots set of
the solution to construct the reduced-basis. The computing time requested for the
calculation of these snapshots could be very important. Consequently some methods
called “a priori” model reduction techniques have been developed. They consist in
buildinga reduced basis without an “a priori” knowledgeof the solution. The A Pri-
ori model Reduction (APR) (Ryckelynck, 2002)(Ryckelynck, 2005)(Ryckelynck et
al., 2005)(Ammar et al., 2006b)(Verdonet al., 2009) has been subject of several de-
velopments. Thanksto thisapproach, thebasisisadaptatively improvedandexpanded
with the residuals of the full discretized model. The incremental processis done by
taking into account thewhole time interval where the reduced equation is solved.

An other a priori method, which will be applied in the following part is the PGD
(Proper Generalized decomposition). ThePGD consists in seeking the separated rep-
resentation of the solution of a partial diferential equation. Concretely, the separated
representation of a functionf(x1, . . . , xN ) could bewrite:

Q
∑

i=1

N
∏

k=1

Fki(xk)

(xi can be any scalar or vector variables involvingspace, time or any other parameter
of the problem). Thus, if M degreesof freedom are used to discretize each variable,
the total number of unknowns involved in the solution isQ × N ×M instead of the
MN degrees of freedom involved in mesh based discretization techniques. In most
cases, when the field is sufficiently regular, the number of termsQ in the finite sum
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is generally quite small (a few dozen) and in all cases the approximation converges
towards the solution of the full grid description (see(Ammar et al., 2010; Ammar et
al., n.d.)).

This techniquehasbeen proposed a few yearsago byAmmar et al., (2006a, 2007)
in the context of themulti -bead-springFENE modelsof polymeric systems. Thetech-
nique has been applied on other more complex models based onthe reptation theory
of polymeric liquids in (Mokdad et al., 2007). This techniquewas also used in quan-
tum chemistry problems(Chinesta et al., 2008a), and in materials homogenization in
(Chinesta et al., 2008b). Thismethod has already been applied in a stochastic frame-
work (Nouy, 2007; Nouy et al., 2009). In the context of LATIN method, Ladeveze
(Ladeveze, 1999; Ladevezeet al., 2010) use amethodcalled ’radial approximation’ .
Thisapproach could beseen asa variant of thePGD with a space-timeseparation.

In fluide structure interaction, for strongly coupled problem, the more expensive
step is the resolution of the fluid problem. Then, as a first stage, in order to test the
capacity of PGD, we will apply PGD to solve the Navier-Stokesequationsonly. The
paper isorganizedasfollows. Firstly, thePGD methodwill bepresented in continuous
form and in algebraic form. Secondly, PGD will be applied to solve the unsteady 2D
diffusion equation. This example enables us to test two approachesof the PGD. The
first one consists in separatingthesolution onthespacesandtimevariabes, thesecond
oneisaseparation only onthespacesvariables. Then thediscretization of theNavier-
Stokesequationsin streamline-vorticity formulationanditsPGDformulation hasbeen
detailed. Finally, results on the test-case of the 2D lid-driven cavity in stationary and
unstationary casewill beill ustrated. For theNavier-Stokesequationsonly aseparation
on thespacesvariableswill be applied.

2. Description of the PGD

In thispart, PGD will bedescribe in continuousform and in algebraic form.

2.1. Continuous formulation

2.1.1. Preliminaries

For thesakeof clarity andwithout losing itsgeneral scope, PGD will be examined
in the caseof a 2D spacedecomposition. Theproblem isexpressed as follows:

FindU(x,y) as

{

L(U) = G in Ω

+Boundary Conditions
[1]

whereL is a linear1 differential operator andG is thesecondmember.

PGD, which is an iterative method, consists in finding an approximation of the
solutionU(x, y) ∈ Ω = X × Y ⊂ R2 with x ∈ X ⊂ R andy ∈ Y ⊂ R as:

1. If the operator is not linear, it i snecessary to linearizeit.
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U(x, y) ≈ Um(x, y) =

m
∑

i=1

αiF i(x)Gi(y) [2]

whereUm(x, y) is the approximation of the solution of order m. At each iteration,
the solution is enriched with an additional termαm+1Fm+1(x)Gm+1(y). PGD is an
iterative procedurewhich should be decomposed in threesteps. During the first step,
“called the enrichment step” , theFm+1 andGm+1 functionsareobtained bysolvinga
small sizenon-linear problem. Then, for thesecondstep, called the “projectionstep“ ,
in order to improve the quality of the reconstruction, them + 1 αi coefficients are
determined by solving a linear system of size (m + 1). Finally, the “check conver-
gencestep“ consists in the computing of the norm of the residual in order to decide if
the solution need more enrichment or not. In the following these threesteps will be
described in details.

2.1.2. Enrichment step

At them+1 stage, thesolutionapproximation of orderm is supposed to beknown.
In this step we search to compute the functionsFm+1(x) andGm+1(y). We search
Um(x, y) as

Um(x, y) =

m
∑

i=1

αiF i(x)Gi(y) + Fm+1(x)Gm+1(y) [3]

IntroducingEquation [3] into Problem [1], it gives:

L(
m
∑

i=1

αiF i(x)Gi(y) + Fm+1(x)Gm+1(y)) = G +Resm+1 [4]

whereResm+1 is a residual whose appearsbecauseEquation[3] isan approximation
of thesolution. Equation[4] is then projected onto each of theunknownsFm andGm

andtheresidual Resm+1 is forced to beorthogonal to each of thesefunctions. It gives
the two following problems:

< L(

m
∑

i=1

αiF i(x)Gi(y) +Fm+1(x)Gm+1(y)), Fm+1 >L2(X)=< G, Fm+1 >L2(X)

[5]

< L(

m
∑

i=1

αiF i(x)Gi(y) + Fm+1(x)Gm+1(y)), Gm+1 >L2(Y )=< G, Gm+1 >L2(Y )

[6]

Equations [5] and [6] are solved using the fixed point method. After convergence
of thefixed point, thefirstm+ 1 functionsF i andGi arenow known.
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2.1.3. Projection step

In order to increasethe accuracy of thedecomposition, theαi coefficientsarenow
searched in such a way that the residual is orthogonal to each of them + 1 products
of theF iGi functions. At this step, wesearchUm+1(x, y) as,

Um+1(x, y) =

m+1
∑

i=1

αiF i(x)Gi(y) [7]

Solution [7] is introduced into Equation[1] :

L(

m+1
∑

i=1

αiF i(x)Gi(y)) = G +Resm+1 [8]

Theαi coefficientsare then computed by projectingthe above equationaccording
to theF iGi :

< L(

m+1
∑

i=1

αiF i(x)Gi(y)), F kGk >L2(Ω)=< G, F kGk >L2(Ω) for 1 6 k 6 m+1

[9]

Equation [9] could be solved using a classical solver of linear problems. At this
point we know the approximation of thesolution of orderm+ 1, Um+1(x, y).

2.1.4. Check convergence step

At this step the residual is computed in the followingway :

Resm+1 = L(

m+1
∑

i=1

αiF i(x)Gi(y)) − G [10]

If the L2 norm of this residual is lower than a coefficient ǫ set by the user, the
PGD algorithm was converged. Else, one more iteration at least is needed, and the
enrichment and projectionstepsare repeated takingm = m+ 1 until convergence.

2.2. Algebraic formulation

2.2.1. Preliminaries

After discretisation by finite element, finite volume or other technique, Problem
[1] can bewritten in a discrete form :
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Lh(Uh) = Gh [11]

with

Lh =

nL
∑

j=1

A
j
x ⊗ A

j
y, Gh =

nG
∑

j=1

f
j
x ⊗ f

j
y , Uh =

N
∑

i=1

αiFi ⊗G
i [12]

The operator L is discretized as a tensor product of operators A
j
x and A

j
y in the

direction x and y respectively. The discretized operator Ajx (resp. Ajy) is a square
matrix whosesizeisNx (respNy) whereNx(respNy) is thenumber of discretisation
nodesin thedirectionx (resp y). Thesecondterm wasdecomposed asproductsof the
sum of vectors f

j
x and f

j
y of sizeNx andNy. Finally the unknown Uh is calculated

as a product sum of vectorsF
i andG

i of sizeNx andNy using a weight coefficient
αi. nL (resp. nG) represents the number of tensor products required to represent the
separated form of the initial operator L (resp. thesecondmember G).

Taking into account the property of the tensor product, Equation [11] can bewrit-
ten as :

nL
∑

k=1

N
∑

i=1

αi
(

A
k
xF

i ⊗ A
k
yG

i
)

=

nG
∑

j=1

f
j
x ⊗ f

j
y [13]

The threesteps of enrichment, projection and checking convergencewill now be
described with these notations.

2.2.2. The enrichment step

We suppose to be at iteration (m+1) At this stage the unknown Uh is search in
tensorial form as follows:

Uh =
m
∑

i=1

αiFi ⊗G
i + R ⊗ S [14]

whereR andS are unknownsand where the solution at the previous iterationUm =
∑m

i=1 α
i
F
i ⊗ G

i is known. By introducing this new approximation of the solution
into Equation[13], we haveto solve :

nL
∑

k=1

(

A
k
xR ⊗ A

k
yS
)

= Gh −

nL
∑

k=1

m
∑

i=1

αi
(

A
k
xF

i ⊗ A
k
yG

i
)

[15]
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Thisnon-linear system is solved within afixed-point strategy . In order to compute
R we choose to fix S and we project Equation [15] onto the vector S. This gives the
following problem, correspondingto Equation[6] in continuousform:

nL
∑

k=1

γ1
kA

k
xR =

nG
∑

j=1

γ2
j f
j
x −

nL
∑

k=1

m
∑

i=1

γ3
i,kα

i
A
k
xF

i [16]

with

γ1
k = t

SA
k
yS ∈ R, γ2

j = t
Sf

j
y ∈ R, γ3

i,k = t
SA

k
yG

i ∈ R [17]

Similarly, in order to compute S we set R at the value just computed in Equa-
tion [16] and we project Equation [15] onto the vector R. This gives the following
problem, correspondingto Equation [5] in continuousform :

nL
∑

k=1

β1
kA

k
yS =

nG
∑

j=1

β2
j f
j
y −

nL
∑

k=1

m
∑

i=1

β3
i,kα

i
A
k
yG

i [18]

with

β1
k = t

RA
k
xR ∈ R, β2

j = t
Rf

j
x ∈ R, β3

i,k = t
RA

k
xF

i ∈ R [19]

Problems [16] and [18] are solved iteratively. The fixed-point procedure stops
when thekth iterationsatisfies:

||(R ⊗ S)k − (R ⊗ S)k−1|| ≤ ǫ [20]

where || · || is theL2 norm and ǫ is a parameter chosen by the user. The new F
m+1

andG
m+1 are then given by thenext normalization:

F
m+1 =

R

||R||
G
m+1 =

S

||S||
[21]
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2.2.3. Projection step

Them+1 functionsF
i andG

i areknown,αi (1 ≤ i ≤ m+1) hasto be computed.
For thispurpose, weproject Equation[13] onto theproductsFjGj (1 ≤ j ≤ m+1) .
Thusthe following linear problem, whosesizeis(m+ 1), correspondingto Equation
[3] in continuousform, isobtained

Hα = J with t
α = {α1, . . . , αN+1} [22]

where the componentsof H and J aredefined by:

Hij =

nL
∑

k=1

t
F
j
A
k
xF

i.tGj
A
k
yG

i and Jj =

nG
∑

k=1

t
F
j
f
k
x .
t
G
j
f
k
y [23]

2.2.4. Check convergence

In order to estimate the convergenceof the algorithm, a computation isperformed
of the residual Res of Equation[1] defined by:

Res =

nL
∑

k=1

m+1
∑

i=1

αi
([

A
k
x

]

F
i ⊗
[

A
k
y

]

G
i
)

−

nG
∑

k=1

f
k
x ⊗ f

k
y [24]

When theL2(Ω) normof thisresidual becomeslower than a coefficient ǫ set by the
user, the algorithm isconsidered to be at convergence, andthesolution of theproblem
isexpressed as:

Uh =

m+1
∑

i=1

αiFi ⊗ G
i [25]

3. PGD applied to the unsteady 2D diffusion equation

3.1. Methodology

In this sectionwewill studythe capacity of thePGD to solve an unsteady diffusion
equation. Theproblem to solve is :

FindΘ(x,y,t) as















∂Θ(x, y, t)

∂t
− ν∆Θ(x, y, t) = f(x, y, t) in Ω × I

Θ|Γ = g

Θ(x, y, 0) = Θ0

whereΩ = X × Y ∈ R
2 is a spatial domain, andI =]0, T [ is a time interval.

[26]
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We apply two different formulations of PGD : PGD with space-time decomposi-
tionandPGD with spacedecomposition only.

3.1.1. PGD with space-time decomposition

Let thesecondterm be :

f(x, y, t) =

nf
∑

j=1

f jx(x)f
j
y (y)f

j
t (t) [27]

Thefirst formulation, which will be noted PGD(XYT), consists in seeking theso-
lutionasa function of thespacevariablesand thetime. Then, thesolution is searched
as :

Θ(x, y, t) ≈ ΘN (x, y, t) =

N
∑

i=1

αiF i(x)Gi(y)H i(t) [28]

Injecting this formulation in Problem [26] and using a finitevolume formulation,
Problem [26] could bewritten for the control volumeΩlp andthetimeq (1 ≤ l ≤ Nx,
1 ≤ p ≤ Ny and1 ≤ q ≤ Nt)

nf
∑

j=1

∫

Xl

f jxdx

∫

Yp

f jydy

∫

Tq

f
j
t dt =

N
∑

i=1

αi

(

∫

Xl

F idx

∫

Yp

Gidy

∫

Tq

dH i

dt
dt

−ν

[

∫

Xl

d2F i

dx2
dx

∫

Yp

Gidy

∫

Tq

H idt+

∫

Xl

F idx

∫

Yp

d2Gi

dy2
dy

∫

Tq

Hidtdt

])

[29]

Thisequationshould bewritten in thesameway as in thePGD algebraic formula-
tion (seeEquation [13]).

3
∑

k=1

N
∑

i=1

αi
(

AkxF
i ⊗AkyG

i ⊗AktH
i
)

= −

∫

Ω×I

nf
∑

j=1

f
j
x ⊗ f

j
y ⊗ f

j
t dΩ [30]

whereAkx (respectively Aky , Akt ) is a square matrix whose size isNx (resp. Ny, Nt).
Thesematricesaredefined by

A1
x = diag(∆x1

, · · · ,∆xNx
) A1

y = diag(∆y1 , · · · ,∆yNy
)



600 EJCM – 19/2010. Fluid-structure interaction

A1
t =



















1 0 · · · · · · 0

−1 1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1



















A2
x =





























a1 c1 0 · · · · · · · · · 0

b2

. ..
. ..

. ..
. . .

. . .
...

0
. ..

. ..
. ..

. . .
. . .

...
...

. .. bi ai ci

. . .
...

...
. ..

. . .
. ..

. . .
. . . 0

...
. ..

. . .
. ..

. . .
. . . cNx−1

0 · · · · · · · · · 0 bNx aNx





























where

ai = −
1

xi+1 − xi
−

1

xi − xi−1
, bi =

1

xi − xi−1
, ci =

1

xi+1 − xi

A2
y = −νA1

y A2
t = diag(∆t1 , · · · ,∆tNt

)

A3
x = −νA1

x A3
t = A2

t

A3
y =





























d1 f1 0 · · · · · · · · · 0

e2

.. .
. . .

.. .
. ..

. . .
...

0
.. .

. . .
.. .

. ..
. . .

...
...

.. . ej dj fj

. . .
...

...
.. .

. . .
.. .

. ..
. . . 0

...
.. .

.. .
.. .

. ..
. . . fNy−1

0 · · · · · · · · · 0 eNy dNy





























where

dj = −
1

yj+1 − yj
−

1

yj − yj−1
, ej =

1

yj − yj−1
, fj =

1

yj+1 − yj
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where (xi, yj) is the coordinate of the center of the control volumeΩij . ∆xi (resp.
∆yj ) is the horizontal (resp. vertical) lenght of the control volume Ωij and ∆tk =
tk+1−tk−1

2
. Wedefinex0 = xCLW (resp. xNx+1

= xCLE ) thex-coordinateof thewest
(resp. of the east) boundary of thedomain, andy0 = yCLS (resp. yNy+1

= yCLN ) the
y-coordinateof thesouth (resp. of the north) boundary of thedomain.

3.1.2. PGD with space decomposition

In this case a temporal discretisation has to be done using a Cranck-nicholson
scheme. Then, knowingΘn at the time tn = n ∗ δt, we search Θn+1 as :

Θn+1

δt
−
ν

2
∆Θn+1 =

Θn

δt
+
ν

2
∆Θn +

1

2
(fn + fn+1) [31]

Here thePGD isonly applied to thespacevariables, Θn+1 is seekingas :

Θ(x, y, tn+1) ≈ Θn+1
N (x, y) =

N
∑

i=1

αiF i(x)Gi(y) [32]

Let thesourcebe :

(fn + fn+1) =

nf
∑

j=1

f jx(x)f
j
y (y) [33]

Injectingthisformulation, whichwe called PGD(XY) in thefollowing, in Equation
[31] and usinga finitevolumemethod, we obtain for thevolume control Ωlp :

nf
∑

j=1

∫

Xl

f jxdx

∫

Yp

f jydy =

N
∑

i=1

αi

(

1

δt

∫

Xl

F idx

∫

Yp

Gidy

−
ν

2

[

∫

Xl

d2F i

dx2
dx

∫

Yp

Gidy +

∫

Xl

F idx

∫

Yp

d2Gi

dy2
dy

])

[34]

or

3
∑

k=1

N
∑

i=1

αi
(

AkxF
i ⊗AkyG

i
)

= −

∫

Ω×I

nf
∑

j=1

f
j
x ⊗ f

j
ydΩ [35]
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whereAkx (respectivelyAky) isasquarematrix whosesizeisNx (resp. Ny). Usingthe
samenotations that in (3.1.1), thesematricesare defined by

A1
x =

1

δt
diag(∆x1

, · · · ,∆xNx
) A1

y = diag(∆y1 , · · · ,∆yNy
)

A2
x =





























a1 c1 0 · · · · · · · · · 0

b2

. ..
. ..

. ..
. . .

. . .
...

0
. ..

. ..
. ..

. . .
. . .

...
...

. .. bi ai ci

. . .
...
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


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


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






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

























These two representations of PGD aim at ill ustrate the different way to use the
method, but nonethe resolutionwich wasdetailed previously.

3.2. Results

The two PGD methodshave been tested ona case where an analytical solution is
known. In the following, Problem [26] will besolved withΩ =]− 1; 1[×]− 1; 1[, and
a sourceterm f :

f(x, y, t) =
x4y4

12
− x2y4t− x4y2t+ 4x2t− 4y2t [36]
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In this case the problem has the followinganalytical solution :

Θana(x, y, t) =
x4y4

12
t+ 2x2t2 − 2y2t2 [37]

The boundary conditions are chosen verifying this analytical solution. The solu-
tion computed by the various solvers will be compared with the analytical solution
Θana. The PGD’s solvers will be compared to the standard solver (bi-conjugategra-
dient). Thus, a relative error could bedefined as follows :

ǫrel =
||Θsolve − Θana||L2

||Θana||L2

[38]

where Θsolve is the solution computed by one of the solvers used (PGD(XYT),
PGD(XY) or standard).

We will study the effect of the space-step sizewith a constant time-step size, and
the effect of the time-step sizewith a constant space-step in each direction. Thesetwo
test are done with a constant time interval I. Finally, we will study the effect of the
time-interval lenght with a constant time-step a constant space-step. In the following,
we choose the convergence criteria define in Equation 2.1.4 equal to 10−6 for each
PGD methods.

3.2.1. Effect of the space-step size

For this test, the time step is set to δt = 10−3, the time interval is set to I =]0, 1[
andProblem [26] is solved with different spacesteps size.

(a) (b)

Figure 1. Relative error (a) and computational duration (b) with the number of nodes
of spatial discretisation for standard, PGD(XY ) and PGD(XY T ) solvers with
It =]0, 1[ and δt = 10−3

Figure 1a shows that appearance of the relative error with the number of nodes
in each spatial direction is similar for each solvers. The computational duration with
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the number of nodes is plotted on Figure 1b. We could notice that, from a certain
number of nodes in each direction, PGD’s methods become faster than the standard
solver. Then, from 200 nodes in each direction, PGD(XY) solver is faster than the
standard one, for Nh = 500 the computational duration is divided by seven. The
figure also shows that from 150 nodes in each direction, PGD(XYT) methodis faster
than the standard one. In fact, for Nh = 500, computational duration is divided into
onehundredandfifty with PGD(XYT) solver. This important timesavingisdueto the
fact that the number of functions needed to approximate the solution decrease when
thenumber of nodes increases(seeFigure2).

Figure 2. Number of functions for PGD(XYT) solver with the number of nodes of
spatial discretisation with It =]0, 1[ and δt = 10−3

3.2.2. Effect of the time-step size

In this section, the number of nodes in each direction will be set to Nh = 250
and the time interval will be set to I =]0, 1[. Problem [26] will be solved with a time
step varying between δt = 10−3 (1000 nodes in the time direction) to δt = 10−1 (10
nodes in the timedirection).

Figure 3a shows that the relative error with the number of nodes in each spatial
direction is similar for each solvers. As shown in Figure3b PGD(XYT) is faster than
the standard solver and faster than PGD(XY). In fact, it is seven times faster with
Nt = 1000 than the standard solver and four times faster than the PGD(XY) solver.
According to this figure, the behaviour of the PGD(XY) solver and of the standard
one isvery similar.

3.2.3. Effect of the time-interval lenght

In this part, the aim is to test the influenceof the time interval lenght on the per-
formance of each method. Then, time-step is set to δt = 10−2 and the number of
nodesin each spacedirectionis set toNh = 250. Thetimeinterval will betaken from
I =]0; 1[ to I =]0; 20[.
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(a) (b)

Figure 3. Relative error (a) and computational duration (b) with the number of nodes
of spatial discretisation for standard, PGD(XY ) and PGD(XY T ) solvers with
It =]0, 1[ and Nh = 250

(a) (b)

Figure 4. Relative error (a) and computational duration (b) with the the time interval
lenght for the solvers standard, PGD(XY ) and PGD(XY T ) with δt = 10−2 and
Nh = 250

Figure 4a shows the evolution of the relative error with the time interval lenght.
As for theprevious section, errorsare thesamefor the threesolvers.

Concerning the computational duration, Figure 4b shows that the ratio between
PGD(XY) and standard solver is the same for each time-interval. As in the previous
test, PGD(XY) and standard solvers seem to have the same behaviour with the time
interval lenght. PGD(XYT) is faster than the other solver. In fact, for a time inter-
val equal to I =]0, 20[, PGD(XYT) is sixty five times faster than PGD(XY) and an
hundred andfifty times faster than thestandard solver.
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4. Navier-Stokes equations

It existsmany waysto solveincompressibleNavier-Stokesequations. Oneof them
consists in treating the problem with its primitive variable (velocity and pressure).
But in this formulation, there is a limitation, termed the inf-sup (or LBB) condition,
in approximating the velocity and the pressure. If this constraint is not respected,
the numerical instabiliti es or the spurious pressure values are inevitable. That is the
reason why it is necessary to discretize unknowns on a staggered-grid (see (Kress
et al., 2003)(Pill er et al., 2004)). Another way to solve incompressible 2D Navier-
Stokes equations is to transform the equations into a fourth-order nonlinear partial
differential equation with the biharmonic operator as a principal part where the un-
known isthestream functionψ which existsthanksto theincompressibilit y constraint.
This equation could be separated by introducing the vorticity ω, into systems of two
second-order differential partial equationsof which unknownsarethevorticity andthe
stream functions. This formulations studied in many papers, here we cite ((Tezduyar
et al., 1990)(Tokunagaet al., 1994)(Chudanovet al., 1995)(Ramsak et al., 2005)(Kim
et al., 2007)).

4.1. Stream function-vorticity formulation

4.1.1. Governing equations

Let Ω be afluid domain in R2, theprimitivevariable formulationfor theunsteady
incompressibleNavier-Stokesflow could bewritten



























∂u
∂t

− ν∆u + u.∇u = −
1

ρ
∇p+ f in Ω×]0, T [

∇.u = 0

u(t = 0) = u0

u = gD on∂Ω

[39]

where u and p are respectively the velocity and the pressure fields, and f is a known
bodyforce. ν is thekinematic viscosity andρ is the constant fluid density.

Theincompressibilit y conditionsof Problem [39] impliesthe existenceof astream
functionψ satisfying :

u = (u1, u2) = (
∂ψ

∂y
,−

∂ψ

∂x
) [40]

Taking the 2D curling operator (∇×) of both sides of velocity equationsof Prob-
lem [39], and using the followingrelation :

∇× u = −∆ψ.−→z [41]
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and

∇× (u.∇)u = (∇.u)(∇× u) + (u.∇)(∇× u) [42]

the followingequation is obtained

∂∆ψ

∂t
− ν∆2ψ + (u.∇)∆ψ = −∇× f [43]

Generally thisfourth-order partial differential equationisdifficult to solvedirectly.
One way to give this problem tractable is to apply a separation of this equation. It is
possible to introducethe definition of vorticity in fluids dynamics, and the Equation
[43] with hisboundary conditionsbecome:







∆ψ = −ω dansΩ
∂ψ

∂n
= G sur ∂Ω

[44]

and










∂ω

∂t
− ν∆ω + (u.∇)ω = ∇× f dansΩ

ω =
∂u2

∂x
−
∂u1

∂y
sur ∂Ω

[45]

where thevorticity ω = ω.
−→z is given by∇× u andG isgiven by theboundary value

of ψ corresponding to the boundary velocity. For further details see (Chudanov et
al., 1995)(Ramsak et al., 2005)(Kim et al., 2007).

Solving the Navier-Stokes equations in ”stream-line vorticity” formulation con-
sists in solvingsuccessively Problems[45] and [44].

4.1.2. Discretisation

Herewe consider that theknown bodyforcef isequal to zero. Let usfirst consider
theEquation [45] giving thevorticity. Thisequationcan bewritten as:

1

δt
ωn+1 −

ν

2
∆ωn+1 = B [46]

where the diffusive term has been discretized using a Cranck-nicholsonscheme, and
the convectiveterm hasbeen discretized usingan Adams-Bashforth scheme.

B =
1

δt
ωn +

ν

2
∆ωn −

1

2
(3un.∇ωn − un−1.∇ωn−1) [47]

Equations [44] and [45] will t hen be spatially discretized with the finite volume
methodwith a second order scheme.
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4.1.3. PGD associated to the streamline-vorticity formulation

TheProper GeneralizedDecompositionwill beused for the calculation of vorticity
ω (Equation [45]) and for the the calculation of the streamlineψ (Equation [44]). In
order to use the PGD algorithm detailed in Section 2.2, the Equations [45] and [44]
have to bewritten in a discrete form as in Equation [12].

We look for ωn+1 as:

ωn+1 =

m
∑

k=1

αkF k(x)Gk(y) [48]

Within the finite volume framework, Equation [46] has to be integrated on each
control volumeΩlp givingthe followingequation:

1

δt

∫

Ωlp

ωn+1dΩ −
ν

2

∫

Ωlp

∆ωn+1dΩ =

∫

Ωlp

BdΩ [49]

Introducing Equation [48] in Equation [49], the left hand-side could be rewritten
as:

m
∑

k=1







αk

δt

∫

Xl

F kdx

∫

Yp

Gkdy −
ν

2

∫

Xl

d2F k

dx2
dx

∫

Yp

Gkdy +

∫

Xl

F kdx

∫

Yp

d2Gk

dy2
dy







[50]

whereXl (respectively Yp) is the definition interval of the control volumeΩlp in the
directionx (resp. y).

Then Equation [49] could bewritten:

Aωn+1 = B [51]

where,

Aωn+1 =

3
∑

q=1

m
∑

k=1

αk AqxF
k ⊗AqyG

k [52]



PGD for the Navier-Stokes equations 609

TheoperatorsAqx andAqy are exactly thesamematricesasthesedefined in Section
3.1.2.

Now, we have precised the tensorial operators needed to solve the streamline
(Equation[44]). We thus look for ψ as:

ψn+1 =

Nψ
∑

k=1

αkψF
k
ψ ⊗Gkψ [53]

After discretization with finite volume methodand after taking the previous form
of p̃ in Equation[44] into account , weobtain :

Nψ
∑

k=1

αkψ

(

∫

Xl

d2F kψ

dx2
dx

∫

Yp

Gkψdy +

∫

Xl

F kψdx

∫

Yp

d2Gkψ

dy2
dy

)

=

∫

Xl

∫

Yp

Ddxdy

[54]

on thevolumeΩlp, which could bewritten

Cψn+1 = D [55]

with,

Cψn+1 =

2
∑

q=1

Nψ
∑

k=1

αkψ C
q
xFkψ ⊗ C

q
yGk

ψ [56]

where, using thenotationsof Section 3.1.1,

A1
x =





























a1 c1 0 · · · · · · · · · 0

b2

. . .
. ..

.. .
. ..

. ..
...

0
. . .

. ..
. . .

. ..
. ..

...
...

. . . bi ai ci

. ..
...

...
. . .

. ..
. . .

. ..
. .. 0

...
. . .

. ..
. . .

. ..
. .. cNx−1

0 · · · · · · · · · 0 bNx aNx





























; A1
y = diag(∆y1 , · · · ,∆yNy

)
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A2
x = diag(∆x1

, · · · ,∆xNx
); A2

y =





























d1 f1 0 · · · · · · · · · 0

e2

. . .
.. .

. . .
.. .

. . .
...

0
. . .

.. .
. . .

.. .
. . .

...
...

. . . ej dj fj

. . .
...

...
. . .

.. .
. . .

.. .
. . . 0

...
. . .

.. .
. . .

.. .
. . . fNy−1

0 · · · · · · · · · 0 eNy dNy





























Asfor vorticity, thistensorial form iseasily solved within theGeneral PGD frame-
work.

From the streamline we can easily define the velocity un+1 = (un+1
1 , un+1

2 ) in
tensorial form :

un+1
1 =

∂

∂y
(

Nψ
∑

k=1

αkψFkψ ⊗ Gk
ψ)

un+1
2 = −

∂

∂x
(

Nψ
∑

k=1

αkψFkψ ⊗ Gk
ψ)

[57]

4.2. Results

4.2.1. The steady lid-driven cavity

Let us consider the square domain Ω =]0; 1[×]0; 1[ for the resolution of the
Navier-Stokes equations with Dirichlet boundary conditions, as ill ustrated in Figure
5. Here the two velocities components vanish on the boundary, except on the north
facewhere thex-velocity is equal toU0.The simulationswere made with δt = 10−3,
for two Reynolds numbers2 (Re = 100 andRe = 1000) and with the sourceterm f

(seeEquation [39]) equal to zero.

Sincewewerelookingfor astationary flow, wedefined thefollowingconvergence
criteria:

||uki − uk−1
i ||

||uki ||
≤ ǫu with i = 1, 2 [58]

2. Re =
U0 × d

ν
where d is the width of the cavity.
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u1 U 0= u2= 0

u2= 0

u1= 0

u2= 0

u1= 0

u2= 0u1= 0
x

y

d

d

,

,

Figure 5. Geometry of lid-driven cavity

In thefollowing, ǫu is set to 1.10−10.Figure7 denotesthe comparison between the
streamlines computed from the PGD methodand the standard methodfor Re = 100
andRe = 1000. Thisfigureshowsthat streamlinesobtained byPGD arevery closeto
those obtained with the standard solver. Figure 6 ill ustrates the comparison between
thex-velocity at x = 0.5 andthey-velocity at y = 0.5 (seethedashed lineonFigure5
computed with thePGD solver, andtheresultsobtained byGhia. andal. (see(Ghiaet
al., 1982)) for the two Reynoldsnumbersconsidered. Theresultsdrawn in this figure
were obtained with the same number of nodes in each direction (Nh = 200). The
velocity profiles obtained with the PGD methodclearly correspondto those obtained
by thestandard methodandGhiás results.

(a) (b)

Figure 6. Comparison of the x-velocity at x=0.5 (a) and y-velocity at y=0.5 (b) with
Ghia. and al. results for Re = 100 and Re = 1000

It is interesting to compare the CPU time of the PGD solver and standard solver
with the numbers of nodes (Figure 8) for each Reynolds number. It can be seen that
beyonda mesh sizeof 300 × 300, PGD becomes faster than the standard method. In
fact, for amesh sizeof 500×500, theCPU timewas twicelower with thePGD solver
for Re = 100. For Re = 1000, with the same grid (500× 500), PGD was four times
faster than thestandard solver.
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PGD streamlines forRe = 100 Standard solver streamlines for Re = 100

PGD streamlines for Re = 1000 Standard solver streamlines forRe = 1000

Figure 7. Streamlines computed with PGD and computed from the standard solver
with Nh = 200 for Re = 100 and Re = 1000

(a) (b)

Figure 8. Comparison of CPU time between the PGD solver and standard solver for
the resolution in lid-driven cavity forRe = 100 (a) and Re = 1000 (b)
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4.2.2. The unsteady lid-driven cavity

Here we will consider the same lid-driven cavity as in the previouscase, with the
sameboundary conditions. We will study the caseof a post-critical Reynoldsnumber
where the flow is unsteady. We chose to fix this Reynolds number at 10000. The
simulationsweremadewith δt = 10−3 andwith a250× 250 mesh grid.

STANDARD PGD

Figure 9. Change in the stream function during one main period forRe = 10000 on
a 250×250 grid. From top to bottom for each solver (standard and PGD) times t = 0,
t = 0.3 and t = 0.6 are represented
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STANDARD PGD

Figure 10. Change in the stream function during one main period for Re = 10000
on a 250 × 250 grid. From top to bottom for each solver (standard and PGD) times
t = 0.9, t = 1.2 and t = 1.51 are represented
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The results obtained using the standard model and with PGD are similar to those
obtained by Bruneau and Saad in (Bruneau et al., 2006). In fact with our simulations
we finda period of 1.51s, whereasBruneau et al. havefoundaperiod of 1.64s.

Thestreamlinesare also shown onFigures9 and 10at different time pointsof the
period and for every single solver studied. It is also worth noting that there is a very
goodcorrespondancebetween the two modelsand the resultsobtained in (Bruneau et
al., 2006).

The results of this part demonstrate that the computation of the lid-driven cavity
withRe = 10000 wasperformed efficiently with PGD. In fact, wewere ableto repro-
ducesomeresultsfrom theliterature, likethebehaviour of thevortex during onemain
period.

5. Conclusion

In this paper we have applied the PGD method to solve the Navier-Stokes equa-
tions in stream-vorticity formulation for the flow in a 2D lid-driven cavity. In the
steady cases (Re = 100 and Re = 1000), PGD results are in line with the ones
obtained by the standard solver and with the results issue from the literature. Fur-
thermore, from 300 nodes in each direction, time-saving has been succeded. In the
unsteady case (Re = 10000), PGD method givesa periodsimilar to the one obtained
in the litterature and the comportement of the streamline during one period is similar
to theoneobtained bythestandard solver. As in the exempleof theunsteady diffusion
equation, we have seen that the PGD with time variable in the decomposition is very
efficient in time saving, the next development is to use thisapproach to solveNavier-
Stokesequations. Moreover, the introduction of asolid in thefluid problem is subject
to further development.
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