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ABSTRACT. In this work, the Proper Generalized Decomposition (PGD) method will be
considered in order to solve Navier-stokes equations with a stream-vorticity formulation by
looking for the solution as a sum of tensor product functions. In the first stage, PGD will be
applied to a model equation in order to test the capacity of the method to treat some time-
dependent problem. Then, we will solve the Navier-Stokes problem in the case of the lid-
driven cavity for different Reynolds numbers (Re = 100, 1000 and 10000). Finally, the PGD
method will be compared to the standard resolution technique, both in terms of CPU time and
accuracy.

RESUME. L’objectif de ce travail est d’appliquer la méthode Proper Generalized
Decomposition (PGD) pour résoudre les équations de Navier-Stokes en formulation ligne de
courant-vorticité. Par cette technique la solution est recherchée comme une somme de
produits tensoriels de chacune des variables du probléeme (espace, temps...). Afin de tester les
capacités de la méthode pour la résolution de probléme instationnaire, la PGD sera tout
d’abord appliquée a I’équation de diffusion instationnaire. Dans un second temps elle sera
appliquée pour simuler I’écoulement dans une cavité entrainée. Les résultats obtenus seront
comparés a ceux obtenus par une méthode de résolution standard aussi bien en termes de
précision que de temps de simulations.
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1. Introduction

Fluid-structure interadions play an important role in many applicaions which
present a couding between movements of a structure in a fluids flow. Different
methods to trea these problems has been extensively investigated : see (Dowell et
al., 2007 for a comprehensive review. The numericd resolution o such a problem
could combine the resolution o the fluid and the structural equations, which requires
an important CPU time and stockage cgadty. With traditional methods of resolution,
effeduate optimizaion o parametric analysesis not passble. That's the reason why
some methods cdl ed Reduced Order Models (ROM), which dedswith reducing this
cost, appea these least yeas. The most well-known ROM method wsed is the POD
(Proper Orthogoral Decompasition). For example, in order to modelize flow around
an oscill ating cylinder, Liberge ¢ al.(Libergeet al., 2010 compute the POD modes
for aglobal velocity field (fluid and solid), and then construct a low-order dynamicd
system obtained by using amulti phase methodsimil ar to the fictiti ous domain method
This multi phase method extends the Navier-Stokes equations to the solid damain by
using a pendali sation method and a Lagrangian multiplier. Plazcék et a. in (Placzeé
et al., 2008 study with the hybrid POD method cases of introduction o structural
damping and a norlinea force gplied at the free end of rod. Lieu et a. in (Lieu
et al., 2006 apply POD to model a complete F-16 fighter configuration, in order to
assssits patentia for the solution o redistic agoelagtic problems.

The main drawbadk of this previous technique is the need of a snapshots =t of
the solution to construct the reduced-basis. The computing time requested for the
cdculation o these snapshots could be very important. Consequently some methods
cdled “a priori” model reduction techniques have been developed. They condst in
building areduced basis withou an “a priori” knowledge of the solution. The A Pri-
ori model Reduction (APR) (Ryckelynck, 2002 (Ryckelynck, 2005 (Ryckelynck et
al., 2005(Ammar et al., 20069 (Verdonet al., 2009 has been subjed of several de-
velopments. Thanksto thisapproad, the basisis adaptatively improved and expanded
with the residuals of the full discretized model. The incremental processis dore by
takinginto acourt the whole time interval where the reduced equationis solved.

An other a priori method, which will be gpplied in the following pert is the PGD
(Proper Generalized decompasition). The PGD consists in seeking the separated rep-
resentation o the solution o a partial diferential equation. Concretely, the separated
representation of afunction f(z1,...,zx) could bewrite:

N

Q
Z H Fri(xr)
=1k

=1

(z; can be any scdar or vedor variablesinvolving space time or any other parameter
of the problem). Thus, if M degrees of freedom are used to discretize eab variable,
the total number of unknavnsinvolved in the solutionis@ x N x M insteal of the
MY degrees of freedom involved in mesh based discretization techniques. In most
cases, when the field is asfficiently regular, the number of terms @ in the finite sum
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is generally quite small (afew dozen) andin all cases the gpproximation converges
towards the solution of the full grid description (see (Ammear et al., 2010 Ammar et
al., n.d.).

Thistechnique has been proposed afew yeasago by Ammar et al., (2006, 2007)
in the context of the multi -bead-spring FENE models of polymeric systems. The tech-
nique has been applied on a¢her more complex models based onthe reptation theory
of palymericliquidsin (Mokdad et al., 2007). This technique was also used in quan-
tum chemistry problems (Chinesta et al., 2008), and in materials homogenizationin
(Chinestaet al., 2008h. This method has already been applied in a stochastic frame-
work (Nouy, 2007 Nouy et al., 2009. In the context of LATIN method, Ladeveze
(Ladeveze 1999 Ladevezeet al., 2010 use amethodcaled 'radia approximation’.
This approad could be seen as avariant of the PGD with a spacetime separation.

In fluide structure interadion, for strongy couded problem, the more expensive
step is the resolution o the fluid problem. Then, as afirst stage, in order to test the
cgpadty of PGD, we will apply PGD to solve the Navier-Stokes equations only. The
paper isorganized asfollows. Firstly, the PGD methodwill be presentedin continuows
form andin algebraic form. Secondy, PGD will be gplied to solve the unsteady 2D
diffusion equation. This example enables us to test two approades of the PGD. The
first one consistsin separating the solution onthe spaces andtime variabes, the second
oneisaseparation orly onthe spaces variables. Then the discretizaion of the Navier-
Stokes equationsin streamli ne-vorticity formulationandits PGD formulation has been
detailed. Finaly, results on the test-case of the 2D lid-driven cavity in stationary and
unstationary case will beill ustrated. For the Navier-Stokes equationsonly aseparation
onthe spaces variables will be gpplied.

2. Description of the PGD

In this part, PGD will be describe in continuowsform andin algebraic form.

2.1. Continuousformulation
2.1.1. Preliminaries

For the sake of clarity andwithout losingits general scope, PGD will be examined
in the case of a 2D spacedecmposition. The problem is expressed as follows :

LU)=¢6 inQ

1
+Boundary Condtions [

FindU(x,y) as {

where £ isalinea?® differential operator and G is the second member.

PGD, which is an iterative method, consists in finding an approximation o the
solutionU(z,y) € 2= X x Y CR?withz € X CRandy € Y C Ras.

1. If the operator isnat linea, it isnecessry to lineaizeit.
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U(z,y) ~ Upn(z,y) = Za FY( 2]

where U,,,(z, y) is the goproximation o the solution o order m. At ead iteration,
the solution is enriched with an additional term o™ 1 F+1 (2)G™ 1 (y). PGD isan
iterative procedure which shoud be decompaosed in threesteps. During the first step,
“call ed the enrichment step”, the F™*! and G™*! functionsare obtained by solvinga
small sizenonlinea problem. Then, for the seaondstep, cdl ed the “projedion step”,
in order to improve the quality of the reconstruction, the m + 1 o coefficients are
determined by solving a linea system of size (m + 1). Finaly, the “chedk conver-
gencestep” consistsin the computing o the norm of the residual in order to dedde if
the solution reed more enrichment or naot. In the following these three steps will be
described in detail s.

2.1.2. Enrichment step

Atthem+1 stage, the solutionapproximation of order m is suppacsed to be known.
In this dep we search to compute the functions F*+1(x) and G™*1(y). We seach

Z o F' ()G (y) + ™ (2)G™H (y) [3]
Introduwcing Equation [3] into Problem [1], it gives:
LYo Fi(@)G (y) + F™HH(@)G™H (y)) = G + Res™ ! [4]
=1

where Res™*! isaresidual whose gppears becaise Equation [3] is an approximation
of the solution. Equation[4] isthen projeded onto eadt of theunknavns F™ and G™
andtheresidual Res™*! isforced to be orthogoral to ead of these functions. It gives
the two following problems::

£(Z A" F'(2)G (y) + F"H (2)G™ (y), F™ > 02 x)=< G, F™ ™ > oy

[5]

E(Z o' F (2)G (y) + F" T 2)G™ T (y)), G > 120 =< G, G > 12y
i—1

(6]

Equations [5] and [6] are solved using the fixed pant method After convergence
of the fixed pant, thefirst m + 1 functions F* and G* are now known.
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2.1.3. Projection step

In order to increase the acairagy of the decompasition, thea? coefficients are now
seached in such away that the residual is orthogoral to ead of the m + 1 products
of the FG' functions. At this gep, we seach U, 1(z,y) as,

m—+1

Un+1(z,y) Z a'F' ()G (y) (7]

Solution[7] isintroduced into Equation[1] :

m—+1
L( Z a'F'(2)G'(y)) = G + Res™ ™! 8]

The ot coefficients are then computed by projeding the ebove eguationacwrding
tothe F'G? :

m+1
Z ' Fl(2)G(y)), FF*GF >1200)=< G, FFG* > 120y forl <k <m+l

(9]

Equation [9] could be solved using a dasdcd solver of linea problems. At this
point we know the goproximation of the solution of order m + 1, Uy 41 (z, ).
2.1.4. Check convergence step

At this gep theresidual is computed in the followingway :

m+1

Res™T! = E(Z Q' Fi(z)G'(y) — G (10

If the L2 norm of this residual is lower than a coefficient € set by the user, the
PGD agorithm was conwverged. Else, one more iteration at least is needed, and the
enrichment and projedion steps are repeaed takingm = m + 1 until convergence

2.2. Algebraic formulation

2.2.1. Preliminaries

After discretisation by finite dement, finite volume or other technique, Problem
[1] can bewritten in adiscrete form :
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Ln(Up) = Gn [11]
with

ne ng N
Ly=) Mah, G =) flof], U =) oFaG [12]
j=1 j=1

=1

The operator £ is discretized as a tensor product of operators AJ and Ag) in the
diredion = and y respedively. The discretized operator A/, (resp. A7) is a square
matrix whose sizeis N, (resp V) where IV, (resp V) is the number of discretisation
nodesinthediredionz (resp y). The secondterm was decomposed as prodicts of the
sum of vedors f] and f] of size N, and N,. Finally the unknavn Uy, is céculated
asaproduct sum of vedors F? and G* of size N, and IV, using aweight coefficient
a'. ng (resp. ng) represents the number of tensor products required to represent the
separated form of the initial operator £ (resp. the sscondmember G).

Taking into acourt the property of the tensor product, Equation[11] can be writ-
tenas:

Y ) ol (AF e AFG) =) Hof) [13]
k=1 i=1 j=1

The threesteps of enrichment, projedion and chedking convergencewill now be
described with these notations.

2.2.2. The enrichment step

We suppacse to be & iteration (m+1) At this gage the unknawvn Uy, is sach in
tensorial form asfollows:

Up=) o'F'@G' +R®S [14]
=1
where R and S are unknavns and where the solution at the previousiteration U,,, =
Yot o'F* ® G is known. By introducing this new approximation of the solution
into Equation[13], we haveto solve :

n

o

neg m
(AR ® AES) =G, — > > o' (AFF' @ AFGY) [15]
k=1 k=1 i=1
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Thisnonlinea systemis olved within afixed-point strategy . In order to compute
R we chocse to fix S and we projed Equation [15] onto the vedtor S. This gives the
following problem, correspondngto Equation[6] in continuous form:

S AR = 303 - 303 atalE (16
k=1 j=1 k=1 i=1

with

7 = 'SAIS €R, 7? = 'Sf] eR, Vr= "SAJG'eR [17]

Similarly, in order to compute S we set R at the value just computed in Equa-
tion [16] and we projed Equation [15] onto the vedor R. This gives the following
problem, correspondngto Equation[5] in continuowsform :

ne ng ne m
PILIEED AP A bek [18
k=1 j=1 k=1 i=1

with
B = 'RA'R € R, 37 = 'Rf] R, 2= '"RANF' e R [19

Problems [16] and [18] are solved iteratively. The fixed-point procedure stops
when the k*" iteration satisfies:

[(R®S) — (R®S)i-1]| <€ (20

where || - || isthe L? norm and ¢ is a parameter chosen by the user. The new Fm+!
and G™*! arethen given by the next normali zation:
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2.2.3. Projection step

Them+1 functionsF¢ and G? areknown, o (1 < i < m+1) hasto be computed.
For this purpose, we projed Equation[13] onto the produwctsFIG7 (1 < j < m+1).
Thusthe following linea problem, whose sizeis (m + 1), correspondngto Equation
[3] in continuows form, is obtained

Ho =J with ta:{al,...7aN+1} [22]
where the comporents of H and J are defined by:
ne ng
=Y WANFUIGIALGT and J; =) 'FIRIGIEL [23]
k=1 k=1

2.2.4. Check convergence

In order to estimate the convergenceof the dgorithm, a computationis performed
of theresidual Res of Equation[1] defined by

ne m+1

Res=> > o ([Af]F' ® [A}] GY) Zf’“@f" [24]

k=1 i=1

Whenthe L?($2) norm of thisresidual becomeslower than a coefficient e set by the
user, the dgorithmis considered to be & convergence andthe solution o the problem
isexpressd as.

m—+1
Up=Y o'F @G [25]
=1
3. PGD applied to the unsteady 2D diffusion equation
3.1. Methodology

Inthis dionwewill studythe cgadty of the PGD to solve an urstealy diffusion
equation. The problemto solveis:

99(x.y.t) _ vAO(z,y,t) = f(z,y,t) InQxI
. ot
Findo(xytas < g, . —
r=49 [26]
O(x,y,0) = ©°

whereQ = X x Y € R? isaspatial domain, and I =]0, 7' isatimeinterval.
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We gply two different formulations of PGD : PGD with spacetime decomposi-
tion and PGD with spacedecompaosition only.

3.1.1. PGD with space-time decomposition

Let the secondterm be:

Fla,y,t) =Y F@) W) 1) [27]

j=1

Thefirst formulation, which will be noted PGD(XY T), consists in seeking the so-
lutionas afunction o the spacevariables and the time. Then, the solutionis sached
as:

O(z,y,t) = On(x,y,t Za Fz Z( ) [28]

Injeding this formulationin Problem [26] and wsing a finite volume formulation,
Problem [26] could be written for the aortrol volume (2, andthetimeq (1 <1 < N,
1<p<Nyandl <g<N)

N PR dH
Z/ fidw/ fgdy/ fidt :Z o / Fidx/ Gidy/ dt
=17 X Yy T, = X Y, T, dt
2 1 2 i
—v / e r dx/ Gldy/ H’dt—l—/ Fldx/ @G dy/ Hidtdt
X, d? X

[29]

This equationshoud be written in the same way asin the PGD algebraic formula
tion (seeEquation[13]).

3 N
) o (AFF @ ALGT @ AJHY) = / Zf? ®fl @fld2  [30]
k=1 i=1 axI ;
where A% (respedively AF, AF) is asquare matrix whose sizeis N, (resp. N, Ny).
These matrices are defined by

Ai = dia’g(A$17 T 7A$N,,;) Aqll = dia’g(Ay17 t ?AyNy)
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1 0 0
-1 1
A=
- 0
0 0o -1 1
a0 e e e 0
b2
0
2 _
Ar - b; a; Ci
0
CNz—1
0 0 bN,,, AN,
where
1 1 1 1
a; = — - ) bl = ) =
Tiv1 — T4 Ti — Ti—1 Tj — Ti—1 Tit1 — Ty
Ai = —Z/Azlj A2 = diag(Ay,, - - s Aty,)
Ai = —uAi Af = Af
di  f 0 e e 0
€2 :
0
3 _
Ay o €j d; fi
. 0
fNy—l
0 0 en, dn,
where
d 1 1 1 1
j — — - , €5 = ) =
S T T Yi — Yj-1 Yit1 — Yj
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where (x;, y;) is the cordinate of the center of the control volume Q;;. A, (resp.
A,,) isthe horizontal (resp. verticd) lenght of the control volume ;; and Ay, =
bericlior \Wedefinexo = oLy, (1€Sp. o, ,, = zc1,) thex-coordinateof thewest
(resp. of the eat) boundary of thedomain, andyo = ycrs (resp. yn,., = ycoLy) the
y-coordinate of the south (resp. of the north) boundiry of the domain.

3.1.2. PGD with space decomposition

In this case atemporal discretisation has to be dore using a Cranck-nicholson
scheme. Then, knowing©" at thetime t” = n  §t, we seach ©"*! as:

or 1
MO = =+ DAG 4 S (1 ) [31]

®n+1 v
st 2 5t

Here the PGD is only applied to the spacevariables, "1 is seking as:

O(z,y,t" ) = O (2, y) X:aZFZ G( [32]
Let the sourcebe:
(f"+ ZfJ )f]() [33]

Injedingthisformulation, which we cdled PGD(XY) inthefoll owing, in Equation
[31] and wsing afinite volume method, we obtain for the volume crtrol €, :

nyf N
, , (1 , ,
fédw/ fldy = o' —/ Fld.r/ G'dy
jzl‘/xl Yp ! 1:21 0 Xi Yp
v d?F? dQGl
—= d td Fd
2 [ X dz? x/ “ y+/Xl ‘T/ )

(34]

or

nf

3 N
> > ot (AEF @ A5GY) :f/ >t @f)do [35]
- QxI 5=
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where A% (respedively AY) isasquare matrix whosesizeis N, (resp. NV,)). Usingthe
same notations that in (3.1.1), these matrices are defined by

Al = %diag(Azl, e Agy,) A}J = diag(Ay,, -, Ayy,)
a1 c 0 0
b2
0
AL = bi  ai e A.12/ - _%All/
0
“ e
0 0 by, oan,
di fi 0 o e 0
€2
0
Az = *%Aalm Ay = e dy fy
0
S e
0 0 en, dn,

These two representations of PGD aim at ill ustrate the different way to use the
method, but nore the resolution wich was detail ed previously.

3.2. Results

The two PGD methods have been tested ona case where an analyticd solutionis
known. In thefollowing, Problem [26] will be solved with§ =] —1;1[x] —1; 1], and
asourceterm f :

1.4 y4

12

f(zyy,t) = — 22yttt — 2ttt + 42t — 4yt [36]
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In this case the problem has the following analyticd solution:

atyt 2,2 2,2
@ana(x»yat) = ?t‘i‘ 2.%' t° — 2y t [37]

The boundary conditions are chosen verifying this analyticd solution. The solu-
tion computed by the various lvers will be compared with the analyticd solution
Ouna- The PGD’'s lverswill be compared to the standard solver (bi-conjugate gra-
dient). Thus, arelative aror could be defined as foll ows:

||@solve - @anaHL2
||@ana||L2

where O, iS the solution computed by ore of the solvers used (PGD(XYT),
PGD(XY) or standard).

(3]

€rel =

We will study the dfead of the spacestep sizewith a constant time-step size, and
the dfed of the time-step sizewith a constant spacestep in ead diredion. These two
test are dore with a constant time interval 1. Finally, we will study the dfed of the
time-interval lenght with a constant time-step a constant spacestep. In the foll owing,
we chocse the convergence aiteria define in Equation 21.4 equal to 10~° for ead
PGD methodks.

3.2.1. Effect of the space-step size

For thistest, the time step is %t to 6t = 1073, thetime interval is €t to I =0, 1]
and Problem [26] is solved with diff erent spacesteps sze

1G-2 10!

0-O Standard OO Standard
% 3 PGD(XYT) > 3 PGD(XYT)
+ - PGD(XY)

+ - PGD(XY) i

1G-s
10%

time (s)

b
10!
1074

10°

-5 —1
10> 100 200 300 100 500 o 100 200 300 00 500
Ny N

@ (b)

Figure 1. Relative error (a) and computational duration (b) with the number of hodes
of spatial discretisation for standard, PGD(XY) and PGD(XYT) solvers with
I, =]0,1[and 6t = 1073

Figure 1la shows that appeaance of the relative eror with the number of nodes
in eat spatia diredionis smilar for ead solvers. The computational duration with
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the number of nodes is plotted on Figure 1b. We wuld ndice that, from a cetain
number of nodesin ead diredion, PGD’s methods become faster than the standard
solver. Then, from 200 nodes in ead diredion, PGD(XY) solver is faster than the
standard ore, for N, = 500 the computational duration is divided by seven. The
figure dso shows that from 150 nodesin ead diredion, PGD(XY T) methodis faster
than the standard ore. In fad, for N, = 500, computational durationis divided into
one hunded andfifty with PGD(XY T) solver. Thisimportant time savingisdueto the
fad that the number of functions needed to approximate the solution dearease when
the number of nodesincreases (seeFigure 2).

100

— PGD(XYT)

=4

Number of functions

100 200 300 400 500

Figure 2. Number of functions for PGD(XYT) solver with the number of nodes of
spatial discretisation with I, =]0, 1[ and 6t = 1073

3.2.2. Effect of thetime-step size

In this :dion, the number of nodes in ead diredion will be set to N}, = 250
andthetime interval will be set to I =]0, 1[. Problem [26] will be solved with atime
step varying between 6t = 102 (1000 nodesin the time diredion) to 6t = 10! (10
nodesin thetime diredion).

Figure 3a shows that the relative eror with the number of nodes in ead spatial
diredionis gmilar for ead solvers. As shown in Figure 3b PGD(XY T) is faster than
the standard solver and faster than PGD(XY). In fad, it is sven times faster with
N; = 1000 than the standard solver and four times faster than the PGD(XY) solver.
According to this figure, the behaviour of the PGD(XY') solver and o the standard
oneisvery similar.

3.2.3. Effect of the time-interval lenght

In this part, the am is to test the influence of the time interval lenght on the per-
formance of eat method Then, time-step is %t to ¢ = 102 and the number of
nodesin ead spacediredionis €t to N, = 250. Thetimeinterval will betaken from
I =]0;1[to I =]0;20].
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10*

O-O Standard
>€ > PGD(XYT)
« - PGD(XY)

temps (s)

10!

10°

200 400 600 800 100
N

(b)

Figure3. Relative error (a) and computational duration (b) with the number of nodes
of spatial discretisation for standard, PGD(XY) and PGD(XYT) solvers with

I, =]0,1[and Nj, = 250

107!

O-O Standard
€ > PGD(XYT)
+ - PGD(XY)

102

107*

107 5 10 5 2
I(s)

@

O-O Standard
%< 3 PGD(XYT)
« - PGD(XY)

01} X~ ~5¢-- *

10° 3 0 i5 20
li(s)
(b)

Figure4. Relative error (a) and computational duration (b) with the the time interval
lenght for the solvers standard, PGD(XY) and PGD(XYT) with §t = 10~2 and

N}, = 250

Figure 4a shows the evolution d the relative eror with the time interval lenght.
Asfor the previous sdion, errors are the same for the threesolvers.

Concerning the computational duration, Figure 4b shows tha the ratio between
PGD(XY) and standard solver is the same for ead time-interval. Asin the previous
test, PGD(XY) and standard solvers seem to have the same behaviour with the time
interval lenght. PGD(XY T) is faster than the other solver. In fad, for atime inter-
val equal to I =]0,20[, PGD(XYT) is sxty five times faster than PGD(XY') and an
hunded andfifty timesfaster than the standard solver.
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4. Navier-Stokesequations

It exists many waysto solve incompresshble Navier-Stokes equations. One of them
consists in treding the problem with its primitive variable (velocity and presaure).
But in this formulation, there is a limitation, termed the inf-sup (or LBB) condition,
in approximating the velocity and the presaure. If this condraint is not respeded,
the numericd instabiliti es or the spurious presaure values are inevitable. That is the
reason why it is necessary to discretize unknavns on a staggered-grid (see (Kress
et al., 2003 (Piller et al., 2004). Ancther way to solve incompressble 2D Navier-
Stokes equations is to transform the equations into a fourth-order norlinea partial
differential equation with the biharmonic operator as a principa part where the un-
known isthe stream function which existsthanksto theincompresshilit y constraint.
This equation could be separated by introducing the vorticity w, into systems of two
second-order diff erential partial equationsof which unknavnsare thevorticity andthe
strean functions. This formulations gudied in many papers, here we dte ((Tezduyar
etal., 1990 (Tokuragaet al., 1994 (Chudanovet al., 1995(Ramsak et al., 2005(Kim
etal., 2007).

4.1. Stream function-vorticity formulation

4.1.1. Governing equations

Let  be afluid domain in R2, the primitive variable formulation for the unsteady
incompressble Navier-Stokes flow could be written

1 .
ou_ VAU + Uu.VU = f;Verf inQx]0,T|

ot

Vu=0 [39]
u(t =0)=uo

u=gpono

where u and p are respedively the velocity and the presaure fields, andf is a known
bodyforce v isthe kinematic viscosity and p isthe constant fluid density.

Theincompresshility condtionsof Problem [39] impliesthe existenceof astream
function ) satisfying:
o oY

u=(ur,uz) = (

Taking the 2D curling operator (V x) of both sides of velocity equations of Prob-
lem [39], and wsingthe followingrelation :

Vxu=-AY.7 [41]
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and
V x (u.V)u = (V.u)(V x u) + (u.V)(V x u) [42]
the foll owing equationis obtained

ag—f — VA% + (U.V)AY = =V x [43

Generally thisfourth-order partial diff erential equationisdifficult to solve diredly.
One way to give this problem tradable is to apply a separation o this equation. It is
posshle to introduce the definition o vorticity in fluids dynamics, and the Equation
[43] with his boundary conditions bemme:

AY = —w dans )
44
8_1& =G sur 0N [44
on
and
%—L: —vAw+ (UV)w =V xf dans
YT or T by

wherethe vorticity w = w.Z isgiven by V x u and G is given by the boundiry value
of ¢ correspondng to the boundary velocity. For further details e (Chudanov et
al., 1995(Ramsak et al., 2005(Kim et al., 2007).

Solving the Navier-Stokes equations in " stream-line vorticity” formulation con
sistsin solving successvely Problems[45] and [44].

4.1.2. Discretisation

Herewe monsider that the known bodyforcef isequal to zero. Let usfirst consider
the Equation [45] giving the vorticity. This equation can bewritten as:

1 v
—  n+1l ZA n+l _ B 4
ot 2= (4

where the diff usive term has been discretized using a Cranck-nicholson scheme, and
the convediveterm has been discretized using an Adams-Bashforth scheme.

1 v 1
B = n - n__ - n. n __ nfl. n—1 4
5 + 2Aw 2(3u Vw™ —u Vw™™ ) [47]

Equations [44] and [45] will then be spatially discretized with the finite volume
methodwith asecond ader scheme.
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4.1.3. PGD associated to the streamline-vorticity formulation

The Proper Generalized Decompositionwill be used for the cdculation of vorticity
w (Equation[45]) and for the the cdculation o the streamline ¢ (Equation[44]). In
order to use the PGD algorithm detailed in Sedion 22, the Equations [45] and [44]
have to be written in adiscrete form asin Equation[12].

We lookfor w"*! as:

S =3 b FH )G (y) (48
k=1

Within the finite volume framework, Equation [46] has to be integrated on ead
control volume €, giving the foll owing equation:

1
= / W0 — g / Aw™H1d0 = / BdQ [49]

Qip Qip Qup

Introdwcing Equation [48] in Equation [49], the left hand-sde could be rewritten
as.

LIS Ve v [d2F% d2GF

k kg YV k / k /
E —&/P dm/Gdy 2/dx2dx/Gdy+ F¥dx dy2dy
k=1 X, Y, X, Y, X, Y,

(50]

where X; (respedively Y}) is the definition interval of the control volume €2, in the
diredionz (resp. ).

Then Equation[49] could be written:

A"t =B [51]
where,
3 m
Aw Tt = Z Z of ATFF @ AZGk (52]

q=1 k=1
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Theoperators A and A are exadly the same matrices as these defined in Sedion
3.1.2

Now, we have predsed the tensorial operators needed to solve the streamline
(Equation[44]). We thuslookfor 1) as:

Ny
P =Y "ok Pl e Gl [53]
k=1

After discretization with finite volume method and after taking the previous form
of p in Equation[44] into acourt , we obtain :

Ny
P d2Fk dZGk
k b k k W
« —dx/ G)dy—o—/ F, dx/ dy :/ / Ddxdy
; v </Xl da? Y, v X, ¥ Yy dy2 X, JY,

[54]
on the volume €2, which could be written
Cy"tt =D [55]
with,
2 Ny
Cy™t =3 ") "ol CIF) @ CIG), [56]
q=1k=1

where, using the notations of Sedion 31.1,

a1 e1 0 e el 0
b2
0
Ai = bi  ai e - ) Alll = diag(Ay, - 7AyNy)
0
CN,—1
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di fi 0 e e e 0
o ) :
0
Ai =diag(Dz,, -, Aey, ); A12/ = e 4 f
' 0
fNy—1
0 o+ oo e 0 en, dn,

Asfor vorticity, thistensorial formis easily solved within the General PGD frame-
work.

From the streamline we can easily define the velocity u™+ = (w1 w5 ™) in
tensorial form:

D &
W= - aFy ® GY)
Yy [57
n 0 N
uptt = —a(z (IZFZ) ® GZ))
k=1

4.2. Results

4.2.1. The steady lid-driven cavity

Let us consider the square domain © =]0;1[x]0; 1] for the resolution o the
Navier-Stokes equations with Dirichlet boundary condtions, asill ustrated in Figure
5. Here the two velociti es comporents vanish onthe boundxry, except on the north
facewhere the z-velocity is equal to Uy. The simulations were made with 6t = 1073,
for two Reynolds numbers? (Re = 100 and Re = 1000) and with the sourceterm f
(seeEquation[39]) equal to zero.

Sincewe werelookingfor astationary flow, we defined the following convergence
criteria
[luf — g™

[l

<en  with i=1,2 [58]

2. Re = L0X 9 here disthe width of the caity.
14
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u;=Uy , U,=0

=0, U=0

Figure5. Geometry of lid-driven cavity

Inthefollowing, ¢, is %t to 1.10~1°.Figure 7 denotes the comparison between the
streamlines computed from the PGD method and the standard methodfor Re = 100
and Re = 1000. Thisfigure showsthat streanlinesobtained by PGD are very close to
those obtained with the standard solver. Figure 6 ill ustrates the comparison between
the z-velocity at z = 0.5 andthey-velocity at y = 0.5 (seethedashed lineonFigure5
computed with the PGD solver, andthe results obtained by Ghia. and al. (see(Ghiaet
al., 1982) for the two Reynolds numbers considered. The results drawn in thisfigure
were obtained with the same number of nodes in ead diredion (N;, = 200). The
velocity profiles obtained with the PGD method clealy correspondto those obtained
by the standard method and Ghias results.

47 T — PGDRe=100
# s + # Ghiaet al. Re=100
o2/ -~ PGDRe=1000
i 5 + + Ghiaet al. Re=1000

Vertical Velocity V

— PGDRe=100

H + + Ghiaetal Re=100
T, -~ PGD Re=1000 %
b + + Ghiaet al. Re=1000 *

T =iz 00 D02 04 06 08 10 12 047 02 01 0.6 0.3 10

Horizontal velocity U X

@) (b)

Figure 6. Comparison of the x-velocity at x=0.5 (a) and y-velocity at y=0.5 (b) with
Ghia. and al. resultsfor Re = 100 and Re = 1000

It is interesting to compare the CPU time of the PGD solver and standard solver
with the numbers of nodes (Figure 8) for ead Reynolds number. It can be seen that
beyonda mesh size of 300 x 300, PGD beames faster than the standard method In
fad, for amesh size of 500 x 500, the CPU time was twicelower with the PGD solver
for Re = 100. For Re = 1000, with the same grid (500 x 500), PGD was four times
faster than the standard solver.
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".\\; e

PGD streamlinesfor Re = 100 Standard solver streamlinesfor Re = 100

e ———— ———=)

PGD streamlinesfor Re = 1000 Standard solver streamlinesfor Re = 1000

Figure 7. Streamlines computed with PGD and computed from the standard solver
with N}, = 200 for Re = 100 and Re = 1000

10°
+ -+ Standard | + -+ Standard
+— PGD A +— PGD |
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(0] (o)
£ 10t E
s | p
o o
(&} o

"(

200 250 300 350 400 450 500
Ny

4
2 L - — 3
05100 150 200 20 300 350 400 40 50 10{00—150
Ny

€Y (b)

Figure 8. Comparison of CPU time between the PGD solver and standard solver for
the resolution in lid-driven cavity for Re = 100 (a) and Re = 1000 (b)
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4.2.2. The unsteady lid-driven cavity

Here we will consider the same lid-driven cavity as in the previous case, with the
same boundry condtions. We will study the case of a post-criticad Reynolds number
where the flow is unsteady. We dhose to fix this Reynolds number at 10000. The
simulations were made with §¢ = 10~2 and with 2250 x 250 mesh grid.

STANDARD

Figure 9. Change in the stream function during one main period for Re = 10000 on
a 250 x 250 grid. Fromtop to bottomfor each solver (standard and PGD) timest = 0,
t=0.3andt = 0.6 are represented
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STANDARD

Figure 10. Change in the stream function during one main period for Re = 10000
on a 250 x 250 grid. From top to bottom for each solver (standard and PGD) times
t=0.9,t=1.2andt = 1.51 arerepresented
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The results obtained using the standard model and with PGD are simil ar to those
obtained by Bruneau and Saad in (Bruneau et al., 2006). In fad with our simulations
wefindaperiod o 1.51s, whereas Bruneau et al. have foundaperiod of 1.64s.

The streamlines are dso shown onFigures 9 and 10at diff erent time points of the
period and for every single solver studied. It is also worth nating that there is a very
goodcorrespondcancebetween the two models and the results obtained in (Bruneau et
al., 2009.

The results of this part demonstrate that the computation o the lid-driven cavity
with Re = 10000 was performed efficiently with PGD. In fad, we were ableto repro-
duce someresults from theliterature, like the behaviour of the vortex during ore main
period.

5. Conclusion

In this paper we have goplied the PGD methodto solve the Navier-Stokes equa-
tions in stream-vorticity formulation for the flow in a 2D lid-driven cavity. In the
steady cases (Re = 100 and Re = 1000), PGD results are in line with the ones
obtained by the standard solver and with the results isaue from the literature. Fur-
thermore, from 300 nodes in ead diredion, time-saving has been succeded. In the
unstealy case (Re = 10000), PGD method gves a period simil ar to the one obtained
in the litterature and the comportement of the streamline during ore periodis smilar
to the one obtained by the standard solver. Asinthe exemple of the unsteady diffusion
equation, we have seen that the PGD with time variable in the decompositionis very
efficient in time saving, the next development isto use this goproac to solve Navier-
Stokes equations. Moreover, the introduction of asolid in the fluid problem is aubjed
to further development.
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