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ABSTRACT. The acoustic exterior Neumann problem is solved using an easy process based upon
the boundary element method and able to eliminate effects of irregular frequencies in time
harmonic domain. This technique is performed as follows: (i) two computations are done
around the characteristic frequency, decreased and increased by a small imaginary part; (ii)
average between pressures at these two frequencies ensures unique solution for all
wavenumbers. This method is numerically tested for an infinite cylinder, an axisymmetric
cylinder, a sphere and a three-dimensional cat’s eye structure. This work highlights ease and
efficiency of the technique under consideration to remove the irregular frequencies effects.

RESUME. Le probléme acoustique de Neumann extérieur est résolu par une technique
numérique facile a mettre en ceuvre basée sur une méthode d’éléments de frontiére dans le
régime harmonique. Cette méthode est capable d’éliminer les effets des fréquences
irrégulieres. La technique se décompose en deux étapes : (i) deux calculs sont effectués
autour de la fréquence a traiter (augmentée ou diminuée par une petite partie imaginaire) ;
(ii) moyennage de la pression entre ces deux fréquences. Cette démarche permet d’assurer
lunicité de la solution a la fréquence traitée. La méthode est testée sur un cylindre infini, un
cylindre a symétrie axiale, une sphere et une géométrie tridimensionnelle type « il de chat ».
Ce travail démontre la simplicité et [’efficacité de la technique proposée pour traiter
l'indétermination aux fréquences irréguliéres.
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1. Introduction

The boundary element methodis well-suited to the study o the aoustic radiation
or scatering from any arbitrary body immersed in a fluid medium of infinite exten-
sion (Marburg et al., 2008. Here, the 3D Helmholtz equationis lved with a pre-
scribed Neumann boundry condtion onthe radiated or scettered surface through
the so-cdled exterior Helmhaltz integral equation (Schenck, 1968 (HIE) and the
wave superposition method (Koopmann et al., 1989 (WSM). In ou case, the non
uniguenessdifficulty occurs at the @genfrequencies of the associate interior Dirichlet
problem (Schenck, 1968 Copley, 1968. Numericdly, this meansthat at these dgen-
frequencies and in their neighbahood the final set of equationsis snguar. The ladk
of uniquenessof solution at these frequencies can be overcome by alternative tech-
niques, such thoseinitialy suggested by Schenck (1968, Burtonet al. (1971), Water-
man (1969 or Jones (1974 (Benthien et al., 1997, have compared efficiency of these
methods to tred irregular frequencies effeds). The first two methods have benefited
from numerous dudies. The first one is very popuar and is knowvn by the agonym
CHIEF (Combined Helmholtz Integral Equation Formulation). This method com-
bines the HIE with collocaion pdntsin the interior domain of the scatering body
By adding the HIE of the interior domain, CHIEF creaes an overdetermined sys-
tem of equations, which can be solved using a least-square technique. It has been
improved by many authors (Seybert et al., 1987 Segalman et al., 1990 Wu €t al.,
1991, Segaman et al., 1992 Marschall, 1993 Juhl, 1994 Chenet al., 1997). Thesec
ond method wses a complex linea combination o the HIE and its normal derivative
equation (which leals to hypersinguar kernel). This technique yields an unique so-
lution when the couping coefficient is a complex number. The main difficulties have
been resolved for many yeas (Meyer et al., 1978 Yang, 2004). The BurtonandMill er
methodis also attradive and can largely compete with Schenck’s method (Marburg et
al., 2009. Inthe numericd appli caion o these methodsthereis always atradeoff be-
tween acarracy and sped, as there is often a tradeoff between complexity (difficulty
of implementation) and reliability (protedion against fail ure) (Benthien et al., 1997).
Thus, we propase anew processwhich is acairate, easy to implement and reliable.

Thefirst part of this paper deds with the aoustic problem: the exterior Neumann
problem and the solutions we have developed are summarized and irregular frequen-
cies are briefly remembered. Then, the propcsed processto overcome irregular fre-
quenciesis described. The seaond part concerns numericd investigations of the new
methodwhich are based onthe paint-source chedk. Infinite ¢ylinder and axisymmet-
ric geometries (cylinder and sphere) andtheir discretizaion are defined, computations
are caried ou with WSM and classcd HIE and with spedal treament. In order
to apply this technique to more 3D complex problem, the cd’s eye (Marburg et al.,
2003 Schneider et al., 2003 Marburg et al., 2005 Marburg et al., 2008 Makarov et
al., 1998 istested. Finaly, conclusionis dore.
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2. Acoustic problem
2.1. Equationsof the problem

Figure 1 showsthe geometry of theradiation problem. The well-known Helmholtz
differential equation gowernsthe propagationin infinite fluid domain:

Ap(r) +k’p(r) =0 r ey, [1]

where p isthe amplitude of the amustic presaure & the point » and k is the wavenum-
ber. The variables exhibit an implicit e~*“* dependencewherew = kc (c isthe sound
velocity) isthe pulsationand ¢ thetime (i = v/—1). This equation is asociated with
the Neumann boundry condtion onthe surface

Ip(r’)

on/’
in which n’ denotes normal diff erentiation at the point =’ in the diredion from the
interior regionQ; towards T, v, (r') isthe normal comporent of the velocity at point

r’ and p is the fluid density moduus. The presaure must also satisfy the radiation
condtion (Wil cox, 1956):
W) ikpr)

i
R1—I>noo //SR 1o}

where r is the radia distance from the origin of coordinates and S is a sphere of
radius R centered at the origin and surroundngr andT".

=iwpv,(r') v’ €T, [2]

2

ds =0, 3]
r=R

n/

Qy

r
Figure 1. Geometry of the problem

2.1.1. Helmholtzintegral equaion
The above problem can be replacal by the HIE (Schenck, 1968 Brebbia, 1991):

%p(ﬂ = //F (P(T')agg;;,r,) - ag:,,)g(nr’)) dr’, [4]
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where o isthe solid angle (Seybert et al., 1985 (equal to 27 when r isaregular point
onI', equal to 0 when r € Q; andequal to 47 when r € Q) and g isthe free-space
Greav'sfunction:

g(r.7") = H" (k|r —+']) (2D) [5]
ik|7‘7'r'|
g(r,r') = %ﬁ (3D) (6]

inwhich H{" isthe Hankel function of thefirst kind, |r — 7| isthe distance between
points » and r’. The discretizaion of the surfaceusing isoparametric dements with
quadratic variationleadsto the linea square system (cf. Stupfel andal. (Stupfel et al.,
1988 for the axisymmetric case and Lavie (Lavie, 1989 for the 3D case):

A0 =181 { 52} 7

where [A] and [B] are the integral equation matrices, {p} and {dp/on} are the nodsl
presauresand nodil derivative presauresvedors. After cdculation o the surfacepres-
sure, nea-field presaure and far-field presaure can be diredly deduced.

2.1.2. Thewave superposition method

The simple ideabehind the WSM s that the a®ustic field of a complex radiator
can be remnstructed as a superposition o individual simple sources. Its principle
can befoundin the literature under various denominations as the well knowvn Method
of Fundamental Solutions (MFS) (Fairweaher et al., 2003. The eyuivalency of the
WSM to the HIE has been shown by Koopman (Koopmannet al., 1989, thus vali dat-
ing the superpasitionintegral:

p(r) =g [[[ara)g(rra) d9ura) re TUOL (8]
Q;

The source strength is denoted by ¢ (r,,) where r,, are the WSM source locations
inside ;.

To reduce Equation [8] to a numerica form, it’s convenient to assume the sources
distributed onI” inside ;. If this surfaceis divided into N sufficiently small ele-
ments, the normal velocity onT" can be gpproximated:

N
0 ws
un(r)%ZQi% re TUQy v, €I, [9
=1

where Q; isthe volume velocity of the simple source. Sincew,, (r) isknown onT’, Q;
isgivenin matrix form by

Q = [D]"un. (10
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With @, the presarefield is cdculated from

N
p(r)=jwp> g(r,rw,)Qi 7€ TUQ 7, €I, [11]
i=1

thanksto the lineaized Euler equation. The WSM exhibits nonruniquenessat critica
wave numbers (Wilton et al., 1993 conreded to the virtual shape defined by the
superposition sources (Chen, 2006 Leblanc et al., 2010.

Whil e thereis much scopefor discusson onthe number andlocation o theinterior
sources for optimum acarracy, some authors as Alves (Alves, 2003 have established
some useful rules of thumb, which are used in this paper.

2.2. Irregular frequencies

At frequencies correspondngto a natural frequency of the inner surface HIE and
WSM possssindeterminate solutions. Theoreticdly, the determinant of the final li n-
ea system is zero. Because of the body surfacediscretizaion (HIE) or the locetion
of the superposition sources (WSM), the determinant is not exadly equal to zero and
leads to afalse solution. Moreover, the computational approximations generate an in-
terval aroundtheirregular frequency where the solutionisnot corred. Sincethe num-
ber of irregular frequencies increases rapidly with frequency (Courant et al., 1953,
the eror intervals can overlap. So, it is generaly necessry - for medium or high
frequency problems - to eliminate the indeterminations.

To highlight this unwanted behaviour, threediff erent geometriesimmersed in wa-
ter are studied (¢ = 1500 m/9): (i) an infinite ¢ylinder, (ii) afinite right circular cylin-
der and (iii ) asphere. Inthefirst case, irregular wavenumbersassociated to theinterior
Dirichlet problem are solutions of (Wiltonet al., 1993

Iy (kas) = 0 [12]

where J,, isthe n' Bessl functionand a, isthe radius of the drcle defined by super-
pasition sources. In the secondcase, the aiticd frequencies are (Schenck, 1968

o= [(B) (22 19

(see Figure 2) in which m is a postive integer and «,, is the ¢" root of
Jn (Abramowitz et al., 1964). In the third case, irregular frequencies are given
by (Schenck, 1968

knq - % [14]

where a isthe radius of the sphere. Here v, isthe g™ root of the n™ spherica Besl
function j,, (Abramowitz et al., 1964).
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b

Figure 2. Finiteright circular cylinder

2.3. Unique solution by an average process

The numericd technique proposed is very easy to implement. The ideaisto per-
form two computations: one & the complex wavenumber & — ic and ore other at
k + ic where ¢ isasmall red number compared to k. Both two solutions are unique
andare nat aff eded byirregular frequencieseffeds. Indeed, these two frequenciesare
complex and can nat coincide with eigenvalues of the interior problem that are red.
To remver the original value of the frequency, the final presaureis obtained foll owing
average:

p(r, k —ic) + p(r, k + ic)

p(?",k) - 9 : [15]

The main difficulty isto evaluate the magnitude of ¢: both the shift must be small
enoughto asare the acaragy of the interpolation and high enoughto remove the d-
fea of the irregular frequency. To this end, we have developed a numericd tod in
which HIE and WSM have been implemented using MatLab™ programming. When
the variables exhibit an implicit e~ dependence, the first caculated frequency
matcheswith an amplified oscill ation and the seand ore with a damped oscill ation.
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3. Numerical investigations
3.1. Point-source check

Thenumericd validationisredized usingthe paint-source thed (Schenck, 1968).
Thistest consistsin locaing ore point »¢ into the geometry (e.g. seeFigure 2). The
sourceradiates a sphericd analyticd presaure with amplitude M:

ik|r—r?| etkD

M, [16]

o(r) =M -——"— =
p (r) |T_Ts| D

from which its normal derivative value is evaluated onthe surface

apa“:“) — iMe;QD (zk = %) (r* —7) m. [17]

The nodal surfacevalue vedor dp,/0n isintroduced in [7]. Then, the system is
solved and cdculated presaure is compared to the analyticd presaure by the mean-
sguere eror (MSE):

N
Z |pc(Tn) _pa(T’n)|
MSE = | 2=t (18]

N
> [pa(ra)|

where N isthetotal number of nodes of the mesh, p.(r,,) andp,(r,,) are respedively
the cdculated andthe analyticd presaure & the nodern. Two or more point-sourcesin
the same geometry is possble becaise analyticd presauresare aumulative.

3.2. Computations

3.2.1. 2D case using the wave superposition method

Working on an infinite ¢/linder (cf. Figure 3) with the WSM highlights the
benefit obtained by the averaging process Using the same shape but retraded (ra-
dius as = a/10) for the superposition sources, the point-source ded (located at
x = 0.0ba y = 0.1a) is performed by averaging WSM results with the complex
wave numbers as defined in Equation[15] for € rangingfrom 105 to 10~ . Thenum-
ber of superpositionsourcesisdefined by the distancebetween two adjoiningsuperpo-
sition sourceswhich is st as a quarter of the wavelength. Figure 4 shows the domain
of validity of the averaging processfor the 2" irregular wavenumber ka, = 3.832.
The two following Figures 5 and 6 ill ustrate the influence of the aoefficient ¢. If
is chosen too high, the damping effed on resonance will be to important, leading to
a oonstant but high errors. At the other end, seleding a small ¢ will affed only the
upper pe&ks of the spedra. Figure 5 can be viewed as an accetable case of sufficient



626 EJCM —19201Q Fluid-structure interadion

dampingwhile for Figure 6 isclealy alower limit for e: the overall error duetoirreg-
ular wavenumber is unaltered except at those frequencies where the result is as good
if better than for agreder ¢ (cf. Figure 4).

Y

superposition
sources

Figure 3. 2D representation o an infinite cylinder (radius a), with superposition
sources located on acircle of radius a,

MSE (%)

Figure 4. Point-source dheck MSE obtained for the infinite cylinder and with aver-
aged WSM: 107° < ¢ < 10~ andka, = 3.832
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—— WSM w/o averaging process
= = = \WSM with averaging process

MSE (%)

2 4 6 8 kas 10 12 14 16

Figure 5. Point-source dheck MSE obtained for the infinite cylinder and with aver-
aged WSM: ¢ = 1072 and2 < kb < 15

10°

—— WSM w/o averaging process
= = = \WSM with averaging process

MSE (%)

4 L L L L L L )

2 4 6 8 10 12 14 16
ka

S
Figure 6. Point-source dhieck MSE obtained for the infinite cylinder and with aver-
aged WSM: ¢ = 103 and2 < kb < 15

3.2.2. 3D caseusingthe Helmhadltzintegral equation

The first studied geometry with HIE is the finite right circular cylinder with
b = 1.5a. Thischoicehasthe dfea of shifting the irregular frequenciesin the low-
frequency range. We have seleded three citicd wavenumbers auch that

kia = kigra = A/ (%)2 + Oé%l

kga = k?loga = (%)2 + Oé(2)2 [19]

_ _ 7m)2 2
kga = k703a = (%) + Qg3

k1, ko and k3 (ksa ~ 11.341) are the 1%, the 10" and the 100" values given by
Equation[13] and are symmetric modeswith resped to the symmetry plane. We have
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chosen a paint-source test that is consistent with the symmetries of the three dove
seleded frequencies (axisymmetry and pdane symmetry):

— two sources on the ais of the gylinder: r*1 (resp. r*2) such asz = b/3 (resp.
z = —b/3) andamplitude M (resp. M).

Themesh isbuilt i n order to resped the "\ /4 criterion", which states that the dimen-
sion o thelargest element of the mesh hasto be minor than aquarter of the wavelength
to get acawrate solutions (Zienkiewicz, 1971). The mesh islimited to the meridian of
the ¢ylinder. It is made of identicd 3-nodes elements: 8 elements on the radius a and
12 elements onthe half height b.

The second geometry is the sphere. The dhosen reduced wavenumber is quch that
k19 10 = a9 1 ~ 24.878. The point-sourcetest is consistent with the axisymmetry
and pdane symmetry of the associated mode:

— two sources on the axis of the sphere: : 7°* (resp. r°2) suchasz = a/4 (resp.
z = —a/4) and amplitude M (resp. M).

Themeshis szedtoresped the"\/4 criterion": 50 3-nodeselementsonthe merid-
ian. Because of the quadratic variation o the dements, the meridian is approximated
by set of conreaed parabdlic curves that very dightly differs from the half circle.
So, criticd frequencies are very dightly shifted up. A preliminary numericd study
has allowed to locae with acaracy the value of the numericd criticd wavenumber
asociated with kg 1:

ka = 25.013 where MSE =774 %. [20]

Others choices of frequencies are obviously posshble and dorit ater the course of
the study below. The average goproximationis evaluated by varying the parameter ¢
between /10 and k/1000.

A comprehensive study is achieved for the ¢ylinder. The M SE obtained from the
HIE with the ebovetestis:

—for k1: MSE = 1764 %;

—for ko MSE = 6301 %;

—for k3: MSE = 592 %.

Thisill ustrates the dfea of these irregular frequencies. Results are shown in Tables
1, 2 and 3for k1, ko and ks.

Table 1. MSE of the average processdepending o the parameter <. Finite right cir-
cular cylinder andk;

e %1 /10 | k1/20 | k1/50 | k1/100 | k1/200 | k1/500 | k1/1000
average (%) | 5.98 | 147 | 025 | 014 | 012 | 018 | 3645




Integral methods with urique solution 629

Table 2. MSE of the average processdepending o the parameter <. Finite right cir-
cular cylinder and ko

e kiaJ10 | k2720 | k2/50 | k2/100 | k2/200 | k2/500 | k2/1000
average (%) | 3468 | 822 | 161 | 096 | 090 | 0.89 0.89

Table 3. MSE of the average processdepending o the parameter <. Finiteright cir-
cular cylinder and ks

e T3 /10 | k3/20 | k3/50 | k3/100 | k3/200 | k3/500 | ks3/1000
average (%) | 16365 | 3185 | 4.84 | 138 | 0.70 | 0.70 1.38

We observethat the average processisvery efficient when e isaroundk /200. Pres-
sureversusnodesnumber isgivenin Figures 7, 8 and 9. Normali zed analyticd surface
presaureis compared to the normalized pressure p/M with e = k/200. The ebscisa
axis designates the numbering o the equidistant nodes of the half meridian: node 1l is
at the centre of an endcep of the ¢ylinder and nodk 41 is on the symmetry plane. In
thesefigures, analyticd and average presaures are superimpased. This provesthevery
goodacairagy of the arerage technique.

real part

imaginary part

Figure 7. Comparison o normalized surface presaures on the half meridian o the
finiteright circular cylinder at &,

The sphere is diredly tested with the average processande = k/200 at k given
by Equation[20]. Results are summarized in MSE = 0.76 %. Normali zed analyticd
surfacepresaure is compared to the normalized average presaure on Figure 10. An
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¢ 2 T T e o & | —e— Analytical
e 9 —x— Average
0 1 1 1 1 1 1

real part
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g

(=8

e
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£
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5 10 15 20 25 30 35 40
node

Figure 8. Comparison of normalized surface presaures on the half meridian o the
finiteright circular cylinder at k-

—©— Analytical
—— Average

real part

imaginary part

node

Figure 9. Comparison o normalized surface presares on the half meridian o the
finiteright circular cylinder at k3

excdlent concordanceis observed between analyticd values and results issuied from
the average method Moreover, these results confirm the choiceof ¢.
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T 28 —6— Analytical
e —— Average
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Figure 10. Analytical normali zed surface pressure compared to average presaire on
the half meridian o the sphere at ka = 25.013

Figure11. Mesh of the cat’s eyemodel

4. Cat’seye application

More and more authors consider the ca’s eye geometry as a reference (Marburg
et al., 2008 Marburg et al., 2005 Makarov et al., 1998 Schneider et al., 2003. It
consists of a sphere with radius R where the positive octant (i.e. where the catesian
coordinates are such that x > 0, y > 0, z > 0) is cut out (seeFigure 11). Thera-
diation problem in air (¢ = 340 m/s) isinvestigated with HIE for a vibrating surface
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where it coincides with the sphericd one. The plain surfaces of the missng octant
remain cdm. Theideais that the sound pesare & the centre of the badkside shoud
behave asymptoticaly (as frequency increases) like one & the surfaceof the sphere.
Thisbadkside paint isthe oppasite point of the missng octant and is defined in spher-
icd coordinates such as (r, 9, ¢) = (R, 135°,225°). Ancther particular point under
consideration is the centre point R = 0. Besides, this radiator alows construction
of asmocoth solution that will make it easy to identify solution fail ures caused by the
ill -condtioning o theintegral operator associated to the irregular frequencies. Dueto
the complexity of the geometry, we exped more irregular frequencies than a sphere.
The norma particle velocity for the vibrating surfaceis uniform. In this case, the
sound presaure & the badkside point tends towards the presaure of a pulsating sphere:

kR

p(R) = pcvy, NiEwEIk [21]

Simultaneously, a point-source ded is driven with two sources: 5t (resp. r°2)
isdefined by (r, ¥, ) = (R/2,135°,210°) (resp. (1,9, ¢) = (R/2,135°,240°)) and
amplitude M (resp. 2M). The mesh satisfiesthe " \/4 criterion" upto abou kR = 18
and the computation are caried ou upto kR = 27.720. It is made of 2324isopara-
metric quadratic 8-nodes elements. The whale frequency range is covered by 3001
equidistant computation frequencies. The arerage processdefined by Equation[15] is
used with e = £/200.

10° -
100
SR
2 10+ \ | l “‘ “l llwmlﬂ ’
o v

Figure 12. MSE of the cat’'seye

Results are given in Figures 12, 13 and 14 (some peks are truncated becaise of
their large anplitude). The failure & the irregular frequencies are correded by the
average process The MSE dowly increases with the frequency because the mesh is
the same throughou the frequency range. As expeded, the behaviour of the normal-
ized badkside presauretends toward 1 with small periodic oscill ationsin Figure 13. In
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no average
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=40
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Figure 13. Presaire at the backside point of the cat’s eye

no average
4~
(8]
<
z2r
=3
1 =
0 1 1 1 1 1
0 5 10 15 20 25
average
4~
3 =
(8]
o
> 2r
5
1 =
0 1 1 1 1 1
0 5 10 15 20 25
kR

Figure 14. Presarre at the centre point of the cat’seye

Figure 14, these periodic oscill ations are resumed with amplitude getting higher with
frequency and are probably due to resonances. Findly, e = k/200 provides good
results over the entire frequency range.
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5. Conclusion

HIE andWSM do nd provide corred solutionfor exterior acoustic Neumann prob-
lem when the wavenumber is equal or in the neighbahood d an eigenvalue of the
asciated interior Dirichlet problem. The proposed solutionis based uponan average
of presaures between the computational frequency minored and majored by an imagi-
nary fador ie (cf. Equation[15]). The average processhas been successully applied
to the WSM in the case of the infinite oylinder whil e too more computations concern
the HIE. For afiniteright circular cylinder, computations have shown the abilit y of the
average processto remove the irregular frequencies effeds. The study o the sphere
confirmitsvalidity andits efficiency. Moreover, this procedure was applied to the HIE
to cdculate the amustic radiation o the complex 3D ca’'s eye.

Up to naw, thereis notheoreticd justification so preliminary studyis necessry in
order to determine . From numerica validations, this techniqueis efficient and very
easy to implement onalarge frequency range and for complex geometries.

In this paper, development and caculation concern only radiation problems. Nev-
ertheless extension to scattering problem is graightforward by adding incident pres-
surein the sscondmember of Equation[4].
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