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ABSTRACT. The acoustic exterior Neumann problem is solved using an easy process based upon 
the boundary element method and able to eliminate effects of irregular frequencies in time 
harmonic domain. This technique is performed as follows: (i) two computations are done 
around the characteristic frequency, decreased and increased by a small imaginary part; (ii) 
average between pressures at these two frequencies ensures unique solution for all 
wavenumbers. This method is numerically tested for an infinite cylinder, an axisymmetric 
cylinder, a sphere and a three-dimensional cat’s eye structure. This work highlights ease and 
efficiency of the technique under consideration to remove the irregular frequencies effects. 

RÉSUMÉ. Le problème acoustique de Neumann extérieur est résolu par une technique 
numérique facile à mettre en œuvre basée sur une méthode d’éléments de frontière dans le 
régime harmonique. Cette méthode est capable d’éliminer les effets des fréquences 
irrégulières. La technique se décompose en deux étapes : (i) deux calculs sont effectués 
autour de la fréquence à traiter (augmentée ou diminuée par une petite partie imaginaire) ; 
(ii) moyennage de la pression entre ces deux fréquences. Cette démarche permet d’assurer 
l’unicité de la solution à la fréquence traitée. La méthode est testée sur un cylindre infini, un 
cylindre à symétrie axiale, une sphère et une géométrie tridimensionnelle type « œil de chat ». 
Ce travail démontre la simplicité et l’efficacité de la technique proposée pour traiter 
l’indétermination aux fréquences irrégulières. 
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1. Introduction

Theboundary element methodis well -suited to thestudy of the acoustic radiation
or scattering from any arbitrary body immersed in a fluid medium of infinite exten-
sion (Marburg et al., 2008). Here, the 3D Helmholtz equation is solved with a pre-
scribed Neumann boundary condition on the radiated or scattered surface, through
the so-called exterior Helmholtz integral equation (Schenck, 1968) (HIE) and the
wave superposition method (Koopmann et al., 1989) (WSM). In our case, the non-
uniquenessdifficulty occursat the eigenfrequenciesof the associate interior Dirichlet
problem (Schenck, 1968, Copley, 1968). Numerically, thismeans that at these eigen-
frequenciesand in their neighborhood, the final set of equations is singular. The lack
of uniquenessof solution at these frequencies can be overcome by alternative tech-
niques, such those initially suggested bySchenck (1968), Burtonet al. (1971), Water-
man (1969) or Jones(1974) (Benthien et al., 1997, have compared efficiency of these
methods to treat irregular frequencies effects). The first two methods have benefited
from numerous studies. The first one is very popular and is known by the acronym
CHIEF (Combined Helmholtz Integral Equation Formulation). This method com-
bines the HIE with collocation points in the interior domain of the scattering body.
By adding the HIE of the interior domain, CHIEF creates an overdetermined sys-
tem of equations, which can be solved using a least-square technique. It has been
improved by many authors (Seybert et al., 1987, Segalman et al., 1990, Wu et al.,
1991, Segalman et al., 1992, Marschall , 1993, Juhl, 1994, Chen et al., 1997). Thesec-
ondmethod uses a complex linear combination of the HIE and its normal derivative
equation (which leads to hypersingular kernel). This technique yields an unique so-
lution when the couplingcoefficient is a complex number. Themain difficultieshave
been resolved for many years(Meyer et al., 1978, Yang, 2004). TheBurtonandMill er
methodisalso attractive andcan largely competewith Schenck’smethod(Marburg et
al., 2005). In thenumerical application of thesemethodsthereisalwaysatradeoff be-
tween accuracy and speed, as there is often a tradeoff between complexity (difficulty
of implementation) and reliabilit y (protectionagainst failure) (Benthien et al., 1997).
Thus, wepropose anew processwhich isaccurate, easy to implement and reliable.

The first part of thispaper dealswith the acoustic problem: the exterior Neumann
problem and the solutions we have developed are summarized and irregular frequen-
cies are briefly remembered. Then, the proposed processto overcome irregular fre-
quencies is described. The second part concerns numerical investigationsof the new
methodwhich are based onthe point-source check. Infinite cylinder and axisymmet-
ric geometries(cylinder andsphere) andtheir discretizationaredefined, computations
are carried out with WSM and classical HIE and with special treatment. In order
to apply this technique to more 3D complex problem, the cat’s eye (Marburg et al.,
2003, Schneider et al., 2003, Marburg et al., 2005, Marburg et al., 2008, Makarov et
al., 1998) is tested. Finally, conclusion is done.
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2. Acoustic problem

2.1. Equations of the problem

Figure1 showsthegeometry of theradiation problem. Thewell -knownHelmholtz
differential equation governsthe propagationin infinitefluid domain:

∆p(r) + k2p(r) = 0 r ∈ Ωf , [1]

wherep is the amplitudeof the acoustic pressure at thepoint r andk is thewavenum-
ber. Thevariablesexhibit an implicit e−iωt dependencewhereω = kc (c is thesound
velocity) is the pulsation and t the time (i =

√
−1). This equation is associated with

theNeumann boundary condition onthesurface:

∂p(r′)

∂n′
= iωρvn(r

′) r
′ ∈ Γ, [2]

in which ∂n′ denotes normal differentiation at the point r′ in the direction from the
interior regionΩi towardsΓ , vn(r′) is the normal component of thevelocity at point
r
′ and ρ is the fluid density modulus. The pressure must also satisfy the radiation

condition(Wilcox, 1956):

lim
R→∞

∫∫

SR

∣

∣

∣

∣

∂p(r)

∂r
− ikp(r)

∣

∣

∣

∣

2

r=R

dS = 0, [3]

where r is the radial distance from the origin of coordinates and SR is a sphere of
radiusR centered at theorigin andsurroundingr andΓ.

n
′

r
′

Γ

Ωi

Ωf

Figure 1. Geometry of theproblem

2.1.1. Helmholtz integral equation

The aboveproblem can bereplaced by theHIE (Schenck, 1968, Brebbia, 1991):

α(r)

4π
p(r) =

∫∫

Γ

(

p(r′)
∂g(r, r′)

∂n′
− ∂p(r′)

∂n′
g(r, r′)

)

dr
′, [4]
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whereα is thesolid angle(Seybert et al., 1985) (equal to 2π when r isaregular point
onΓ , equal to 0 when r ∈ Ωi andequal to 4π when r ∈ Ωf ) and g is the free-space
Green’s function:

g(r, r′) = H
(1)
0 (k |r − r

′|) (2D) [5]

g(r, r′) =
1

4π

eik|r−r
′|

|r − r′| (3D) [6]

in whichH
(1)
0 is theHankel function of thefirst kind, |r − r

′| is thedistancebetween
points r and r

′. The discretization of the surfaceusing isoparametric elements with
quadratic variationleadsto the linear squaresystem (cf. Stupfel andal. (Stupfel et al.,
1988) for the axisymmetric case andLavie (Lavie, 1989) for the3D case):

[A] {p} = [B]

{

∂p

∂n

}

, [7]

where [A] and [B] are the integral equationmatrices, {p} and{∂p/∂n} are the nodal
pressuresand nodal derivativepressuresvectors. After calculation of thesurfacepres-
sure, near-field pressure and far-field pressure can bedirectly deduced.

2.1.2. Thewavesuperpositionmethod

The simple ideabehind the WSM is that the acoustic field of a complex radiator
can be reconstructed as a superposition of individual simple sources. Its principle
can befoundin the literatureunder variousdenominationsas thewell known Method
of Fundamental Solutions (MFS) (Fairweather et al., 2003). The equivalency of the
WSM to theHIE hasbeen shown byKoopman (Koopmannet al., 1989), thusvalidat-
ing thesuperposition integral:

p (r) = jωρ

∫∫∫

Ωi

q (rw) g (r, rw)dΩi(rw) r ∈ Γ ∪Ωf . [8]

The source strength is denoted by q (rw) where rw are the WSM source locations
insideΩi.

To reduceEquation [8] to a numerical form, it’s convenient to assume the sources
distributed onΓ′ inside Ωi. If this surfaceis divided into N sufficiently small ele-
ments, thenormal velocity onΓ can be approximated:

un (r) ≈
N
∑

i=1

Qi

∂g (r, rwi
)

∂n
r ∈ Γ ∪ Ωf rwi

∈ Γ′, [9]

whereQi is thevolumevelocity of thesimplesource. Sinceun (r) isknown onΓ, Qi

is given in matrix form by

Q = [D]−1un. [10]
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WithQ, thepressurefield is calculated from

p (r) = jωρ

N
∑

i=1

g (r, rwi
)Qi r ∈ Γ ∪ Ωf rwi

∈ Γ′, [11]

thanks to the linearized Euler equation. TheWSM exhibitsnon-uniquenessat critical
wave numbers (Wilton et al., 1993) connected to the virtual shape defined by the
superpositionsources(Chen, 2006, Leblanc et al., 2010).

Whilethereismuchscopefor discussion onthenumber andlocation of theinterior
sources for optimum accuracy, some authorsas Alves (Alves, 2003) have established
someuseful rulesof thumb, which areused in thispaper.

2.2. Irregular frequencies

At frequenciescorrespondingto a natural frequency of the inner surface, HIE and
WSM possessindeterminatesolutions. Theoretically, the determinant of the final li n-
ear system is zero. Because of the bodysurfacediscretization (HIE) or the location
of the superpositionsources (WSM), the determinant is not exactly equal to zero and
leads to a falsesolution. Moreover, the computational approximationsgenerate an in-
terval aroundtheirregular frequency wherethesolution isnot correct. Sincethenum-
ber of irregular frequencies increases rapidly with frequency (Courant et al., 1953),
the error intervals can overlap. So, it is generally necessary - for medium or high
frequency problems- to eliminate the indeterminations.

To highlight thisunwanted behaviour, threedifferent geometries immersed in wa-
ter are studied (c = 1500m/s): (i) an infinite cylinder, (ii ) a finite right circular cylin-
der and(iii ) asphere. In thefirst case, irregular wavenumbersassociated to theinterior
Dirichlet problem aresolutionsof (Wiltonet al., 1993)

Jn (kas) = 0 [12]

whereJn is thenth Bessel functionandas is the radiusof the circledefined bysuper-
positionsources. In thesecondcase, the critical frequenciesare (Schenck, 1968)

kmnq =

√

(mπ

2b

)2

+
(αnq

a

)2

, [13]

(see Figure 2) in which m is a positive integer and αnq is the qth root of
Jn (Abramowitz et al., 1964). In the third case, irregular frequencies are given
by (Schenck, 1968)

knq =
αnq

a
[14]

wherea is the radiusof thesphere. Hereαnq is theqth root of thenth spherical Bessel
functionjn (Abramowitz et al., 1964).
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Figure 2. Finite right circular cylinder

2.3. Unique solution by an average process

The numerical technique proposed is very easy to implement. The ideais to per-
form two computations: one at the complex wavenumber k − iε and one other at
k + iε where ε is a small real number compared to k. Both two solutions are unique
andarenot affected byirregular frequencieseffects. Indeed, thesetwo frequenciesare
complex and can not coincide with eigenvalues of the interior problem that are real.
To recover theoriginal valueof the frequency, thefinal pressureisobtained following
average:

p(r, k) =
p(r, k − iε) + p(r, k + iε)

2
. [15]

The main difficulty is to evaluate the magnitudeof ε: both the shift must be small
enoughto assure the accuracy of the interpolationand high enoughto remove the ef-
fect of the irregular frequency. To this end, we have developed a numerical tool in
which HIE and WSM have been implemented usingMatLabTM programming. When
the variables exhibit an implicit e−iωt dependence, the first calculated frequency
matcheswith an amplified oscill ationand thesecond onewith adamped oscill ation.
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3. Numerical investigations

3.1. Point-source check

Thenumerical validationisrealized usingthepoint-source check (Schenck, 1968).
This test consists in locating one point rs into the geometry (e.g. seeFigure 2). The
sourceradiatesa spherical analytical pressurewith amplitudeM :

pa(r) = ±M
eik|r−r

s|

|r − rs| = ±M
eikD

D
, [16]

from which itsnormal derivativevalue isevaluated onthe surface:

∂pa(r)

∂n
= ±M

eikD

D2

(

ik − 1

D

)

(rs − r) · n. [17]

The nodal surfacevalue vector ∂pa/∂n is introduced in [7]. Then, the system is
solved and calculated pressure is compared to the analytical pressure by the mean-
square error (MSE):

MSE =

√

√

√

√

√

√

√

√

N
∑

n=1
|pc(rn)− pa(rn)|

N
∑

n=1
|pa(rn)|

[18]

whereN is thetotal number of nodesof themesh, pc(rn) andpa(rn) arerespectively
the calculated andthe analytical pressure at thenoden. Two or morepoint-sourcesin
thesame geometry ispossiblebecause analytical pressuresare cumulative.

3.2. Computations

3.2.1. 2D caseusing the wavesuperpositionmethod

Working on an infinite cylinder (cf. Figure 3) with the WSM highlights the
benefit obtained by the averaging process. Using the same shape but retracted (ra-
dius as = a/10) for the superposition sources, the point-source check (located at
x = 0.05a y = 0.1a) is performed by averaging WSM results with the complex
wavenumbersasdefined in Equation[15] for ε rangingfrom10−5 to 10−1. Thenum-
ber of superpositionsourcesisdefined bythedistancebetween two adjoiningsuperpo-
sition sourceswhich is set as a quarter of thewavelength. Figure4 shows the domain
of validity of the averaging processfor the 2nd irregular wavenumber kas = 3.832.
The two following Figures 5 and 6 ill ustrate the influence of the coefficient ε. If ε
is chosen too high, the damping effect on resonancewill be to important, leading to
a constant but high errors. At the other end, selecting a small ε will affect only the
upper peaksof thespectra. Figure5 can be viewed asan acceptable case of sufficient
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dampingwhile for Figure6 isclearly a lower limit for ε: theoverall error dueto irreg-
ular wavenumber is unaltered except at those frequencieswhere the result is as good
if better than for agreater ε (cf. Figure4).

O

a

as

x

y

superposition
sources

Figure 3. 2D representation of an infinite cylinder (radius a), with superposition
sources located on acircleof radiusas
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Figure 4. Point-source check: MSE obtained for the infinite cylinder andwith aver-
aged WSM: 10−5 < ε < 10−1 andkas = 3.832
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Figure 5. Point-source check: MSE obtained for the infinite cylinder andwith aver-
aged WSM: ε = 10−2 and2 < kb < 15
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Figure 6. Point-source check: MSE obtained for the infinite cylinder andwith aver-
aged WSM: ε = 10−3 and2 < kb < 15

3.2.2. 3D caseusing the Helmholtz integral equation

The first studied geometry with HIE is the finite right circular cylinder with
b = 1.5a. This choicehas the effect of shifting the irregular frequencies in the low-
frequency range. We haveselected three critical wavenumbers such that

k1a = k101a =

√

(

π
3

)2
+ α2

01

k2a = k102a =

√

(

π
3

)2
+ α2

02

k3a = k703a =

√

(

7π
3

)2
+ α2

03.

[19]

k1, k2 and k3 (k3a ≃ 11.341) are the 1st, the 10th and the 100th values given by
Equation[13] andaresymmetric modeswith respect to thesymmetry plane. We have
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chosen a point-source test that is consistent with the symmetries of the three above
selected frequencies(axisymmetry and planesymmetry):

– two sources on the axis of the cylinder: rs1 (resp. rs2) such as z = b/3 (resp.
z = −b/3) andamplitudeM (resp. M ).

The mesh is built i n order to respect the "λ/4 criterion", which states that the dimen-
sion of thelargest element of themesh hasto beminor thanaquarter of thewavelength
to get accurate solutions (Zienkiewicz, 1971). The mesh is limited to the meridian of
the cylinder. It is madeof identical 3-nodeselements: 8 elementson the radiusa and
12elementson the half height b.

The second geometry is the sphere. The chosen reduced wavenumber is such that
k19 1a = α19 1 ≃ 24.878. The point-sourcetest is consistent with the axisymmetry
and planesymmetry of the associated mode:

– two sources on the axis of the sphere: : rs1 (resp. rs2) such as z = a/4 (resp.
z = −a/4) andamplitudeM (resp. M ).

Themesh is sized to respect the"λ/4 criterion": 50 3-nodeselementsonthemerid-
ian. Because of the quadratic variation of the elements, themeridian is approximated
by set of connected parabolic curves that very slightly differs from the half circle.
So, critical frequencies are very slightly shifted up. A preliminary numerical study
has allowed to locate with accuracy the value of the numerical critical wavenumber
associated with k19 1:

ka = 25.013 where MSE = 774%. [20]

Others choicesof frequenciesare obviously possible and don’ t alter the courseof
the study below. The average approximation is evaluated by varying the parameter ε
between k/10 andk/1000.

A comprehensivestudy is achieved for the cylinder. The MSE obtained from the
HIE with the abovetest is:

– for k1: MSE = 1764%;

– for k2: MSE = 6301%;

– for k3: MSE = 592%.

This ill ustrates the effect of these irregular frequencies. Results are shown in Tables
1, 2 and 3for k1, k2 andk3.

Table 1. MSE of the average processdepending of the parameter ε. Finite right cir-
cular cylinder andk1

ε k1/10 k1/20 k1/50 k1/100 k1/200 k1/500 k1/1000
average(%) 5.98 1.47 0.25 0.14 0.12 0.18 36.45
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Table 2. MSE of the average processdepending of the parameter ε. Finite right cir-
cular cylinder andk2

ε k2/10 k2/20 k2/50 k2/100 k2/200 k2/500 k2/1000
average(%) 34.68 8.22 1.61 0.96 0.90 0.89 0.89

Table 3. MSE of the average processdepending of the parameter ε. Finite right cir-
cular cylinder andk3

ε k3/10 k3/20 k3/50 k3/100 k3/200 k3/500 k3/1000
average(%) 163.65 31.85 4.84 1.38 0.70 0.70 1.38

Weobservethat the averageprocessisvery efficient whenε isaroundk/200. Pres-
sureversusnodesnumber isgiven in Figures7, 8 and 9. Normalizedanalytical surface
pressure is compared to the normalized pressurep/M with ε = k/200. The abscissa
axisdesignatesthenumbering of the equidistant nodesof thehalf meridian: node1 is
at the centre of an endcap of the cylinder and node 41 is on the symmetry plane. In
thesefigures, analytical andaveragepressuresaresuperimposed. Thisprovesthevery
goodaccuracy of the averagetechnique.
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Figure 7. Comparison of normalized surface pressures on the half meridian of the
finite right circular cylinder at k1

The sphere is directly tested with the average processand ε = k/200 at k given
by Equation [20]. Results are summarized in MSE = 0.76%. Normalized analytical
surfacepressure is compared to the normalized average pressure on Figure 10. An
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Figure 8. Comparison of normalized surface pressures on the half meridian of the
finite right circular cylinder at k2
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Figure 9. Comparison of normalized surface pressures on the half meridian of the
finite right circular cylinder at k3

excellent concordanceis observed between analytical values and results issued from
the averagemethod. Moreover, these results confirm the choiceof ε.
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Figure 10. Analytical normalized surfacepressure compared to average pressure on
thehalf meridian of thesphereat ka = 25.013

Figure 11. Mesh of the cat’seyemodel

4. Cat’s eye application

More and more authors consider the cat’s eye geometry as a reference(Marburg
et al., 2008, Marburg et al., 2005, Makarov et al., 1998, Schneider et al., 2003). It
consists of a sphere with radiusR where the positive octant (i.e. where the cartesian
coordinates are such that x ≥ 0, y ≥ 0, z ≥ 0) is cut out (seeFigure 11). The ra-
diation problem in air (c = 340m/s) is investigated with HIE for a vibrating surface
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where it coincides with the spherical one. The plain surfaces of the missing octant
remain calm. The ideais that the sound pressure at the centreof the backside should
behave asymptotically (as frequency increases) like one at the surfaceof the sphere.
Thisbacksidepoint is theoppositepoint of themissing octant andisdefined in spher-
ical coordinates such as (r, ϑ, ϕ) = (R, 135°, 225°). Another particular point under
consideration is the centre point R = 0. Besides, this radiator allows construction
of a smooth solution that will make it easy to identify solution failures caused by the
ill -conditioning of the integral operator associated to the irregular frequencies. Dueto
the complexity of the geometry, we expect more irregular frequencies than a sphere.
The normal particle velocity for the vibrating surfaceis uniform. In this case, the
sound pressure at thebacksidepoint tends towards thepressureof a pulsatingsphere:

p(R) = ρcvn
kR√

1 + k2R2
. [21]

Simultaneously, a point-source check is driven with two sources: rs1 (resp. rs2)
is defined by (r, ϑ, ϕ) = (R/2, 135°, 210°) (resp. (r, ϑ, ϕ) = (R/2, 135°, 240°)) and
amplitudeM (resp. 2M ). Themesh satisfies the"λ/4 criterion" upto about kR = 18
and the computationare carried out up to kR = 27.720. It is made of 2324isopara-
metric quadratic 8-nodes elements. The whole frequency range is covered by 3001
equidistant computationfrequencies. The averageprocessdefined byEquation[15] is
used with ε = k/200.

0 5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

10
3

kR

M
S

E
 (

%
)

 

 

no average

with average

Figure 12. MSE of the cat’seye

Results are given in Figures 12, 13 and 14(some peaks are truncated because of
their large amplitude). The failure at the irregular frequencies are corrected by the
average process. The MSE slowly increases with the frequency because the mesh is
the same throughout the frequency range. As expected, the behaviour of the normal-
ized backsidepressuretendstoward 1with small periodic oscill ationsin Figure13. In
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Figure 13. Pressure at thebacksidepoint of the cat’seye
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Figure 14. Pressure at the centre point of the cat’seye

Figure 14, these periodic oscill ationsare resumed with amplitudegetting higher with
frequency and are probably due to resonances. Finally, ε = k/200 provides good
resultsover the entire frequency range.
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5. Conclusion

HIEandWSM do not provide correct solutionfor exterior acousticNeumann prob-
lem when the wavenumber is equal or in the neighborhood of an eigenvalue of the
associated interior Dirichlet problem. Theproposed solutionisbased uponan average
of pressuresbetween the computational frequency minored andmajored byan imagi-
nary factor iε (cf. Equation [15]). The averageprocesshas been successfully applied
to the WSM in the case of the infinite cylinder while too more computationsconcern
theHIE. For afiniteright circular cylinder, computationshaveshown the abilit y of the
average processto remove the irregular frequencies effects. The study of the sphere
confirm itsvalidity anditsefficiency. Moreover, thisprocedurewasapplied to theHIE
to calculate the acoustic radiation of the complex 3D cat’seye.

Up to now, there isno theoretical justificationso preliminary study isnecessary in
order to determineε. From numerical validations, this technique is efficient and very
easy to implement ona largefrequency range andfor complex geometries.

In thispaper, development andcalculationconcern only radiation problems. Nev-
ertheless, extension to scattering problem is straightforward by adding incident pres-
sure in the secondmember of Equation[4].
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