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1. Introduction

The motivation of this study is the improvement of fluid numerical models in mov-

ing domain with the purpose of application to complex interaction problems such as

fluid-structure unsteady interaction. Let us explain in detail the problems that arise in

this kind of compound dynamical systems by concentrating on a decisive issue: the

numerical prediction of the unsteady interaction between a compressible flow and a

structure requires that the global numerical scheme satisfies some conservation prop-

erties.

To start with, fixed mesh calculations compulsorily require conservation formula-

tions (mass, momentum, energy) for the fluid model. Two main motivations for this

choice follows. Firstly, physical soundness of many computations requires that im-

portant extensive quantities are conserved during time evolution. Secondly, a certain

class of conservative schemes allows the application of the Lax-Wendroff convergence

theorem towards weak solution. The effect of this convergence appears not only in the

capture of shocks but also in very irregular meshes. In the case of moving meshes, the

Arbitrary Lagrangian Eulerian (ALE) formulation of Hirt, Amsden and Cook (Hirt et

al., 1974) gave an answer to the first above conservation issue.

A second notion of conservation arose rather early for moving mesh methods. The

Geometric Conservation Law (GCL), introduced in (Thomas et al., 1979), and its dis-

crete versions (DGCL) ensure that a uniform flow is not perturbed by approximation

errors during the mesh motion. Many important arguments can be invoked for the

design of schemes respecting this condition.

– It was first shown, for example in (Lesoinne et al., 1996)(Koobus et al., 1999), that

its practical impact on accuracy and stability is of paramount importance.

– Since degree zero polynomial solutions are exactly obtained, the GCL can be under-

stood as a consistency condition (of Bramble-Hilbert type). A mathematical analysis

has demonstrated the role of the GCL for time-space accuracy order for ALE schemes

(Guillard et al., 2000).

– Also the GCL guarantees that the uniform solution will not show spurious under-

shoot or overshoot, that is, erroneous extrema. In (Farhat et al., 2001; Cournède et

al., 2006), it is proved that the discrete GCL is a sufficient condition in order that

some schemes satisfy the maximum principle for passive species. The DGCL is then

a nonlinear stability condition.

A third important conservation aspect in the discretization of fluid-structure inter-

action is the energy conservation. A theoretical review for different models is, for

instance, that of (Grandmont et al., 2000). From a numerical point of view, the global

energy conservation issue can be crucial, particularly in problems where the energy

transfered to the structure is produced by thermodynamic effects. Two main sources

of spurious loss of energy can be identified and distinguished:

a. The time advancing method. Basically, the time integration can be done in

three different ways. Explicitly (1), implicitly and loosely coupled (2) or implicitly
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and strongly coupled (3), which is also called monolithic approach (see for example

(Leyland et al., 2000)). Case (1) has often proven to be too expensive in terms of CPU

time. On the implicit side, up to our knowledge, only a small subset of monolithic

schemes (3) allows a strictly energy conservation integration. The drawback is again

their very high computational cost. For that reason, loosely coupled implicit schemes

(2) are the most widespread choice. Among them, recently proposed staggered al-

gorithms satisfy the energy conservation through the interface not exactly but up to

second order in time (or third order: see the paper (Piperno et al., 2000)). Energy

conservative schemes are also addressed in (Mani, 2003) and (Le Tallec et al., 2005).

b. The space integration.The spatial-oriented study of the energy budget for mov-

ing boundary problems, with coupling or not, and solved by means of ALE schemes

can be carried out following two lines.

The first line concerns the work relationship between coupled fluid and structure:

is the work performed on the fluid by the moving interface the same done by the solid

through this interface? Since, in general, the structural model does not involve an

energy equation, this kind of study concerns kinetic energy in the coupling of moment

and displacement equations.

This line is considered in papers like (Farhat et al., 1998) or (Piperno et al., 2000).

Both systems (fluid, structure) are treated by their own equations, and a third one

is included which governs the spatial fluid grid movement. All three are coupled

through the moving interface. In (Farhat et al., 1998), the space discretization issue

is analyzed, focusing on the load forces distribution at the interface, as seen either

by the fluid or the solid. In (Piperno et al., 2000), several ideas for the implicit time

integration scheme are proposed, based on a staggered formulation.

The second line concerns the work-energy relationship within the fluid, regardless

the structure: is the work performed on the fluid by the moving interface properly

translated in a variation of the total energy of the fluid? And this concerns essentially

compressible fluids.

The total energy conservation issue is important in many engineering applications

related to energy, for example in thermal engines or power plant turbines. It is con-

sidered in a series of papers (Fanion et al., 2000; Le Tallec et al., 2000; Fernandez

et al., 2002), in which it is used as a stability criterion for building a transpiration

condition.

The present paper also focuses on that second line with a special examination of

boundary conditions for ALE. The action of the moving boundary on the fluid system

produces a variation in its energy status. It is clear for the continuum problem, but the

discrete form remains full of questions. The core of this problem remains in the flow

equations discretization alone. How can an ALE scheme cope with this equivalence?

How can the work performed on the system be properly defined? How does the fluid

energy, defined as an extensive system property and related to the work, change? Are

there fully energy preserving schemes that also satisfy the other conservation relations
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(mass, momentum) and the Geometric Conservation Law? Once the questions are

solved, their conclusions can be easily adapted to the coupled schemes.

The paper is organized as follows. First, the continuum problem is set: the Euler

equations for compressible inviscid flow are written down and the energy budget is

presented. This is done in a fixed Eulerian reference system but a moving domain

Ω(t) is considered. Then, the flow equations are discretized in space with unstruc-

tured finite volume, following an ALE approach which deals with the moving bound-

ary difficulty, and satisfies also the GCL. That section follows (Nkonga et al., 1994),

keeping and extending the notations of this reference. The variables approximation

and integral quardrature on the surface is geometrically complex and will be carefully

described. Next, the analysis on the energy conservation issue is conducted, resulting

in a new ALE scheme. Then, we apply this scheme to a piston model flow and to a

flutter analysis of the AGARD Wing 445.6 in order to contrast the results with those

obtained by a counterpart of this scheme which does not satisfy the total fluid energy

conservation. Finally, we conclude this paper in Section 6.

Notations and conventions

The following notations and conventions are here adopted:

NC1: Variables notation:

– Scalars: ρ, p, E, etc.

– Vectors: u, U , x, etc.

– Tensors: τ , σ, etc. Space indicial notation for vectors and tensors is here

scarcely preferred, only for neatness criteria.

– Extensive variables: E , V , etc., in upper case script style.

– Variables defined at nodes: ρi, ui, etc. Subindices always refer to nodal number,

unless otherwise stated.

– Variables defined at cell boundaries: κij , νij , etc., labelled with two subindices.

– Variables defined at the domain boundaries: û, p̂, β̂ij , etc., labelled or not.

Einstein’s summation on repeated indices (index contraction) is never assumed unless

otherwise stated.

NC2: Considering integrals, the following notation is adopted, unless otherwise

stated. For any field f ,

∫

A

f :=

∫

A

f dA,

where A can be volume, surface or time interval, and dA labels the corresponding

differential.
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2. The physical problem: the Euler equations for compressible flow

The physical problem under study is the inviscid compressible flow. Its physics

is modelled by the Euler equations, basically the Navier - Stokes set without viscous

terms. For compressible flows, this set of equations comprises transport equations for

the mass, the momentum and the energy (see for instance (Landau et al., 1987)). Due

to compressibility pressure p, density ρ and temperature T changes are related through

a state equation, which couples the energy budget with the mass and force balances.

Suppose a fluid is contained in a given spatial domain Ω ⊂ R
n

, where n is the

space dimension. All the variables that describe its behaviour are then functions of

position x and time t, being t ∈ [0,∞). In conservative form, the unknowns of the

Euler equations are respectively the density ρ, the momentum U = ρu, and the total

energy per unit volume E = ρe. The velocity vector is noted as u and e = eo + 1
2u2

is the total energy per unit mass, being eo the fluid’s internal energy and u2 = u · u.

Hence, the conservation form is

∂ρ

∂t
+

∂

∂xi

(Ui) = 0,

∂Uj

∂t
+

∂

∂xi

(uiUj + pδij) = 0,

∂E

∂t
+

∂

∂xi

(ui(E + p)) = 0, [1]

where the subindices note space components, i.e. i, j = 1, ..., n and repeated indices

contract. As viscous forces are absent, the stress tensor is σij = − pδij . To close

the equations, a state law is needed: the ideal gas state law p = ρRT for instance.

Under this hypothesis, the internal energy is eo = CvT . R is the universal gas con-

stant and Cv and Cp are the specific heat at constant volume and at constant pressure

respectively.

In addition to [1], a set of properly defined boundary (discussed later) and initial

conditions are needed to tackle the solution of the problem. Initial conditions are of

the kind

u(x, 0) := u0(x), for all x ∈ Ω

ρ(x, 0) := ρ0(x), for all x ∈ Ω

T (x, 0) := T 0(x), for all x ∈ Ω [2]

and the rest of the initial variables can be derived from them.
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Figure 1. Sketch of the generic problem

2.1. Moving domains

The core of the fluid-structure interaction problems is the boundary condition that

couples both systems. By its motion, the solid performs work against the internal

forces of the fluid, producing a change in its energetic status. To focus on this is-

sue, a generic problem is considered, sketched in Figure 1. Suppose that Ω = Ω(t),
whose boundary is divided in three disjoint subsets: a fixed wall ΓFW and a moving

wall ΓMW(t), and an input / output ΓIO boundary (additionally, let all boundaries be

adiabatic ones):

∂Ω(t) = ΓFW ∪ ΓIO ∪ ΓMW(t). [3]

Under these assumptions, the boundary conditions should be compatible with both

the wall (moving or not) impermeability and adiabaticity, strongly imposed as Dirich-

let’s (on some velocity components) or weakly imposed as Neumann’s (on the traction

or the heat flow). Hereafter, s denotes the velocity distribution for all the points be-

longing to the moving wall measured in a fixed Eulerian frame. For the sake of clarity,

in the rest of the analysis, fixed boundaries like ΓFW and ΓIO are represented by Γ and

moving walls like ΓMW(t) by Γ(t).

The conservation form of the flow equations is derived from a simple fact: some

important properties are conserved as fluid gets in and out of a given volume. To

evaluate this balance, all of the differential equations [1] can be integrated in space as

follows. Let us write them generically as:

∂v

∂t
+ ∇ · F (v) = 0,
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where v and F represents the transported quantity and its flux respectively. Integrated

in space, (recall NC2 notation) we get:

∫

Ω

∂v

∂t
+

∫

∂Ω

F · n = 0, [4]

after using the divergence Gauss’ theorem. The vector n is the unit exterior normal

to the boundary ∂Ω. In this way, extensive flow quantities can be studied. When a

locally defined variable like v is integrated over the volume Ω under study, we obtain

an extensive quantity V:

V =

∫

Ω

v.

The evolution of the extensive quantities is modeled by equations like [4]. If in [4], the

integration domain is changing with time, i.e. Ω = Ω(t), the partial time derivative

can be taken out of the integral by means of the so called Reynolds’ formula:

dV

dt
=

d

dt

(∫

Ω(t)

v

)
=

∫

Ω(t)

∂v

∂t
+

∫

∂Ω(t)

v s · n. [5]

By using [5] in [4], we obtain

dV

dt
+

∫

∂Ω(t)

F · n −

∫

∂Ω(t)

v s · n = 0, [6]

which is the basis of any ALE formulation, a well-suited idea for solving flow prob-

lems with moving boundaries. Equation [6] is the key to understand the conservation

principles under study in this paper: any ALE scheme should satisfy the energy con-

servation and the so-called geometric conservation law. Both are introduced in the

next two sections.

2.2. The continuous energy budget

We recall now in what sense total energy is conserved for an Euler flow set in a

moving domain. We start from [5], which we restrict to the total energy equation, as

written in the set [1], and which we integrate over the whole domain. This will give

the amount of energy introduced to (or extracted from) the fluid system by the solid

via the mechanical action of the moving boundary. So let v in [5] be replaced by

v = E = ρeo + ρu2

2 , the total energy. Then, its extensive counterpart is

E =

∫

Ω

E,
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which in turn satisfies the Reynolds’ formula [5]

∫

Ω(t)

∂

∂t

(
ρeo + ρ

u2

2

)
=

dE

dt
−

∫

∂Ω(t)

(
ρeo + ρ

u2

2

)
s · n. [7]

Therefore, the energy transport equation can be written as

dE

dt
= −

∫

∂Ω(t)

(
ρeo + ρ

u2

2

)
u · n −

∫

∂Ω(t)

p u · n

+

∫

∂Ω(t)

(
ρeo + ρ

u2

2

)
s · n. [8]

Since the impermeability condition

u

∣∣∣
ΓMW

· n = s · n

u

∣∣∣
ΓFW

· n = 0 [9]

is assumed both on the moving and fixed walls, the normal flow velocity u ·n is there

equal to the normal solid wall velocity s·n. This additional condition is used to cancel

some terms in [8] on the moving boundary, which now becomes

dE

dt
= −

∫

ΓIO

(
ρeo + ρ

u2

2

)
u · n −

∫

ΓIO

p u · n −

∫

ΓMW

p s · n [10]

The energy variation in time consists of three boundary terms, shown in Equation

[10]. The first one is the total energy per time unit convected in or out of the domain

through the inflow and outflow. The second one is the work per time unit performed

by the fluid against this in/outcoming energy. The third one represents the mechanical

action of the solid on the fluid. It is the work per time unit performed on the fluid by

the moving wall. Note that all three integrand are co-linear with the normal velocity

and are present regardless either viscosity or compressibility.

Equation [10] has been calculated from the space integration of the total energy

transport equation for the fluid. In turn, it can be integrated in time to get the energy

variation ∆E

∆E
∣∣∣
t2

t1
=

∫ t2

t1

dE

dt
, [11]

between times t1 and t2 (being t1 < t2). It should satisfy

∆E
∣∣∣
t2

t1
= ∆Q

∣∣∣
t2

t1
+ W

∣∣∣
t2

t1
= W

∣∣∣
t2

t1
[12]
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where ∆Q|t2t1 holds for the thermical contribution to the gas from outside, and W |t2t1
for work performed by the external forces on the fluid system between t1 and t2. We

assume that ∆Q = 0. As highlighted in the introduction, Equality [12] is the key of

the present work: trivial in the continuum, it should be analyzed when time and space

discretizations are envisaged to solve the problem. W |t2t1 can be split as follows:

W
∣∣∣
t2

t1
= (WIO + WMW)

∣∣∣
t2

t1
. [13]

This includes the three contributions of Equation [10]. Those coming from the in-

put/output domain boundary, grouped in WIO, also appear when all boundaries are

fixed and therefore WIO presents no particular difficulties in an ALE context. The

differential fact is now the work performed by the moving wall on the fluid, noted as

WMW.

Figure 2. Work performed by the moving wall

While the right end side of [11] is calculated as a domain integral of the energy

transport equation, the right hand side of [12] can be evaluated from outside (with

respect to the fluid), considering the motion of Γ(t), the work spent in this motion

and the energy-work interchanges in inputs and outputs. From now on, we will focus

only on what happens with the moving part of the boundary, leaving aside WIO. Let

suppose a small time increment δt for which the moving wall goes from Γ(t) to Γ(t+
δt). Let fi be the force per unit surface, δw its performed work and di the distance

between δΓ(t) and δΓ(t + δt) which are very small portions of Γ(t) and Γ(t + δt)
respectively (Figure 2). On these grounds, it can be defined

f = σ · n

d = s δt.

where σ is the stress tensor defined above. Then,

δw = d · f = d · (σ · n) = (δt s) · (σ · n) [14]



346 European Journal of Computational Mechanics. Volume 19 – No. 4/2010

which yields

δW = δΓ δt s · σ · n. [15]

Integrated in time (between t1 and t2) and surface (over the whole ∂Ω(t), which cor-

responds to Γ(t)), it gives

W
∣∣∣
t2

t1
=

∫ t2

t1

∫

∂Ω(t)

s · σ · n dΓ dt. [16]

In few words: regardless the in/outlets contribution, the left hand side of [12]

(LHS[12], from now on) is Equation [10] integrated in the given time interval, that

is to say [11], and the right hand side (RHS[12]) is Equation [16]. The LHS[12] is

calculated in an Eulerian formulation for a moving domain, starting from total energy

general conservation principles for fluid dynamics. It describes what happens “on the

fluid side”. The RHS[12] is calculated as the work introduced in the system via the

moving boundaries, it is “on the solid side” (recall we have left aside WIO).

3. Discrete standpoint

The DGCL for a finite volume formulation on tetrahedral, non-structured grids,

extended to an ALE formulation has been proposed in (Nkonga et al., 1994). We

recall in Sec. 3.1, 3.2, 3.3 the main ingredients of this work in order to show that

this DGCL formulation is sufficient for total energy conservation, except at boundary

level. Sec. 3.5 examines the energy conservation issue for boundary fluxes.

3.1. Spatial discretization of the Euler equations

Equations [1] can be written in a compact form. For each component,

∂v

∂t
+ ∇ · F (v) = 0, [17]

taking

v = (ρ , ρu1 , ρu2 , ρu3 , ρe)T ,

Fk(v) = (Uk, ukU1 + pδk1, ukU2 + pδk2, ukU3 + pδk3, uk(ρe + p))
T

[18]

for a tridimensional problem, the subindex k running through the three space coordi-

nates.

The weak form of [17] is discretized using a nodal centered finite volume method.

The computational domain is discretised into Ω0
h
, a conformal finite-element mesh
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Figure 3. FV support or control cell Ci corresponding to node i (2D case)

made of triangles (2D) or tetrahedra (3D). A dual finite-volume partition of Ω0
h

is

obtained by building around each vertex i a dual cell Ci limited by medians (2D, see

Figure 3) and median plans in 3D. The finite-volume basis function space is then made

of characteristic functions of these cells:

φ = χi(x) =

{
1 if x ∈ Ci,

0 otherwise.

In this way, the control cells cover completely Ω0
h
:

Ω0
h

=

nc⋃

i=1

Ci. [19]

Then, the weak form of [17] is integrated in the partitioned Ω0
h

and using χi fol-

lowing these ideas. For each node, we have

∫

Ci

∂v

∂t
+

∫

∂Ci

niF (v) = 0 . [20]

Many options are then possible for the integration at cell boundary. We refer for

example to (Cournède et al., 2006).

3.2. Discretization of moving domains: ALE method

Let us consider a smooth bijective mapping π(t) depending on time and equal to

identity at time t = 0. Defining this mapping is equivalent to defining a velocity field

β and moving each point of the space with this velocity. Let for any time Ωh(t) the
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triangulation (tetrahedrisation in 3D) obtained by applying the mapping π(t) to any

vertex of Ω0
h
. It is enough to known the trajectories of each vertex, starting from a

vertex of Ω0
h
. This is also equivalent to know for any time t the velocity β(i, t) at

vertex i of Ωt
h
. In order to ensure than any segment or plan of the initial mesh will stay

at ant time resp. a serment or a plan, we consider the linear interpolation of vertex

values β(i, t) to any element of mesh Ωt
h
. For this discrete deformation velocity, we

keep the notation β(t). In Ωt
h

we build the dual cells:

Ωh(t) =

nc⋃

i=1

Ci(t).

The flux balance writes now:

dVi

dt
+

∫

∂Ci(t)

F (v) · ni −

∫

∂Ci(t)

v β · ni = 0, [21]

where

dVi

dt
=

d

dt

(∫

Ci(t)

v

)
.

For each interior cell Ci(t), with its corresponding set V (i) of neighboring cells,

∂Ci(t) =
⋃

j∈V (i)

∂Cij(t), [22]

where ∂Cij(t) represents the interface shared by cells Ci(t) and Cj(t). Then, [21]

can be written as:

dVi

dt
+

∑

j∈V (i)

∫

∂Cij(t)

F (v) · nij −
∑

j∈V (i)

∫

∂Cij(t)

v β · nij = 0. [23]

In order to evaluate this integral, following (Farhat et al., 2001), let us define

νij(t) =
1

|∂Cij(t)|

∫

∂Cij(t)

nij(t) ds [24]

and

κij(t) =
1

|∂Cij(t)|

∫

∂Cij(t)

β(t) · nij(t) ds . [25]

νij(t) is the mean normal corresponding to ∂Cij(t) and κij(t), the mean normal mesh

velocity projection for the same cell interface (the full meaning of this “mean” will be
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grasped below, when it becomes also a temporal one). Then we get an integral ALE

semi-discretization of the conservation law:

dVi

dt
+

∑

j∈V (i)

|∂Cij(t)| Φ(vi, vj ,νij(t), κij(t)) = 0, [26]

where Φ is a numerical flux function, typically an approximate Riemann solver, with

mesh velocity normal component κij(t) and with mean value of unknown v over cell

i denoted by vi. In particular it satisfies the following consistency condition:

Φ(v, v,ν, κ) = F (v) · ν − κv.

3.3. Discrete Geometric Conservation Law

Consider now a time discretization of the above formula. Up to first order, vi can

be taken as constant within each cell. Then, if the volume of the partition’s cell Ci(t)
is |Ci(t)|,

Vi(t) = |Ci(t)| vi(t). [27]

The θ-parameterized Euler time advancing yields

|Cn+1
i |vn+1

i = |Cn
i |v

n
i

− ∆tθ
∑

j∈V (i)

| ¯∂Cij |Φ
(
vn+1

i , vn+1
j ,νij , κij

)

− ∆t(1 − θ)
∑

j∈V (i)

| ¯∂Cij |Φ
(
vn

i , vn
j , νij , κij

)
[28]

where the overlines mean that time averaged values are taken. According to the Ge-

ometric Conservation Law principle, a uniform solution is exactly preserved when

time-advanced by the numerical scheme. Assume the above system able to reproduce

a constant solution vn = vn+1 = v∗, it should satisfy:

|Cn+1
i |v∗i = |Cn

i |v
∗

i −

∆tθ
∑

j∈V (i)

| ¯∂Cij |Φ
(
v∗

i , v∗j , νij , κij

)
− ∆t(1− θ)

∑

j∈V (i)

| ¯∂Cij |Φ
(
v∗i , v∗j , νij , κij

)
.

Invoking the consistency condition for Φ and the fact that the cells remain closed

during the motion, which writes:

∑

j∈V (i)

| ¯∂Cij |νij = 0,
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we see that this gives the usual Discrete Geometric Conservation Law (DGCL):

|Cn+1
i | = |Cn

i | − ∆t
∑

j∈V (i)

| ¯∂Cij |κij . [29]

As stated in papers like (Nkonga et al., 1994), (Farhat, 1995b) or (Dubuc et al.,

2000), the DGCL becomes a design condition to impose for the time averaged values

| ¯∂Cij |, νij , and κij . Evaluated over ∂Cij(t), they should be carefully computed.

In (Nkonga et al., 1994), both the cell’s normals and the grid’s velocity mean values

determine the geometrical parameters which enforce the GCL. In (Farhat, 1995b),

this is attained by means of a proper evaluation of the ALE fluxes using suited mesh

configurations and grids velocities, showing also an equivalence with the former paper

ideas. On the other hand, in (Dubuc et al., 2000), a scheme satisfying the GCL is

proposed by tuning how the cell volume is evaluated. We also refer to (Farhat et al.,

2001) for examples of averagings satisfying the DGCL for the above time advancing

scheme.

However, from an energy conservation point of view, this is not enough. While

certainly it is for interior cells, additional care should be taken for boundary ones in

order to keep the work performed on the fluid equal to the energy gain/loss of the fluid.

While the GCL condition provides a way to calculate the mean normal vector and the

mean normal mesh velocity β which does not introduce spurious effects due to the

mesh movement, it says nothing about the flow velocity u. In the interior nodes, both

can be completely independent. But at the moving boundaries, that move at speed β̂,

some questions arise about the relationship between them. This analysis is completed

in the next section.

3.4. An integration on a facet satisfying DGCL

As stated above in [21], the discretized space volume can be divided in control cells

Ci, each of them limited by a faceted frontier ∂Ci. For a 3D problem, the boundary of

an interior control cell is a polyhedron whose constitutive “facets” are triangles having

as vertices:

– the middle of an edge ij where j is a neighbor of i,

– the centroid D of T , one of the tetrahedra having i and j as vertices,

– the centroid B of a face ijk of T.

Two examples Σi
jk+ and Σi

kj+ are depicted in left part of Figure 4. The facet

notation is the following: Σi
jk+ means “the facet corresponding to node i, relating it

with node j and with one of its sides lying on node k’s median”. By inspection it

can be seen that there are only two possibilities for indices (i, j, k) in this strict order.

Therefore, labels + or − distinguish between both facets.
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Figure 4. Tetrahedra and facets. Left, interior facets Σi
jl− and Σi

jk+. Right, boundary

facets Σi
jk− and Σi

kj+

Therefore, Equation [22] can be pushed further:

∂Ci =
⋃

j∈V (i)

∂Cij =
⋃

j∈V (i)




⋃

k∈V (i)

(Σi
jk+ + Σi

kj−)



 . [30]

The DGCL can then be set for an arbitrary triangular facet. As said above, by enforc-

ing this law, the time averaged values of the cell faceted surface | ¯∂Cij |, its normals

νij , and its speeds κij can be properly evaluated. In (Nkonga et al., 1994), this anal-

ysis is carried out for an interior node. Here we conduct the analysis for a boundary

node still denoted by i. The boundary cell Ci around i is also limited by a polyhedron

∂Ci made of triangular facets. The novelty is that, beside the interior facets already

described, we have to consider the boundary facets.

A boundary facet is a triangle having as vertices:

– the mesh vertex i,

– the middle of ij where j is a neighboring boundary vertex,

– the centroid of a boundary face ijk, k being a boundary vertex, which is a neigh-

bor of i and of j.

Two examples of such boundary facets are depicted in the right part of Figure 4.

Let us consider any of these interior facets. It is a moving triangle changing its position

between time Tn and Tn+1, see Figure 5. It is shown in (Nkonga et al., 1994) that, for

a given triangle ΣM

NP
, the mean normal νΣ and the mean normal velocity κΣ, defined

above in [24] and [25] are

νΣ =
1

3
(µn + µn+1 + µ∗)

κΣ =
νΣ

||νΣ||
· βΣ, [31]



352 European Journal of Computational Mechanics. Volume 19 – No. 4/2010

Figure 5. Triangle (representing a facet) ΣM

NP
with its normal µ

where µ is the non-normalized exterior normal to the facet Σ, and the auxiliar variable

µ∗ and the facet velocity βΣ are defined as

µ∗ =
(xn

P
− xn

M
) ∧ (xn+1

N
− xn+1

M
)

4
+

(xn+1
P

− xn+1
M

) ∧ (xn
N
− xn

M
)

4

βΣ =
βn

M
+ βn

N
+ βn

P

3
.

For a given facet, the vertex velocities βM,N,P are linearly interpolated from those

at the corresponding tetrahedra nodes, because the related vertex M , N , or P can be

a node of the mesh, a mid-point segment, a face center or a tetrahedron center, noted

respectively as A, C, B and D in Figure 4. For instance, for an interior facet like Σi
jl−

in Figure 4 (left), the facet velocity is (see (Nkonga et al., 1994))

βΣ,INT =
1

2

(
13

36
(βi + βj) +

5

36
(βk + βl)

)
. [32]

On the other hand, for a boundary facet like Σi
jk−, Figure 4 (right), we have:

βΣ,BOU =
1

2

(
22

36
βi +

7

36
(βj + βk)

)
. [33]

Since the integration is exact, these formulas allow for the DGCL.
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3.5. The energy budget for the discretized problem

Once the discretization method is set, the energy budget problem can be revisited,

starting by considering the application of [21] to the flow energy equation. Let Ei =∫
Ci(t)

E. Taking v := ρeo + ρu2

2 = ρe = E in [21], we obtain for an Euler problem

dEi

dt
+

∫

∂Ci(t)

ni ·
(
(E + p)u − Eβ

)
= 0. [34]

Let us consider the control cells Ci which share part of their facet boundaries with the

moving wall boundary (a two-dimensional representation is given by Figure 6). For

such cells we have

∂Ci(t) ∩ ∂Ωh(t) = ∂Ĉi(t) 6= ∅. [35]

It can be expected that in order to maintain the impermeability condition, the normal

boundary velocity at the intersection with the moving wall boundary should be equal

to the flow velocity.

Figure 6. Two-dimensional representation of a cell on the moving wall boundary

The previous boundary cells Ci have both an “interior” part and a “moving wall”

part, ∂Ci = ∂Ci
O

+ ∂Ci
MW

, where

∂Ci
MW

= ∂Ci(t) ∩ (
⋃

ΣMW,i∈ΣMW

ΣMW)

∂Ci
O

= ∂Ci(t) \ ∂Ci
MW

.

where ΣMW denote the set of the facets which belong to the moving part of ∂Ωh(t).
It should be remarked that in this case, [22] which expresses that the cell boundary is
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the union of interfaces with neighboring cells is not true because it is associated now

to a boundary node. Instead, [34] can be written as

dEi

dt
+

∫

∂Ci
O

ni ·
(
E w + p u

)

+

∫

∂Ci
MW

ni ·
(
Ê ŵ + p̂ û

)
= 0, [36]

where

w = u − β. [37]

This is the velocity difference between the mesh and the flow field at node i. As said

before, in a general ALE formulation, mesh speed and flow velocities are not related,

except at the moving boundaries. By introducing a numerical flux function as [26],

Equation [36] becomes

dEi

dt
+

∑

j∈V (i)

|∂Cij(t)| ΦO(Wi, Wj ,νij(t), κij(t))

+
∑

Σ,i∈Σ

|∂Ĉi(t) ∩ Σ| ΦMW(ŴΣ, ŵ
Σ
, ν̂

Σ(t), κ̂Σ(t)) [38]

where W is the flow solution vector and Σ is a triangular facet which belongs to the

moving wall boundary.

Equation [38] is the core of the problem. For the interior cells, the second summa-

tion vanishes and the first summation over the “internal” segments completes the cell

boundaries. But for the boundary cells, the second summation introduces a substancial

difference. How is evaluated ŵ on a moving boundary facet? Once integrated in time

and summed up to consider the extensive energy E of the whole domain, Equations

[36] and [38] will give the amount of energy gained or loss by the discretized system

[11], that could be in turn compared with the work performed on it [16]. Let us take

[36]. Equation [11] states that

∆E
∣∣∣
t2

t1
=

∫ t2

t1

dE

dt
=

∫ t2

t1

nc∑

i

dEi

dt
=

nc∑

i=1

Ei

∣∣∣
t2

t1

Ei

∣∣∣
t2

t1
= −

∫ t2

t1

∫

∂Ci
MW

ni ·
(
Ê ŵ + p̂ û

)
[39]

where the summation runs over all cells i of the mesh. The terms corresponding to the

energy interchange between interior cells cancel each other and the remaining terms

are those corresponding to the boundary contribution.
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On the other hand, the work performed on the fluid by the moving boundary is

W
∣∣∣
t2

t1
= −

∫ t2

t1

∫

∂Ω(t)

p̂ β̂ · n

= −

∫ t2

t1

nc∑

i

∫

∂Ci
MW

p̂ β̂ · ni. [40]

From Equations [39] and [40], as in the DGCL case, several questions on how are

approximated the boundary values and fluxes must be considered.

4. Global conservation

4.1. Theoretical statement

It has been shown that assuming that the DGCL is satisfied inside the mesh, the is-

sue of the total energy conservation is restricted to the discrete equations on boundary

cells, and particularly the contribution of boundary fluxes. In order to fix the ideas,

recall that:

– The solid moving boundary ∂Ω(t) moves at speed s defined at any vertex.

– The flow moves at velocity u wherever, and particularly at velocity û defined at

any vertex of ∂Ω(t).

– The mesh moves at speed β wherever, and particularly at speed β̂ defined at any

vertex of ∂Ω(t).

– The difference between mesh speed and velocity flow is w, and particularly ŵ

defined at any vertex of ∂Ω(t).

Having this in mind, together with both geometric and energy conservation as set

by GCL and Equations [39] - [40], it is observed that for any boundary cell, there

exists a great deal of approximations for computing the boundary flows. Nevertheless,

not all of them are properly conservative ones. On one hand, the DGCL has to be

accomplished. Equations [32] and [33] tell us how to compute the facet velocity once

we know the mesh velocities of each interior or boundary node i, noted βi and β̂i

respectively. In the interior nodes, βi can be arbitrarily assigned. We recall that

the in/output boundaries are not moving. However, for those lying at the moving

boundaries, β̂i cannot be arbitrarily set. The [31] needs be used to compute the mean

values. Independently of the use of [33] in [31], the second conservation principle

involved here must be satisfied. We summarize this as follows. Let us consider the

“moving wall” boundary ∂Ci
MW

made of boundary facets (see Figure 4, right). Then,

we can write the following lemma:
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Lemma: A GCL-compatible integration of the energy flux through the “moving

wall” boundary ∂Ci
MW

i.e. an integration satisfying [29], is obtained when Equation

[39] is approximated as follows:

Ei

∣∣∣
t2

t1
= −

∫ t2

t1

∫

∂Ci
MW

(
Êi ŵi + p̂i ûi

)
· ni [41]

where, for each boundary facet Σ which intersects with ∂Ci
MW

, the GCL based

time-space integration of the mesh normal and normal velocities is computed using

[31] and [33], and where facet mean values p̂i of the pressure and Êi of the total

energy are used.�

Definition: A space-time integration scheme will be total energy conservative if the

energy loss (or gain) given by the discretized counterpart of Equation [39] is exactly

the work produced (or received), defined by the discretized counterpart of Equation

[40], that is if:

∆E
∣∣∣
t2

t1
= W

∣∣∣
t2

t1
= −

∫ t2

t1

nc∑

i=1

∫

∂Ci
MW

p̂i β̂i · ni [42]

where all the above quantities are time and space discretized ones.�

In particular, for a GCL-compatible scheme, the previous integral over each facet

of ∂Ci
MW

is computed with a time-space integration based on [31] and [33], and a

facet mean value p̂i of the pressure. From the above lemma and definition, we can

build a simple conservative scheme in the sense that it satisfies both the GCL and the

total energy conservation.

Proposition: Let consider a scheme defined by [28],[29],[31],[32],[33] which

satisfies the conditions of the above lemma, that is [41], where, for each moving facet

ΣMW, the mean on that facet of the flow normal velocity ûi · ni is replaced by the

mean on the facet of the mesh normal velocity β̂i ·ni. Then the scheme satisfies [42],

i.e. is total energy conservative.
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Proof: The energy conservation stated by Lemma 2 is satisfied since:

∆E
∣∣∣
t2

t1
= −

nc∑

i=1

∫ t2

t1

∫

∂Ci
MW

(
Êi ŵi + p̂i ûi

)
· ni

= −
nc∑

i=1

∫ t2

t1

∫

∂Ci
MW

p̂i ûi · ni

= −
nc∑

i=1

∫ t2

t1

∫

∂Ci
MW

p̂i β̂i · ni

= W
∣∣∣
t2

t1

The previous condition on the flow and mesh normal velocities can be achieved by

requiring that ŵi · ni = (ûi − β̂i) · ni = 0 for each boundary node.�

4.2. Impact on the numerical algorithm

Starting from an ALE conservative discretization of the Euler equations, a total

energy conservative method is obtained by:

– ensuring that the DGCL is satisfied on internal cells interfaces and on boundary

cell surfaces. In our case, this is defined by [28],[29],[31],[32],[33],

– using the particular boundary quadrature defined by [41] using β̂i ·ni for ûi ·ni.

We have assumed that time integration is explicit. Total energy conservation also

applies for a non-linear implicit advancing.

Remark: In the case where the fluid model is coupled with a structural one, a notable

consequence of the total energy conservation principle involved here is the following:

any transmission of the fluid pressure consistent with the above integration (use of the

hat integration values) will allow a perfect energy budget, that is, any Joule lost by

the fluid will be gained by the structure and vice versa. In practice, this situation is

not obtained with time advancing schemes weakly coupling the two materials. In that

latter case, energy conservation can be satisfied up to a higher order error (Piperno et

al., 2000). Exact energy conservation is attainable with the so-called strongly coupled

monolithic time advancing schemes.

5. Numerical experiments

The main output of the present work is a discrete model satisfying a strict total

energy conservation. In the volumic part of the discretisation this conservation is en-

sured by the Discrete Geometric Conservation Law, a property recommended in many

papers and satisfied by many softwares, in particular by the fluid-structure method-

ology developped by Farhat and co-workers (Farhat, 1995b). In (Farhat, 1995b), the
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aeroelastic coupled system is computed by a partitioned procedure for the solution of

fluid-structure interaction problems (Farhat et al., 2000). This partitioned procedure

is implicit and linearly unconditionally stable. For the boundary part of the discreti-

sation, the present paper proposes a new quadrature. We have introduced this new

quadrature in that software as a new option. The flow field can be solved using ei-

ther the “fluid energy conservative” quadrature (Scheme 1) described in the previous

section, or its “fluid energy non-conservative” counterpart (Scheme 2) in which the

boundary flux is computed with a second-order accurate quadrature. Note that both

options satisfy the DGCL property.

Impact on conservation: Let us consider a box [0,L]×[0,1]×[0,1] containing a mass

of gas, with slip condition on faces. Its length L is smoothly varied in time with a

sine oscillation. Then the integral E(t) of total energy should vary as the sum S(t)
of its initial value and of the work given to this system, i.e. the space-time integral of

pressure on the moving face, x = L(t). We have choosen a coarse cartesian mesh of

21× 21× 21 vertices. The finite volume approximation is upwind biased (third-order

accurate for linear systems and uniform meshes). The time advancing is a four-stage

explicit Runge-Kutta. With this time advancing, the novel scheme (Scheme 1) should

conserve exactly the energy. Scheme 2 should not. After computation, we check

that Scheme 1 is perfectly conservative (up to floating point round off errors). For

Scheme 2, we present in Figure 5 the two outputs which should be equal, together

with their difference. The maximum relative difference is about 2.5%. Scheme 2 is

rather close to be conservative, we think this is because it satisfies the volumic DGCL,

but produces still a non-negligible error.

Figure 7. Cubic piston calculation for Scheme 2: left, comparison of total energy

evolution with the evolution of adding the initial total energy and the work yielded to

gas. Right, the difference of these two outputs as a function of time

Impact on stability: We propose now a computation showing that the exact fluid en-

ergy conservation property has also a small but certain influence on the actual stability

limit of a coupled fluid-structure simulation. This can be intuitively explained for an

isolated system by the fact that when total physical energy is conserved, it remains

bounded. We choose a flow studied many times in the litterature. In several publica-
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tions of the authors, this flow is used for measuring the progress (stability, accuracy, ef-

ficiency) of the numerical methods, see (Farhat, 1995a; Farhat et al., 2000; Piperno et

al., 2000; Cournède et al., 2006). We consider the flutter analysis of the AGARD Wing

445.6 which has been conducted experimentally for various flow conditions by Yates

(Yates, 1987). The test-case investigated in this section concerns the 2.5 weakened

model 3, and the freestream conditions are set to M∞ = 0.901, ρ∞ = 1.117 × 10−7

slugs/in3 and p∞ = 10.0 slugs/(s2 × in). Yates indicates that the conditions of this

case are inside the flutter stability domain for the considered wing (i.e. no flutter). The

three-dimensional unstructured tetrahedral CFD mesh contains 22014 vertices. The

structure of the wing is discretized by a thin plate finite element model which contains

800 triangular composite shell elements (Farhat et al., 2000). It yields natural mode

shapes and frequencies that are similar to those derived experimentally (Yates, 1987).

Both fluid and structure are advanced in time with an implicit scheme. A weak fluid-

structure coupling is used as in (Farhat et al., 2000). In contrast to a monolithic strong

coupling scheme, the weak coupling does not conserve exactly the kinetic energy be-

tween fluid and structure, but only at a higher order of accuracy. The purpose of the

experiment is to examine the impact of the proposed spatial total energy conservation

method in these conditions.

Figure 8. AGARD-wing test case: view of fluid mesh and structure mesh

The finite element structural model is perturbated along its first bending mode, and

a steady state solution is computed around the deformed configuration of the wing.

Next this perturbation is used as initial condition, and the aeroelastic response of the

wing is computed by advancing in time the coupled system. In this flutter analysis,

the dimensional fluid-structure coupling time-step is set either to ∆t = 7.5 × 10−4 s

or ∆t = 5×10−4 s, which correspond respectively to CFL numbers of about 600 and

900. These time-steps correspond to sampling the period of the damped oscillations

which characterize the lift representative of the wing aeroelastic response in 90 and

140 time intervals, respectively.

In Figures 10 and 11, we depict the lift histories for the “fluid energy conserva-

tive” scheme and its energy non-conservative counterpart respectively. These figures
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Figure 9. AGARD-wing test case: instantaneous Mach number field
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Figure 10. Lift histories predicted by the “fluid energy conservative” scheme for the

flutter analysis of the AGARD Wing 445.6

indicate that for a time step ∆t = 5× 10−4 s, both schemes predict correctly the flow

and in particular that the wing does not flutter for the given freestream conditions. For

a time step of ∆t = 7.5× 10−4 s, the answer produced by the “fluid energy conserva-

tive” scheme is very close to the previous ones. This shows in particular, that the time

convergence is good and the higher time step is just a 50% more efficient option. On

the contrary, the “fluid energy non-conservative” scheme predicts, after some time, an

instable behavior. Since for smaller time steps the answer is good, the instability is
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Figure 11. Lift histories predicted by the “fluid energy non-conservative” scheme for

the flutter analysis of the AGARD Wing 445.6

probably of numerical origin. The “fluid energy conservative” scheme is also near its

practical stability limit (about ∆t = 8. × 10−4 s) but enjoys a supplement of stability

thanks to a small modification of the boundary energy flux.

6. Conclusion

Three important classes of conservation relations need be satisfied by numerical

models when applied to nonlinear/unsteady interactions between a compressible fluid

and a structure: the usual conservations (mass, moment, energy) in each medium, the

Geometric Conservation Law, in the fluid, and the conservation of total energy.

We have shown that for the fluid part, conservation of total energy can be satisfied

by some particular spatial discretisations. To get this conservation, the Discrete Geo-

metric Conservation Law is a paramount ingredient, but it needs to be extended to the

domain boundary. Further, a particular class of quadrature for the velocity needs to be

applied.

The new scheme permits an exact transmission of the fluid energy, from the total

fluid energy variable to the total structure energy, as in the physical differential model.

We have highlighted the importance of the fluid total energy conservation property

on a simple piston problem. Even for a very smooth flow, on a short time interval,

energy error is of several percents with the previous scheme while it is zero with the

new formulation.
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We have also highlighted the impact of the fluid total energy conservation property

on the stability of a weakly coupling implicit time advancing. This is illustrated by

computing a flutter analysis of the AGARD Wing 445.6. Increase in stability is about

50%.

Schemes enjoying these conservation properties should produce more reliable re-

sults for violent transient problems where energy transfers of high local (in space or

time) strength occur. They should be very useful to evaluate more accurately energy

budgets when several small energy losses are in competition (radiation,...). In fu-

ture works, we plan to continue various numerical experiments for measuring these

improvements and introduce the proposed numerical technology into more complex

models, in particular involving dissipative effects.
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