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ABSTRACT. Because of the developpement of materials science, there is a need to reduce the 
computational complexity of mechanical models. This paper aims to show that the Hyper 
Reduction method enables to reduce computational resources used for numerical simulations. 
Large mechanical models involving distributed nonlinearities require parallel computers to 
solve the governing equations related to these models. The proposed Hyper Reduction of such 
models provides reduced governing equations that enable simulations on a single-processor 
computer. This is achieved by using a reduced-basis and a selection of equilibrium equations 
of the detailed model. The use of a single processor during less time enables to save an 
amazing amount of the electrical energy during the numerical simulation. 

RÉSUMÉ. Du fait du développement des simulations numériques dans le domaine de la 
mécanique des matériaux, le besoin de méthodes pour une utilisation raisonnée des moyens 
de calcul se fait de plus en plus pressant. En effet, les connaissances acquises en science des 
matériaux et la disponibilité de moyens de calcul important facilitent la mise en œuvre de 
modèles mécaniques non linéaires de très grande taille. Cet article a pour but de montrer que 
la méthode d’Hyper Réduction permet de réduire les ressources matérielles nécessaires afin 
de réaliser certaines simulations, pour des modèles extrêmement complexes validés 
expérimentalement. L’énergie électrique consommée pour réaliser la simulation est ainsi 
réduite fortement. Bien que la complexité du modèle hyper réduit soit moins grande que celle 
du modèle mécanique de référence, ce modèle conserve l’ensemble des paramètres physiques 
du modèle de référence. 
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1. Introduction

Computational methods reducing the need of large computational resources have

been already proposed in the literature. In case of linear models, the modal superpo-

sition method, the Guyan condensation method or the Craig-Bampton method (Craig

et al., 1968) provide small size matrices establishing the coupled terms linking the

reduced state variables of the models. These matrices can be easily transfered from a

supercomputer to a smaller computer to perform reduced simulations. But in case of

models involving distributed nonlinearities the solution of nonlinear local equations

remains necessary when using reduced-bases. The complexity of these equations is

not affected by the reduced-basis approximation. As shown in (Ryckelynck, 2009),

the purpose of Hyper Reduction is to overcome this difficulty. Various model reduc-

tion methods are available for nonlinear models. From a theoretical point of view, the

Hyper Reduction method can be applied on Proper Orthogonal Decomposition (POD)

(Lorenz, 1956) or Radial Loading Decomposition (RLD) generated by the LATIN

method (Ladevèze, 1985). A first attempt to reduce a mechanical model in the frame-

work of materials science using POD basis has been proposed by S. Ganapathysub-

ramanian and N. Zabaras. These authors had applied the POD reduction method to a

polycrystal plasticity problem. The usefulness of POD basis for sensitivity analyses

related to this kind of model, in the framework of an optimization problem, have been

stated in (Ganapathysubramanian et al., 2004). The present paper aims to show that

the Hyper Reduction method enables to reduce the computational resources needed to

use POD-bases generated by the snapshot POD method (Sirovich, 1987). It is the con-

tinuation of previous works related to the three-dimensional finite element simulation

of a polycrystalline copper specimen (Musienko et al., 2007). The detailed model is a

single crystal plasticity model. It represents the elasto-plastic behavior for each of the

approximately 200 grains involved in the specimen.

A detailed model is converted into a Reduced-Order Model (ROM) supposing that

the state variables belong to a restricted functional subspace. Therefore the number

of independent state variables (the order of the model) is reduced. The purpose of

a model reduction method is to build a basis of this subspace. The POD model re-

duction method has been used in a wide range of disciplines including signal analysis

and simulation in fluid mechanics or in oceanography (Holmes et al., 1998). This

method comes from the Karhunen-Loève expansion (Karhunen, 1946; Loève, 1963)

developed for statistical analyses. In our knowledge, the first mechanical models using

POD bases were proposed in (Lorenz, 1956) for weather prediction using experimen-

tal data. A POD basis is a basis of the state subspace spanned by forecasted states

possibly related to different simulations of the response of the system. The develop-

ment of large Finite Element models increases the need of low order models created

by model reduction methods. The availability of ROMs can greatly facilitate the solu-

tion of optimization problems. The efficiency of POD bases was shown for optimiza-

tion problems in fluid mechanics (Daescu et al., 2007; Lieu et al., 2006), in struc-

tural dynamics (Khalila et al., 2007), in materials science (Ganapathysubramanian et

al., 2004) and in thermal science (Balima et al., 2006).
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The aim of this paper is not to improve the creation of a POD basis. We improve the

use of a given POD basis in the framework of highly complex mechanical models in

good agreement with experimental observations. Because the complexity of the local

computations is not dependent on the order of the model, the reduced approximation

has no effect on the computational effort needed to estimate the internal variables.

This limits the efficiency of the reduced approximation. The main idea to overcome

this difficulty is to choose convenient equilibrium conditions to compute the reduced

state variables. Obviously the number of reduced governing equations must be equal

to the number of reduced state variables in order to get a well-posed problem. But

it is not necessary to build a formulation based on all the equilibrium conditions of

the detailed model to define the reduced governing equations. Therefore we propose

a convenient vector space to define the test functions of the virtual work principle.

The formulation of the constitutive equations remains the same. The hyper-reduction

method lower the complexity of models in the sense that symmetrical models are less

complex than 3d models. The global complexity is changed.

The virtual work is an extensive variable. Let us consider a mechanical system

split in two complementary parts ΩΠ and ΩΠ. Therefore, the virtual work of the in-

ternal forces related to this system is the sum of the contribution of each part. The

Hyper Reduction method proposed in (Ryckelynck, 2005; Ryckelynck, 2009) intro-

duces a Reduced Integration Domain (RID)ΩΠ and a space of truncated test functions

in order to generate the surrogate model. The Hyper Reduced Order Model (HROM)

can be created using an adaptive procedure as proposed in (Ryckelynck, 2005; Ryck-

elynck et al., 2010). The truncated test functions are such that the contribution of ΩΠ

to the virtual work of internal forces is equal to zero. The truncated test functions

are admissible test functions having their support retricted to the RID. The size of the

space of truncated test functions remains equal to the size of the ROM, but the local

equations of the surrogate model are resticted to the RID. The shape functions related

to the reduced-basis having a global support, the knowledge of the reduced state vari-

ables enables to forecast the state of all the mechanical system even if these variables

have been computed using a RID. Therefore, when using a domain decomposition

formulation (Farhat et al., 1994), the Hyper Reduction enables to use a reduced-order

model over only one subdomain to forecast the state of the entire domain. Hence

the computational resources needed to compute the reduced state variables can be re-

duced. Moreover, the reduced approximation being continuous overall the domain,

the continuity of the displacement is naturaly enforced by this approximation. Its not

necessary to introduce Lagrange multipliers into the formulation of the equilibrium

equations to enforce continuity constrains between subdomains.

No local computation being made outside the RID, no internal variable are fore-

cast outside the RID when solving the equilibrium conditions related to the surrogate

model. As proposed in (Ryckelynck, 2009), a POD basis devoted to internal vari-

ables is generated simultaneously with the POD basis related to the displacements.

This added basis enables to extrapolate the computed internal variables form the RID

to the full mechanical system. The reader must be aware that the Hyper Reduction

method amplifies the errors due to the reduced approximation of the displacements.
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The paper is organised in the following manner. Section 2 introduces the formu-

lation of the mechanical problem involving internal variables. The Hyper Reduction

method is detailed in Section 3. A simple numerical experiment of the Hyper Reduc-

tion method is proposed in Section 4. Section 5 reports the numerical results elucidat-

ing the usefulness of the proposed method for simplified sensitivity analysis. Section

5 is the conclusion of this paper.

2. Problem statement

2.1. Formulation of the continuous model

The continuous model of concern is a parametrized mechanical model. We denote

{p} the column of the model parameters. These parameters can be related to design

choices, material coefficients or boundary conditions. We consider a series of me-

chanical problems related to a series of parameter values ({p}α)α=1...N
. The detailed

model is described using the finite strain formalism. The reference configuration is

denoted Ω0. It can be the domain eather at time instant t = 0 (total Lagrangian for-

mulation) or at time instant t (update Lagrangian formulation). At time instant t, the

continuous medium is occupying a domain Ω. The nonlinear system is analyzed over

a time interval ]0, T ]. The displacement field at time t is defined on Ω0 and it is de-

noted by u(X, t, {p}α). X is denoting the initial position of a material point in Ω0.

The second Piola-Kirchhoff stress tensor S is a nonlinear function of the deformation

gradient history depending on the parameters {p}α:

S = Σ(Fτ , τ ≤ t; {p}α) [1]

where Σ is a formal operator that must be defined by constitutive equations and Fτ

is the deformation gradient at time instant τ . We observe that the following general

relations hold:

Fij = δij +
∂ ui

∂Xj
[2]

σ =
1

det(F)
FSF

T , [3]

where σ is the Cauchy stress tensor and δij is the Kronecker delta.

The boundary ∂Ω0 of Ω0 is denoted by ∂UΩ
0 ∪ ∂fΩ

0. On ∂UΩ
0, there is

the Dirichlet condition u(., t, {p}α) = uc(., t, {p}α) for all t, where uc is a given

parametrized displacement field. On ∂fΩ
0, there is a given force field f(., t, {p}α)

depending on both time t and model parameters. The displacement field belongs to an

affine function space U defined by:

U({p}α) =
{
u(., t, {p}α) ∈ H1(Ω0) | u(X, t, {p}α) = uc(X, t, {p}α) [4]

∀X ∈ ∂UΩ
0
}
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The vector space associated to U({p}α) is denoted V . It does not depend on any

parameter:

V =
{
u(., t, {p}α) ∈ H1(Ω0) | u(X, t, {p}α) = 0 ∀X ∈ ∂UΩ

0
}

[5]

The statement of the mechanical problem is the following. We want to find an estima-

tion of the displacement field u ∈ U({p}α) defined by the constitutive equations and

the principle of virtual work:

∫

Ω0

ε(u∗,u) : Σ(F(uτ ), τ ≤ t, {p}α) dΩ0

−

∫

∂fΩ0

u
∗ . f(X, t, {p}α) dΓ0 = 0 [6]

∀ u
∗ ∈ V

where u
∗ is a test function and ε is a linear function of u∗ such that :

εij(u
∗,u) =

1

2

(
∂u∗i
∂Xj

+
∂u∗j

∂Xi
+

k=3∑

k=1

(
∂u∗k
∂Xi

∂uk

∂Xj
+
∂uk

∂Xi

∂u∗k
∂Xj

))
[7]

According to the framework of the irreversible thermodynamic processes, a con-

stitutive law can be defined by a choice of: internal variables z, a free energy

w(ε, z, {p}α) and a pseudo potential of dissipation ϕ∗ (Germain et al., 1983). Some

conjugated variables Z are associated to the internal variables z using the definition of

the dissipation. The conjugated variables and the internal variables are connected by

the following equation of state:

Z = −
∂w

∂z
[8]

Complementary constitutive equations can be proposed without introducing a

pseudo potential of dissipation, provided that the Clausius Duhem Inequality is ful-

filled (the rate of entropy production must not be negative):

ż = B(Z, {p}α) [9]

In case of standard formulation of the constitutive equations, the complementary con-

stitutive equations are deduced from the pseudo potential of dissipation ϕ∗(Z, {p}α)
such that:

B(Z, {p}α) =
∂ϕ∗

∂Z
[10]
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The initial state of the material is defined by a given initial condition:

z|t=0 = zini [11]

Examples of elastoplastic or elastoviscoplastic constitutive models can be found in

(Lemaitre et al., 1990; Sansour et al., 1997).The Pilola-Kirchhoff stress S being one

of the conjugate variables, the set of equations Equation [8] to Equation [11] defines

the operator Σ. These equations are local equations: the strain tensor at the pointX ′ is

not a variable of the constitutive equations related to the pointX 6= X ′. The detailed

equations of the constitutive law related to polycrystalline copper specimen are given

in Section 5.

The main objective of the model reduction methods is to replace U({p}α)and V
by small dimensional functional subspaces in order to approximateu(., t, {p}α) using

previous results of simulations.

2.2. The reference model

Using the Finite Element method (Zienkiewicz, 2000), a backward Euler method

and the Newton-Raphson algorithm, one can forecast different states of the system at

different time instants. The purpose of is paper is not to explain how to get these states.

Details on the finite element simulation of crystal plasticity models can be found in

(Forest et al., 1999; Tugcu et al., 2004) for instance. This section aims to recall some

properties of the states forecast by a Finite Element model because it is the detailed

model to reduce. Considering large dimensional finite element problems, a domain

decomposition and a FETI solver enable to perform parallel computations (Farhat et

al., 1994). An example of such a method applied to a polycrystal model can be found

in (Feyel et al., 1997). The domain Ω0 is split into ω subdomains:

Ω0 = ∪η=ω
η=1 Ω̂

0
η [12]

Using a FETI solver, we can distinguish two Finite Element models. One of these

models defines a continuous kinematic description over Ω0. Let us denote Uh and

Vh the functional affine space and the vector space related to this model. The other

finite element model does not impose the continity of the displacement between the

subdomains. The displacement continuity is enforced by Lagrange multipliers. The

related functional affine subspace is Ûh.
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The discontinuous Finite Element model involves n̂ degrees of freedom

(q̂j(t))j=1..n̂ such that:

Ûh = { ûh ∈ V |∃ {q̂} ∈ ℜn̂ , [13]

ûh(X, t, {p}α) =

j=n̂∑

j=1

N̂j(X) q̂j(t, {p}α) +

j=nc∑

j=1

Ñj(X) gj(t, {p}α)

∀X ∈ Ω0 ∀t ∈]0, T ] }

The shape functions (Ñj)j=1,...nc
are connected to the nodes belonging to ∂UΩ

0. The

coefficient gj are given displacement related to uc. Therefore, the given part of Finite

Element displacement field is uch such that:

uch(X, t, {p}α) =

j=nc∑

j=1

Ñj(X) gj(t, {p}α) [14]

Let us denote V̂h the vector subspace span by the basis (N̂j)j=1,...n̂:

V̂h = span
{
N̂1, ..., N̂n̂

}
[15]

In this paragraph we give few indications about the FETI method. We refer the

reader to (Farhat et al., 1994) for more details about this method. In spite of the

fact that approximate continuous displacement field are obtained using itermediate

discontinuous fields, the way it is performed has no influence on the implementation

of the Hyper Reduction method. To enforce the displacement continuity the following

equation must be fulfilled:

[B] . {q̂} = 0 [16]

Moreover, the domain beeing split into subdomains, some rigid modes can appear.

These modes span the null space of the stiffness matrix related to the whole split do-

main. The matrix containing the rigid modes is denoted [Qr]. The nodal displacement

are written as a sum of the contribution of the rigid modes plus a contribution {q̂K}
which is orthogonal to the null space of the stiffness matrix such that:

{q̂} = {q̂K}+ [Qr] . {hr} with [Qr]
T
. {q̂K} = 0 [17]

The continuity condition can be enforced using Lagrange multipliers {λ} if the fol-

lowing equilibrium condition is fulfilled:

[Qr]
T
.
(
{Fe} − [B]

T
. {λ}

)
= 0 [18]

where {Fe} is the vector related to the external forces applied to the domain. Then, a

formal static condensation of {q̂K} enables to introduce a global system of equations
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related to the unknowns ({hr} , {λ}). To avoid the implementation of this expensive

condensation, a conjugate gradient algorithm is introduce to solve the global system of

equations. Each step of this iterative algorithm includes a prediction of {q̂K}. Thanks

to the domain decomposition this prediction is performed subdomain by subdomain,

since it is related to uncoupled mechanical problems.

In case of matching meshes between subdomains, the definition of a continuous

Finite Element model is straighforward using a selection matrix [P ]. This matrix is

a rectangular matrix such that {q} ∈ ℜn̂, with {q} = [P ]
T
. [P ] .{̂q}, provides a

continuous field uh(X, t, {p}α) ∈ Vh such that:

uh(X, t, {p}α) =

j=n̂∑

j=1

N̂j(X) qj [19]

The number of rows of the selection matrix [P ] is equal to the number of degrees

of freedom of the continuous Finite Element model. Various definitions of [P ] are

available to obtain a projection operator [P ]
T
. [P ] such that a continuous field is not

modified:

[P ]
T
. [P ] .{̂q} = [P ]

T
. [P ] . [P ]

T
. [P ] .{̂q} ∀ {̂q} ∈ ℜn̂ [20]

The matrix [P ] enables to define the shape functions of the continuous Finite Element

model (Nj)j=1,...n such that:

Nj(X) =
k=n̂∑

k=1

N̂k(X) Pjk ∀X ∈ Ω0 [21]

Vh = span {N1, ...,Nn} [22]

Because the continuity of the displacement fields is enforced by the FETI solver,

the various displacement field forecast at the end of each time increment are assumed

to be continuous. They belong to the functional spaceUh. Removing the imposed part

uch of the displacement fields, we are able to obtain a series of continuous displace-

ments Ui ∈ Vh for i = 1...m. Therefore it is not necessary to introduce Lagrange

multipliers to enforce continuity conditions in equilibrium equation in order to intro-

duce the ROM. The classical formulation, Equation [7], is sufficient even if the domain

is split into subdomains.

The displacement fields Ui can be related to various parameter values {p}α and

various time instants.

2.3. The reduced approximation

The purpose of the snapshot POD is to use the list of the forecasted displacement

fields (Ui)i=1...m to define a reduced basis of the subspace span by these fields. Let
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us denote (ψk)k=1...m̂ the vectors of the reduced basis (in practice m̂ < n). Let us

denote VPOD the vector space related to the ROM:

VPOD = span {ψ1, ...,ψm̂} [23]

Later, new state estimations related to modifications of the model can be computed

using the following reduced approximation:

uPOD(X, t, {p}α) =
k=m̂∑

k=1

ψk(X) ak(t, {p}α) + uch(X, t, {p}α) [24]

∀X ∈ Ω0 ∀t ∈]0, T ]

The factors (ak)k=1...m̂ are the reduced state variables of the ROM. The affine space

related to the reduced basis approximation in Equation [24] is denoted UPOD({p}α):

UPOD({p}α) = { uPOD ∈ U({p}α) | uPOD − uch ∈ VPOD } [25]

The snapshot POD was proposed by L. Sirovich (Sirovich, 1987). The vector ψk

of the reduced basis are found inside the subspace spanned by the computed displace-

ment fields such that:

ψk(X) =

i=m∑

i=1

Ui(X) bik ∀X ∈ Ω0 [26]

where bik must maximise the projection λk of ψk on all the snapshots, such that:

λk =

∑j=m
j=1

(∫
Ω0 Uj .ψk dΩ

0
)2

∫
Ω0 ||ψk||2 dΩ0

[27]

L. Sirovich proved in (Sirovich, 1987) that the matrix [b] contains the eigenvectors

of the covariance matrix [M ] such that:

Mij =

∫

Ω0

Ui .Uj dΩ
0 [28]

[M ] being a symmetric and positive matrix of sizem, the matrix [b] containsm eigen-

vectors. The kth column of [b] is related to the eigenvalue λk such that λk > λk+1 ≥
0. Some of the eigenvectors can have a negligible contribution to the approximation

equation in Equation [24]. In practice, we remove these negligible contributions by a

selection of the m̂ first columns of [b] such that:

k=m̂∑

k=1

λk ≥ (1− ǫ)

k=m∑

k=1

λk [29]
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where ǫ is a positive parameter of the snapshot POD. In practice we choose ǫ =
10−8. VPOD being a subspace of Vh, we can introduce a reduction matrix [A] such

that :

ψk(X) =

j=n∑

j=1

Nj(X)Ajk ∀X ∈ Ω0 [30]

In case of domain decomposition for parallel computing, each displacement vector

is split such that each subdomain Ω̂0
η has its own contribution, Uj η, to the global

vectors.

Uj = Uj η ∀X ∈ Ω̂0
η [31]

It turns out that the computation of the matrix [M ] is distributed over all the pro-

cessors used for the parallel computation:

Mij =

η=ω∑

η=1

∫

Ω0
η

Ui η .Uj η dΩ
0 [32]

Using a single program and multiple data approach, the eigenvector {b}k of the

matrix [M ] are forecast on each processor. Therefore each processor as its own con-

tribution to each global vector:

ψk(X) =

i=m∑

i=1

Ui η(X) bik ∀X ∈ Ω̂0
η ∀ η ∀ k = 1, ..., m̂ [33]

2.4. The classical POD-Galerkin formulation of the reduced equilibrium

equations

The classical Galerkin formulation of the equilibrium equation of the Finite Ele-

ment model is obtained by replacingV by Vh and U by Uh in Equation [7]. In a similar

way, the Galerkin formulation of the reduced equilibrium condition is obtained by re-

placing V by VPOD and U by UPOD in Equation [7].
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The formulation of the reduced order model is the following. Find the displace-

ment field uPOD ∈ UPOD({p}α) defined by the constitutive equations and the prin-

ciple of virtual work:

∫

Ω0

ε(u∗
POD,uPOD) : Σ(F(uPOD τ ), τ ≤ t, {p}α) dΩ0 [34]

−

∫

∂fΩ0

u
∗
POD . f(X, t, {p}α) dΓ0 = 0 [35]

∀ u
∗
POD ∈ VPOD

The quality of the ROM prediction can be checked using the residue {R} of the

Finite Element equilibrium condition such that:

Rj({q} , t, {p}α) =

∫

Ω0

ε(Nj ,u) : Σ(F(uτ ), τ ≤ t, {p}α) dΩ0 [36]

−

∫

∂fΩ0

Nj . f(X, t, {p}α) dΓ0

with

u(X, t, {p}α) =

i=n∑

i=1

Ni(X) qi(t, {p}α) + uch(X, t, {p}α) [37]

A relative error can be defined as follows:

η = maxt∈[0,T ]
‖{R}([A] . {a} , t, {p}α)‖

‖{R}(0, t, {p}α)‖
[38]

ε being a linear function of u∗, the matrix form of the reduced equilibrium equa-

tion, Equation [36], is the following:

[A]
T
. {R}([A] . {a} , t, {p}α) = 0 [39]

3. Formulation of the hyper-reduction method

For both models, the detailed one and the reduced one, the nonlinear local consti-

tutive equations have to be solved to estimate the stress field Σ(F(uτ ), τ ≤ t, {p}α)
at any point of the domain Ω0. The fact that uPOD belongs to UPOD ({p}α) has no

effect on the complexity of the constitutive equations involved in Equation [36]. The

Galerkin procedure does not modify the number of constitutive equations that must be

solved to forecast uPOD ∈ UPOD ({p}α).
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One way to reduce the number of constitutive equations is the creation of a Re-

duced Integration Domain (RID). The orthogonal condition, Equation [39], does not

mean that all the residues of the equilibrium equations must be equal to zero. Using

a RID, we do not include all the residues Rj (j = 1...n) into the formulation of the

reduced governing equations. Let us split the domain Ω0 in two complementary parts

Ω0
Π and Ω

0

Π:

Ω0 = Ω0
Π ⊕ Ω

0

Π [40]

Introducing a subspace of truncated test functions, VΠ, we can select few equilibrium

equations of the detailed model:

VΠ = { uΠ ∈ V |∃ {q} ∈ ℜn ,

uΠ(X) =

j=n∑

j=1

Nj(X) Λjj qj ∀X ∈ Ω0 } [41]

where [Λ] is a diagonal matrix such that [Λ] = [Π]
T
. [Π]. This matrix enables to

truncate the test functions such that u ∈ VΠ is equal to zero over Ω
0

Π. The component

Πij is equal to zero for any degree of freedom j located in Ω
0

Π, else it is equal to

one. The number of rows of [Π] is the number of degrees of freedom outside Ω
0

Π.

Therefore Λjj = 1 for any degree of freedom outside Ω
0

Π else Λjj = 0. Replacing the

space of test function Vh by VΠ and U by Uh in Equation [7] we obtain a selection of

equilibrium conditions:

[Π] . {R}({q} , t, {p}α) = 0 [42]

The amount of equilibrium conditions related to the surrogate model has to be equal

to the number of reduced state variables related to dispacements. Introducing the

subspace of truncated test functions of the reduced-order model, VΠ A, enables to

obtain the convenient number of equilibrium condition.

VΠ A = span {ζ1, ..., ζm̂} [43]

with ζk(X) =

j=n∑

j=1

Nj(X) Λjj Ajk ∀ k = 1, ..., m̂ [44]

The proposed formulation of the hyper-reduced-order model is obtained by replac-

ing V by VΠ A and U by UPOD in Equation [7]. The truncated test functions
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(ζk(X))k=1,...,m̂ being constant and equal to zero over Ω
0

Π the equilibrium equation

of the hyper-reduced-order model can be simplified as:

∫

Ω0

Π

ε(u∗
Π A,uHROM ) : Σ(F(uHROM τ ), τ ≤ t, {p}α) dΩ0 [45]

−

∫

∂fΩ0

Π

u
∗
Π A . f(X, t, {p}α) dΓ0 = 0

∀ u
∗
Π A ∈ VΠ A with uHROM ∈ UPOD ({p}α)

One can notice that uΠ A ∈ VΠ A is equal to zero on the interface ∂Ω
0

Π ∩ ∂Ω0
Π.

This means that no interfacial equilibrium condition is checked in the proposed for-

mulation. The boundary conditions over ∂Ω
0

Π ∩ ∂Ω0
Π is given by the shape of the

POD-basis vector and the equilibrium conditions, Equation [46]. This formulation

can be written in the following matrix form:

[A]
T
. [Λ] . {R}([A] . {a} , t, {p}α) = 0 [46]

The linearized form of this problem is : find {δa} such that,

[A]
T
. [Λ] . [K] . [A] . {δa} = − [A]

T
. [Λ] . {R}([A] . {a} , t, {p}α) [47]

where [K] is the classical tangent stiffness matrix introduced for the Newton-Raphson

algorithm. In case of differentiable governing equations this matrix is such that:

Kij =
∂Ri

∂qj
[48]

To obtain a well-posed reduced problem, the number of selected equilibrium

equations must be large enough. It can not be lower than the size of the reduced

basis. Methodologies to build this selection of equations have been proposed in

(Ryckelynck, 2005) and (Ryckelynck, 2009). In the present paper, we propose to

use as a RID one of the subdomain of the domain decomposition in order to perform

a simulation using a single processor.

Using the last formulation, we have reached the goal to reduce the complexity

of the constitutive equations because the local computations are restricted to Ω0
Π.

The HROM enables to forecast the reduced state variable {a}. {a} being known,

the displacement field is completely forecasted according to the reduced approxima-

tion in Equation [24]. The internal variables z are forecasted inside the RID in or-

der to estimate Σ(F(uτ ), τ ≤ t, {p}α). But they are not computed outside Ω0
Π.

These internal variables can be extrapolated using an added POD basis as proposed in

(Ryckelynck, 2009).

It is clear that uHROM and uPOD can be different. The Hyper Reduction method

introduces a new kind of approximation error. But, if the reference problem and
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the hyper-reduced problem have an unique solution, and if the finite element solu-

tion can be represented using a POD basis such that uh = uPOD, therefore the

error introduced by the Hyper Reduction method is null. This is the reason why

the added approximation error related to the Hyper Reduction method is viewed as

an amplification of the error related to the POD representation. The proof of this

property is straightforward. If uh = uPOD then the residue of the equilibrium con-

ditions {R}([A] . {a} , t, {p}α) is null. Therefore the residue of the hyper-reduced

problem is also null. So the column of reduced state variables {a} is a solution of

the hyper-reduced equations. Since this solution is unique, assuming that we can

find it, there is no approximation error introduced by the hyper-reduction method:

uh = uHROM . For more details about the error amplification we refer the reader to

(Ryckelynck, 2009).

The Hyper Reduction method remains unchanged the integration scheme over the

RID. We do not propose a usual reduced integration scheme, but an efficient use of

virtual work principle. Therefore we preserve the weight of each integration point

and we preserve the mechanical sense of the internal variables. They remain the local

variables defined by the Finite Element integration rule. In our point of view this is

an important property. One can imagine to use one integration point per element as

reduced integration scheme. But in such a case the mechanical sense of the internal

variables has changed. It corresponds to average values over each element of the Finite

Element model.

4. A simple theoretical example

We propose a simple mechanical example to facilitate numerical experiments of

the Hyper reduction method. The series of problems involves 3 linear 1D tensil sim-

ulations. The displacement is such that: u = u(X, {p}α) e1, where e1 is the first

vector of the coordinate system (Figure 1). The displacement and the gradient of the

displacement are assumed to be infinitely small (Ω = Ω0). The constitutive law is

linear such that:

Σ(F(uτ ), τ ≤ t, {p}α) = E(X, {p}α)
∂u

∂X
e1 ⊗ e1 [49]

The Young modulusE is a linear function of the positionX . The unique parameter of

the model is the value of the Young modulus at the end of the bar. The Young modulus

at the origin is 1 Mpa. The 3 values of the parameter are p1 =1 Mpa, p2 =2 Mpa and

p3 =4 Mpa. The displacement is imposed at the extremities of the bar (Figure 1).

The mesh involves 9 linear elements. The length of the bar is 1. There is 8 degrees

of freedom supported by nodes 2 to 9. The two first simulations provide two finite

element displacement fields. By eliminating the given part of the displacement, we

obtain two shape function ψ1 and ψ2 (Figure 2). In order to involve at least 2 finite

element equilibrium conditions the RID can not be smaller than 3 elements in this case.

We choose as the RID the last three elements of the mesh (Figure 1). We suggest the
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Figure 2. Shape functions and truncated test functions related to the hyper-reduced

order model

reader to test various choice of RID. The two last degrees of freedom are outside the

complementary part of the RID. Therefore, the matrix [Π] is the following:

[Π] =

[
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]
[50]

The truncated test functions of the reduced order model ζ1 and ζ2 are shown in

Figure 2.

The third simulation of the series has been performed three times using the full

finite element model, a Galerkin formulation of the reduced approximation and the

Hyper Reduced formulation. The related displacement fields are respectively de-

noted uh(x, p3) uPOD(x, p3) and uHROM (x, p3). The relative errors
‖uPOD−uh‖

‖uh‖

and
‖uHROM−uh‖

‖uh‖
are respectively 0.0107 and 0.0438. As mentioned above, the Hy-

per Reduction method gives rise to an error amplification. The bigger the RID the

smaller this amplification is. The purpose of reduction methods is to reach a compro-

mise between quality and the complexity of the surrogate model. Here, the reduced

stiffness matrix is built using only three elements of the mesh.
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5. Hyper-Reduction of a polycrystal plasticity model

5.1. Polycrystalline aggregate simulation details

As a more complex example for the Hyper Reduction method application, a poly-

crystalline aggregate simulation was taken. This type of simulation is now classical in

material science, either to deduce homogenized mechanical properties from the local

microstructure knowledge (see for instance (Anand, 2004)) or to obtain local strain

and stress fields (see for instance (Musienko et al., 2007) and references therein).

For such a type of simulation, a finite element mesh of several hundreds of grains is

typically used. Grain shapes can be simplified (cubes, octahedra), real-like (Voronoï

polyhedra) or follow the real grain morhology. For each grain, a single crystal type of

model is typically used, which assumes shear along appropriate slip systems. Such a

simulation typically needs rather fine finite element mesh to properly capture the local

heterogeneities. This naturally limits the possibilities for parametric investigations.

For the present work, we will use the possibilities of the Hyper Reduction method,

in order to extend the studies of (Musienko et al., 2007) and check the boundary

condition influence on the local stress-strain field.

5.1.1. The constitutive model

The constitutive model used here for each grain, (the same as in (Musienko

et al., 2007)) was initially introduced in (Cailletaud, 1992). It was extensively

used for the polycrystalline aggregate computations in a serie of works: (Barbe et

al., 2001a)(Barbe et al., 2001b) - for the case of Ni-base alloy, (Diard et al., 2005) –

Zircaloy, (Osipov et al., 2008) - bainitic steel,(Gerard et al., 2009) - copper.

The formalism of the model, in a finite strain framework, is breathly recalled be-

low. Mandel’s isocline configuration (Mandel, 1973) is introduced, together with a

multiplicative decomposition of the deformation gradient into an elastic and plastic

part:

F = F
e
F

p [51]

S
e = det(Fe) Fe−1σFe−T [52]

T = det(F) FeTσFe−T [53]

ρo = ρ det(F) [54]

where T is the Mandel tensor and S
e is the second Piola-Kirchhoff tensor related to

the relaxed configuration. The elastic strain is expressed as:

E
e =

1

2

(
F

eT
F

e − I
)

[55]

The model involves several slip systems. For each slip system s an orientation tensor

N
s0 describes the slip system geometry. The subscript "0" refers to the initial configu-

ration. Each slip system s involves kinematic hardening related to the internal variable
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αs. Isotropic hardenings are also introduced using the internal variables vs. The set of

internal variables is
{
E

e, α1, ..., αs, ..., v1, ..., vs, ...
}

. It is corresponding to z. The

equation of state are:

S
e = L

∼
E

e ; xs = c αs ; rs = R0 + b Q hs (1− exp(−b vs)) [56]

The conjugate variables are
{
T, x1, ..., xs, ..., r1, ..., rs

}
. The complementary consti-

tutive equations are:

Ḟ
p
F

p =
∑

s

γ̇s Ns0 [57]

v̇r = |γ̇s| [58]

α̇s = γ̇s − d v̇s αs [59]

γ̇s =

〈
|τs − xs| − rs

K

〉n

sign(τs − xs) [60]

τs = T : N
s0 [61]

5.1.2. The material parameters

The material parameters related to the constitutive law are: L
∼

– 4-order elasticity

tensor, R0 – yield limit, Q and b – nonlinear isotropic hardening parameters, hs – slip

interaction matrix, c and d – nonlinear kinematic hardening parameters, n and K –

viscosity parameters. The set of material parameters that taken from (Musienko et al.,

2007) (even if it was recently modified in (Gerard et al., 2009)): L1111 = 159,300 MPa;

L1122 = 121,900 MPa; L1212 = 80,900 MPa; K=5 MPa s1/n; n = 10; c = 4,500 MPa;

d = 600; R0 = 1.8 MPa; Q = 6 MPa; b = 15; h1 = 1.0; h2 = 4.4; h3 = 4.75; h4 = 4.75;

h5 = 4.75; h6 = 5.0.

5.1.3. The finite element mesh

The finite element mesh, used in (Musienko et al., 2007), was a numerical copy of

about 100 grains of the copper specimen, representing a zone of 200x300x100 µm, a

part of 2x2x10 mm specimen. For the present work, we use a 200-grain finite element

mesh (shown in the Figure 3), with the grains shaped as Voronoï polyhedra. Voronoï

type of mesh is widely used to represent different materials, and thus such a choice

will permit a more general interpretation of the results.

5.1.4. Boundary conditions

For the work of (Musienko et al., 2007), displacements were measured only at

the surface of the specimen. That is why, an approximative solution was used for

the boundary conditions. Namely, for all the surfaces, except one free surface, the

displacements were prescribed:

uc = ε x [62]
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Figure 3. FE model, grains and domain decomposition

ε = (ε11, ε22, ε33) [63]

ε11 was taken as the global strain of the specimen in axial direction. The transverse

strains ε22 and ε33 were estimated through a simulation made for an elastoviscoplastic

macroscopic model. For the present work, the displacement boundary conditions were

kept. The displacement in tension direction (direction 1 in the Figure 3), was the same,

as in (Musienko et al., 2007), i.e. u1 = uL = ε11· meshsize1. The displacement in

transverse direction (direction 2 in the Figure 3), was taken as u2 = γuH = γε22·
meshsize2. Here γ lies in the limits [0.9,1.].

5.2. Investigation of the state variation induced by modifications of a boundary

condition

The purpose of the series of simulations is to investigate the stress variation when

changing the boundary condition u2 = γ uH on the top surface on Figure 3. γ = 1
gives the boudary condition used in (Musienko et al., 2007). The series involves three

simulations related to γ = 1, γ = 0.9 and γ = 0.95. The third simulation aims to

estimate if the variation of the stress field is a linear function of γ for γ in [0.9 , 1.].

The two first simulations (γ = 1, γ = 0.9) are performed using the full element

model and a FETI solver (Feyel et al., 1997). The domain has been split into 16

subdomains. In order to show the usefulness of the Hyper Reduction method, the

last simulation (γ = 0.95) has been done three times using the full finite element

model, a POD-Galerkin formulation of the reduced approximation, Equation [39],

and the Hyper Reduced formulation (Equation [46]). The related displacement fields

are respectively denoted uh(X, t, {p}3), uPOD(X, t, {p}3) and uHROM (X, t, {p}3).
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Figure 4. Stress σ12 forecast by the FE model and the hyper-reduced model

The finite element model involves 869,274 degrees of freedom and 206,238 elements.

Each simulation involves 29 time increments.

In order to save computational resources we choose a subdomain as the RID. To

avoid the spurious estimate uHROM (X, t, {p}3) = 0 the RID must cover a part of

the boundary where the displacement are prescribed such that [Π] . {R}(0, t, {p}3) is

not equal to zero. Therefore, we have chosen Ω0
Π = Ω̂0

8 (Figure 3). The RID involves

12,187 elements.

The snapshot POD have been applied to the 58 continuous mechanical states pro-

vided at the end of each time increment of the two first simulations. It provided 5 POD

basis vectors (ψk)k=1...m̂=4. As shown in Figure 4, the Cauchy stress σ12, related to

γ = 0.95, forecast by the HROM, at the end of the time interval, is in good agreement

with the one farecast by the Finite Element method and the FETI solver. The variation

of the Cauchy stress is denoted δσ12 = σ12|γ=0.95 − σ12|γ=1. The time evolution at

G point of the various estimates of δσ12 is shown on Figure 5.

In so far as some of the residues of the equilibrium equations are not included into

the Hyper reduced formulation, this formulation introduces new approximation errors.

It is well known that the Galerkin procedure allows to minimize the approximation

errors when the equilibrium equations derived from an error minimization. Therefore,

one can expect some error amplification due to the Petrov-Galerkin formulation used

for the Hyper Reduction. One can notice that the HROM estimation of δσ12 is very
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Figure 5. σ12|γ=0.95 and δσ12 = σ12|γ=0.95 − σ12|γ=1 at G point (Figure 3)

accurate at the end of the time interval at G point (Figure 3 and Figure 5). The error

amplification due to the Hyper Reduced formulation has an impact at the beginning of

the time interval, where the reduced approximation is less accurate.

Anyway, these results are accurate enougth to validate the putative linear variation

of the stress when changing γ in the interval [0.9, 1]. The smoother the state variation

when changing γ, the bigger should be the validity domain of the Hyper Reduced ap-

proximation. The norm of truncated residual of the reference equilibrium equations

should be helpfull to estimate a trust region. The relative error on truncated equilib-

rium equation ηR and the true relative error on σ12 at point G, defined below, are

shown on Figure 6.

ηR = max
t

‖[Π] . {R}([A] . {a} , t, γ = 0.95)‖

‖[Π] . {R}(0, t, γ = 0.95)‖
[64]

ησ = maxt

∣∣σ12 HROM |X=G,γ=0.95 − σ12 h|X=G,γ=0.95

∣∣
∣∣σ12 h|X=G,γ=0.95

∣∣ [65]
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5.3. Discussion on the energy consumption during the last simulation

Each simulation related to γ = 0.95 involves 29 time increments. The FE simu-

lation involves 4 Newton-Raphson iterations per time increment, and 180 FETI iter-

ations per linear global system to solve. The duration of the simulation is given by

the slowest processor in order to perform the computation. This time duration was

420,067 s. The reduced approximations being continuous overall the domain, a direct

solution of the linear global equations (Equation [47]) is performed using a classical

Gauss solver. The Hyper reduced simulation involves 5 Newton-Raphson iterations

per time increment, and one solution of the linear global system (Equation [47]) for

each iteration. This simulation was performed on only one processor. The time du-

ration of this simulation was 1,165 s. The duration of the POD-Galerkin simulation,

was 2,053 s.

The Hyper Reduction method provides an amazing Computational Time Saving

Factor (CTSF) equal to 361. The POD simulation is less efficient than the HROM one

because of the assembly procedure of the tangent stiffness matrix of the global linear

systems embeded in the Newton-Raphson algorithm. But the most important result of

this work is the capability of the Hyper Reduction method to reduce the computational

resource needed to perform the simulation. The processor used to perform the HROM

simulation has the following characteristics: 2 Ghz, 4 Go for memory. Such processor
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can be found on a classical laptop. The use of a single processor during less time

enables to save electrical energy during the numerical simulation. An estimated energy

saving factor sE enables to quantify the resource reduction such that:

sE =
ωFE

ωHROM
CTFS [66]

The estimated energy saving factor of the Hyper Reduction method is 5,769. It is

28 times bigger than the one provided by the classical POD-Galerkin procedure which

use all the processors related to the domain decomposition.

6. Conclusion

In continuation of previous work related to three-dimensional finite element sim-

ulation of a polycrystalline copper specimen using experimentally determined mi-

crostructure, we investigate the stress variation related to model modifications. A

POD approximation has been build to reproduce the displacements forecast using two

finite element simulations related to different parameter values. This POD approxi-

maton has been used to forecast the mechanical response related to an other parameter

value. The reduced state variables have been computed using the Hyper Reduction

method. Despite the full finite element simulations requires 16 processors of a cluster

and the FETI method, the reduced state variables have been forecast using only one

processor. This approch is twice more efficient than the classical POD-Galerkin pro-

cedure. Compared to the Finite Element method, an amazing saving factor related to

computational time has been reached. This factor is 361. But much more interesting

results are related to the ressource saving provided by the Hyper Reduction method.

An energy saving factor has been proposed estimating the energy saving related to a

simulation. This saving factor is the saving factor related to the computational time

multiplied by the ratio of processor used to perform the simulation. For the proposed

example this ratio is 16. Then we achieve an estimated energy saving factor equal to

5,769. At last, we must emphasis that the Hyper Reduced simulation can be performed

using a classical laptop instead of a parallel computer. Most of the parallel comput-

ers are optimized to maximize the availability of their processors for computational

purposes. On the contrary, the laptop computer processors are designed to minimize

their energy consumption. It turns out that, replacing some simulations on parallel

computer by simulations on laptops, the Hyper Reduction method enables a first step

toward "green" mechanical simulations in materials science.

Works in process concern the extent of the applicability of the Hyper Reduction

method. This approche seems interesting to investigate the variation of the forecast

state variables depending on variation of parameters of the model. It could be param-

eters related to constitutive equations or loading conditions.
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