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ABSTRACT. This paper presents a micromechanical modeling strategy for complex multibody 
interactions and the associated numerical framework. The strategy rests on a periodic 
multibody method in the framework of the NonSmooth Contact Dynamics approach of 
Moreau (1988) extended to classical domain decomposition problems. Many complex 
interactions can be taken into account: interactions between discrete elements, between 
discrete or rigid bodies, (quasistatic) contact or impact, friction or adhesion, decohesion 
(cracking), etc. The associated numerical platform, Xper, is composed of three independent 
libraries with Object Oriented Programming. The ability of this computational approach is 
illustrated by two examples of fracture in heterogeneous materials. 

RÉSUMÉ. Cet article présente d’une part, une stratégie de modélisation dédiée à la simulation 
micromécanique des interactions entre corps, et, d’autre part, sa mise en œuvre numérique. 
Cette stratégie repose sur une formulation de type décomposition de domaines d’une méthode 
multicorps périodique dans le cadre de l’approche NonSmooth Contact Dynamics de Moreau 
(1988). Les potentialités de cette méthode sont illustrées par la complexité des interactions 
possibles : interactions entre éléments d’une discrétisation, entre corps discrétisés ou rigides, en 
compression (contact) lente ou sous impact, en glissement (frottement) ou en traction 
(fissuration-rupture), etc. La plateforme numérique associée, Xper, repose sur une architecture 
orientée objet composée de bibliothèques indépendantes. La pertinence numérique de 
l’approche est illustrée sur des exemples de fissuration de matériaux hétérogènes. 
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1. Introduction

Dynamic crack propagation in heterogeneousmaterials is a complex problem and
hasbecome a challenge in many engineering domains. Sincethe heterogeneities (mi-
crocavities, hard inclusions, brittle precipitates...) have major effects on the overall
dynamic fracture, a relevant way to investigate the problem is to consider models at
the scale of heterogeneities. At this scale, the fracture can be described using micro-
mechanical conceptsandrecent advancesin computer technologiesmakepossiblethe
simulation of theoverall nonlinear responseof agiven microstructure.

In this context, a new computational micromechanical approach is developed to
analysethe effectsof themicrostructureheterogeneity ontheoverall material behavior
when submitted to static or transient loadings. This approach is based both on the
concept of Frictional CohesiveZoneModel and onamultibodymethodin the context
of theNonSmoothContact Dynamics(NSCD). In particular, theNSCD approachaims
to solve dynamic frictional contact problems without regularization nor penalization
techniques(Moreau, 1988; Jean, 1999). Sinceperiodic formulationsare well adapted
to micromechanical studies, a two field Finite Element is written and the framework
isextended to this formulation(Peraleset al., 2006; Peraleset al., 2008).

The scope of the NSCD framework can simply be extended to classical domain
decomposition problems. The domain decomposition methods (DDM) solve astan-
dard boundary value problem by splitti ng it in smaller problems on subdomains
and managing “continuity” conditions between subdomains. Many techniques exist
to enforce continuity of the solution in quasi-static (Dodds et al., 1980; Magoules
et al., 2006; Glowinski et al., 1990) or dynamic (Herry et al., 2002; Gravouil et
al., 2001). In this paper, the NSCD framework is written as a dual Schur approach
where the continuity condition is replaced byany interaction law. The applicationsof
thismethodconcern parallelism, multiphysicsor multibodyinteractions.

Sincetheimplementation of themicromechanical framework would involve ahigh
programmingcost, thedevelopment strategy isto reuse andextendexistingspecialized
libraries. The software developed here, called Xper, is based onthe coupling of three
libraries (using Fortran90/C++ mixed programming) and thus takes advantage of the
abilit y of each of them. Each library has a clear meaning from the mechanical point
of view :

– LMGC90 isdedicated to the surfaceinteraction part : model, solvingmethod. It
relieson the NonSmooth Contact Dynamicsapproach (LMGC90, 2009),

– PELICANS is dedicated to the bulk part : periodic Finite Element modeling
(PELICANS, 2009),

– MatLib is dedicated to complex constitutivemodels (Stainier et al., 2003). This
library isembeded in PELICANS.

The abilit y of the proposed strategy and of the platform is ill ustrated onexamples
of dynamic fracture in metal matrix composite with brittle inclusions under transient
loadingand of intergranular fracture in aperiodic medium.



NSCD-based multi -domain solver 391

The paper is organized as follows. In Section 2, the main elementary classes of
multibodyinteractions that can summarizemost of the complex interaction problems
are recalled. In Section 3, the interactionsmodeling (multibody, NSCD, periodic and
DDM) isdescribed. The aforementioned casestudiesarepresented in Section 4.

2. The modeling strategy

Themain purposeof thispaper is to model andsimulatedivided andfractured me-
dia as a multibodysystem with interactions. From a mechanical point of view, these
interactionscorrespondto any compression-sliding-tractionsituation. In particular, we
havehere in mind the modeling of contact, impacts, dry or lubrificated friction, adhe-
sion, decohesion, multiple cracking, failure or any combinationsas frictional contact
with cohesion (Raous et al., 1999; Perales et al., 2006). Moreover these interactions
can take placebetween rigid or deformablemedia. From a geometrical point of view,
any complex interaction belongsto oneof the threefollowingsituations: (1) body-to-
body interaction, (2) cluster-to-cluster interaction, (3) body-to-cluster interaction. In
order to classify these threesituations, thefirst two aredetailed below.

– Body-to-body interaction. For example, this situation occurs when any surface
of aFiniteElement mesh is susceptibleto surfaceinteractionwith its surrounding(see
Figure1). Thisclassof interactionsincludesthefailureof bulk materialsor of hetero-
geneousmaterials, or transgranular failure. In thiskind of applications, theframework
is known as the cohesive/volumetric finite element approach (Xu et al., 1994; Ca-
macho et al., 1996; Raous et al., 1999; Jean et al., 2001; Perales et al., 2006). This
concept is extended to any interaction of rigid bodies. Therefore, the body-to-body
interactionstands for mesh-to-mesh interaction, rigid-to-rigid interaction or mesh-to-
rigid interaction.

’I ndependent’ body

Surfacebehavior

Figure 1. Body-to-body interaction : each finite element isa body
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– Cluster-to-cluster interaction. The bodies can be cluster-meshed domains or ri-
gids. A surfacebehavior may be introduced between the bodies (for example, see
Figure 2 for meshed bodies). This classof interactions includes intergranular failure
(Zavattieri et al., 2001; Vincent, 2007), inclusion/matrix interfaceor granular media
(Azemaet al., 2006; Renouf et al., 2005; Chetouaneet al., 2005).

Meshed body

Surfacebehavior

Figure 2. Cluster-to-cluster : surfacebehavior between meshed bodies

For the particular case of periodic media, the clusters can be subject to periodic
conditions (seeFigure 3). This classincludes the failure of periodic media or of Re-
presentativeVolumeElements (Peraleset al., 2008; Pelissou et al., 2009).

Same cluster

Figure 3. Periodic media : the clusters are reproduced by periodicity
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Theoverall behavior isthusobtained bycouplingthestandardvolumetric behavior
inside the meshes (or rigid bodies) and the surface properties between the bodies,
taking complex interactions into account. In this study, this coupling is based on the
NonSmooth Contact Dynamics (NSCD) framework (Moreau, 1988; Jean, 1999).

In the framework of the NSCD method, a two level resolution is carried out : the
standard or periodic volumetric problem is solved at global level - by PELICANS
(PELICANS, 2009) and MatLib (Stainier et al., 2003) - and the nonsmooth contact
problem is treated at a local level - by LMGC90(LMGC90, 2009). The corresponding
two field modelingframework isdetailed below.

3. A two field modeling framework

3.1. Global level and periodic problem

A specific bulk model is derived to model a dynamical system under periodic
conditions. Since the classical dynamic problem can be seen as a subproblem of the
periodic one, we focus on the formulation of the periodic problem. In what follows,
the main points of the formulation are described (see(Perales et al., 2008) for more
details).

Consider a periodic multibodymedium Ω0 =
⋃

e

Ωe
0. At any boundary of a body

Ωe
0, mixed boundary conditions (given by the interactions depending on the dis-

placement jump) are introduced. In this framework, the deformation gradient field
F = ∇u + I and the first Piola-Kirchhoff stressfield Π are assumed to be perio-
dic with the same period as the medium. The corresponding average fields over the
periodic medium are denoted by F̄, ∇̄u and Π̄. The fields F, ∇u and Π fluctuate
aroundtheir averagevalues. Thelocal deformation gradient field can bethus split i nto
an overall field (the field itself if the medium is homogeneous) and a fluctuation de-
noted ∇u#, which takes the presenceof heterogeneities into account. Sincefracture
is expected, heterogeneities are not only due to the inclusions but also to cracks in
the structure. The global displacement field u admits the following decomposition :
u = (F̄− I) ·X+u# whereX is the initial position vector andI is thesecond-order
identity tensor. The Finite Element formulation becomes a two field Finite Element
formulation. The local periodic dynamic problem can be written :

find the periodic displacement field u#, the deformation gradient field F and the
stressfield Π verifying:

– relations for each bodyΩe
0 :























∇ ·Π = ρ
d2

dt2
u# inΩe

0,

′Π(F)′ (Constitutive law),

F = F̄+∇u# inΩe
0,

Π ·N = T([u#]) on∂Ωe
0,

[1]
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– averagerelations in themediumΩ0 :
{

F̄ij = F̄ imp
ij ,

Π̄kl = Π̄imp
kl ,

[2]

where T is a boundary force given by the considered interaction law, N is the unit
outward normal vector of the body, ρ is the mass density, the jump symbol [f ] =
f+ − f− is defined as the differenceof a field f over the two facingsurfaces(here the
superscripts+ and- denotethetwo oppositesurfaces), F̄ imp

ij arethe componentsof the

prescribed macroscopic transformation gradient and Π̄
imp
kl are the components of the

prescribed macroscopic stress, with ij 6= kl and{i, j, k, l} ∈ {1, 2, 3}.

Note that the classical dynamic problem can beobtained byreplacingtheperiodic
displacement fieldu# by thestandard displacement fieldu in thefirst equation of [1].

The framework is dedicated to the study of periodic problemsembedding nonre-
gular interactions. Considering thestandard NSCD algorithm, the nonsmooth contact
problem is treated at the local level (Jean, 1999; Jean et al., 2001). At this level, two
main pointshaveto be underlined in thewriting of theperiodic problem :

– dynamics is dedicated to the treatment of the nonregular conditions and has to
beonly introduced at the local level,

– thepresenceof theheterogeneitiesaretaken into account only by thefluctuation
fieldu#.

After choosing the admissible spaces, the broken Sobolev space U# =
{

v ∈
[

L2(Ω0)
]m

, v|Ωe
0
∈
[

H1(Ωe
0)
]m

∀Ωe
0, v periodic

}

and the spaceof linear

transformationV = L(Rm) (m is the spacedimension) for the velocity field and its
periodic part respectively, and considering the kinematically admissible virtual velo-
city field v∗ = (v∗)# + ˙̄F∗ ·X, theweak unit cell valueproblem is obtained :

findu# ∈ U# and F̄ ∈ V such that :


































































τ
∑

e=1

∫

∂Ωe
0

T([u#]) · (v∗)#dS

−

τ
∑

e=1

∫

Ωe
0

Π(F) : ∇(v∗)#dx

=

τ
∑

e=1

∫

Ωe
0

ρ
d2

dt2
u# · (v∗)#dx

∀(v∗)# ∈ U#;

τ
∑

e=1

∫

Ωe
0

Π(F) : ˙̄F∗dx = |Ω0|Π̄ : ˙̄F∗ ∀ ˙̄F∗ ∈ V.

[3]
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3.2. Nonsmooth contact dynamics strategy and its extension to periodic problems

3.2.1. Standard dynamic equation andthe extension to periodic problems

Considering that some discontinuities may appear in velocity time evolution, the
standard dynamic problemsare written in a semi-discrete form for each bodyΩe

0 :

M · dq̇ = F (q, q̇, t)dt+ dp, [4]

q(t) = q(t0) +

∫ t

t0

q̇dt, [5]

whereM is the massmatrix, q, q̇ anddq̇ are respectively the discretedisplacement,
velocity and differential measureof velocity,dp representsthedifferential measureof
interaction impulse andF (q, q̇, t) represents the internal and external forceswithout
the contribution of interactiondp (Jean, 1999; Jean et al., 2001). Themeasuredp may
contain both smooth and nonsmooth contributions. In this framework, the derivatives
arewritten in a distributionsense.

In practice, thedifferential measure equation[4] needsto be integrated over an ar-
bitrary timestep (even reduced to ashock instant), which givesamomentumbalance:

M · (q̇i+1 − q̇i) =

∫ ti+1

ti

F (q, q̇, t)dt+ p, [6]

q(ti+1) = q(ti) +

∫ ti+1

ti

q̇dt. [7]

Using an implicit time integrationschemeof [6] and [7] (θ-method) oneobtainsa
discrete form :

M · (q̇i+1 − q̇i) = h(θF (qi+1, q̇i+1, t) + (1− θ)F (qi, q̇i, t)) + p, [8]

qi+1 = qi + h(θq̇i+1 + (1− θ)q̇i), [9]

whereh is thelength of timesubinterval ]ti, ti+1], subscript i thequantitiesat a time
ti, i+ 1 the quantitiesat time ti+1 andθ ∈ [0.5, 1].

The linearized formulation of [8] is obtained througha Newton-Raphson method
(superscript k stands for iterations) (Jean, 1999; Jean et al., 2001) :











M̃k(q̇k+1
i+1 − q̇k

i+1) = pk+1
free + pk+1

i+1

M̃k = M + hθ
∂F (qk

i+1,q̇
k
i+1,t)

∂q̇
+ h2θ2

∂F (qk
i+1,q̇

k
i+1,t)

∂q

pk+1
free = −M(q̇k

i+1 − q̇i) + h[(1− θ)F i + θF k
i+1]

[10]
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which leads to :

{

q̇k+1
i+1 = q̇k+1

free +wk
i+1p

k+1
i+1

q̇k+1
free = q̇k

i+1 +wk
i+1p

k+1
free

[11]

where wk
i+1 denotes the inverse of the iteration matrix and pk+1

i+1 is the impulse
value.

In a periodic case (see section 3.1 for the formulation), the semi-discrete form
[4]-[5] becomesfor each bodyΩe

0 (Peraleset al., 2008) :

{

M · dq̇# = F (q#, q̇#+, d̄, ˙̄d, t)dt+ dp,

0 = G(q#, q̇#+, d̄, ˙̄d, t) +K(t),
[12]

{

q(t) = q(t0) +
∫ t

t0
q̇dt,

d̄(t) = d̄(t0) +
∫ t

t0

˙̄ddt
[13]

where G(q#, q̇#, d̄, ˙̄d, t) and K(t) respectively represents the macroscopic stress

and the macroscopic prescribed stress, and d̄ and ˙̄d are respectively the discrete ave-
ragedeformation gradient and its first timederivative.

The linearized formulation[10] is then rewritten as :



















































M̃k ·

{

(q̇#
i+1)

k+1 − (q̇#
i+1)

k

˙̄dk+1
i+1 − ˙̄dk

i+1

}

= Pk+1
free +

{

pk+1
i+1

0

}

,

M̃k =







M − hθ
∂F

∂q̇#
− h2θ2

∂F

∂q#
−hθ

∂F

∂ ˙̄d
− h2θ2

∂F

∂d̄

−hθ
∂G

∂q̇#
− h2θ2

∂G

∂q#
−hθ

∂G

∂ ˙̄d
+ h2θ2

∂G

∂d̄







Pk+1
free =

{

−M · ((q̇#
i+1)

k − q̇
#
i ) + h[(1− θ)F i + θF k

i+1]

h{(1− θ)(Gi +Ki)− θ(Gk
i+1 +K

k
i+1)}

}

[14]

The unknowns of the periodic problem are q̇# and ˙̄d. A mapping P allows to
recover thestandard discretevelocity q̇ from q̇# and ˙̄d :

q̇ = P−1

{

q̇#

˙̄d

}

, [15]

withP such that :
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P : RNdof
u −→ R

Ndof
u

+N
dof

F̄

q̇ 7−→

{

q̇#

˙̄d

}

=

{

q̇−Rel < ∇q̇ >d ·Xd

< ∇q̇ >d

}

,
[16]

where Rel ∈ R
Ndof

u × R
m is a discrete mapping such that the periodic velocity

is given by q̇# = q̇ − Rel < ∇q̇ >d ·Xd, Xd is the discrete position vector,

< . >d: R
Ndof

u × R
m −→ R

N
dof

F̄ is the discrete average mapping over Ω0, m is
the spacedimensionandNdof

u andNdof

F̄
are the number of degreesof freedom of the

discrete velocity q̇ and of the first derivative of the average deformation gradient ˙̄d,
respectively.

At the iterationk + 1, thediscretevelocity and thediscrete freevelocity write :

q̇k+1
i+1 = P−1

{

(

q̇#
)k+1

i+1
˙̄dk+1
i+1

}

, q̇k+1
free = P−1







(

q̇
#
free

)k+1

˙̄dk+1
free







. [17]

The local problem at the contact level is thus solved using the standard NSCD
algorithm without any modification. The two field periodic formulation can then be
seen asasimple extensionat theglobal level of theNSCD algorithm, that is to say the
resolution of periodic FiniteElement problem.

3.2.2. Kinematic relations for frictional contact

Writing interactions behavior in a discrete form requires to define mappings H
between bulk unknowns (q̇, p) and interaction unknowns (see Figure 4) : relative
velocity (U̇) and impulse (R). Considering one interaction (index α) between two
bodies (c anda) and usingclassical kinematic relations, the relativevelocity writes :

U̇α = HT
c

αq̇c −HT
a

αq̇a =
[

HT
c

α,−HT
a

α
]

·

(

q̇c

q̇a

)

[18]

Due to duality considerations, one may write the contribution of interactionα to
theglobal impulse as :

(

pc

pa

)

=

(

Hc
α

−Ha
α

)

Rα [19]

Using linear mappingsH , thedynamic system of equations is rewritten as :

{

U̇α = U̇α
free+WααRα

Wαα = HT
c

αwcHc
α −HT

a
αwaHa

α
[20]
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One can generalizethepreviousform in case of a multi -interactionsituation, sim-
ply by includingan additional contribution:

{

U̇α = U̇α
free+WααRα +

∑

β 6=α WαβRβ

Wαβ = HT
c

αwcHc
β −HT

a
αwaHa

β
[21]

To close theproblem, oneneedsan interactionlaw relatingrelativevelocity to im-
pulse. Numerouschoicesarepossibledepending onthephenomenology of theinterac-
tion, for example, unilateral condition (velocity Signorini condition (Moreau, 1988)),
friction (Coulomb’s law) or cohesion(Jean et al., 2001; Peraleset al., 2006) .

As detailed further, the general traction-sliding-compression interactions presen-
ted in the ’modeling strategy’ (section 2) have to include sliding-compression rela-
tionswhich are causingimpulse conditions. For thesakeof clarity, unilateral frictional
contact laws of Signorini-Coulomb type are presented but other choicescan be made
(e.g. Trescafriction law). These relationswrite :

−RN ∈ ∂IR+
(UN ), [22]

RT ∈ ∂U̇T

(

µ|RN |‖U̇T ‖
)

, [23]

where IK is the indicator function of the set K, µ is the Coulomb frictioncoefficient
andU is decomposed into a normal anda tangential part : U = UNN+UT with N

theunit normal vector of the frictional contact zone.

Theprincipleof theglobal to local mappingandassociated variablesaresummari-
zed in astandard case andin aperiodic casein Figure4 andin Figure5 respectively. In
particular, Figure5 showsthat theperiodic mappingconcernsonly theglobal level of
the algorithm andthat thekinematic relationsandlocal NSCD solver arenot affected.

3.3. NSCD as a domain decomposition method

In classical domain decompositionmethods(DDM) one assumescontiguous sub-
domains and tries to enforce continuity of primal (displacement) and/or dual (force)
interfaceunknows. Considering quasi-static problems, there exist various techniques
to ensure this continuity which differ in the treatment of the interfacebetween sub-
domains. In the following, we consider techniques without subdomains overlapping.
Amongthem one can consider primal Schur-type approaches(where continuity of the
displacement field is enforced at the interfaces) (Doddset al., 1980), dual Schur-type
approaches(where equili brium of interfaceforces isenforced throughLagrangemul-
tiplier) (Magouleset al., 2006) andmixed approacheswhereone tries to achieveboth
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q̇

U̇ R

p

Dynamic equation

Nonsmooth contact problem

Global

Local

HT H

Figure 4. Thestandard NSCD algorithm

{

q̇#

˙̄d

}

q̇

U̇ R

p

{

p

0

}

Dynamic equation

Nonsmooth contact problem

Global

Local

NSCD

periodic FE

HT H

P−1 P

Figure 5. TheNSCD algorithmextended to theperiodic formulation

conditions (Glowinski et al., 1990). Considering dynamical problemsone can poten-
tially usethethreepreviousapproaches. But asmentioned byGravouil et al. (Herry et
al., 2002; Gravouil et al., 2001), in dynamics, the choiceof which kinematic quantity
is continuousat the interface(displacement, velocity or acceleration) isdifficult.

In the case of contact problems various possibiliti es exist. Dureisseix et al.
(Dureisseix et al., 2001) propose an extension of a dual approach (FETI). Alart et
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al. (Alart et al., 2003) propose an approach where contact is embedded in a conti-
nuous domain. More recently, domain decomposition approaches are proposed for
nonsmooth problems, where the continuity condition is enforced through the bulk
model (Nineb et al., 2007; Icetaet al., 2009).

Our purpose in this part is to show that the NSCD method may be written as a
dual-Schur approach where thebasic continuity conditionmay bereplaced byany in-
teraction law. In that case the continuity condition between subdomains isnot written
on thebulk part but throughan interaction law.

For the sake of simplicity we will only consider in the following two domains in
interaction. In the context of thedual Schur formulation onemay rewrite thestandard
discreteproblem ([10] and [18]) involving two subdomains(a andc) :





M̃k+1
a 0 Ha

0 M̃k+1
c −Hc

HT
a −HT

c 0









q̇k+1
a

q̇k+1
c

Rk+1



 =





M̃k+1
a q̇k

a + pk+1
a,free

M̃k+1
c q̇k

c + pk+1
c,free

−U̇k+1



 [24]

where the basic continuity condition of DDM written in velocity (U̇k+1 =
HT

a q̇
k+1
a − HT

c q̇
k+1
c ) is replaced by a more general implicit interaction law

(law(Uk+1,Rk+1) = true). One can compute the solution splitti ng the problem
in two stages :

1) Freemotion





M̃k+1
a 0 0

0 M̃k+1
c 0

0 0 0









q̇k+1
a,free

q̇k+1
c,free

Rk+1



 =





M̃k+1
a q̇k

a + pk+1
a,free

M̃k+1
c q̇k

c + pk+1
c,free

0



 [25]

The freemotion is computed at the global level and is independent of the interac-
tionconditions. It can be computed byany classical FEM library such asPELICANS.

2) Interactionmotion





M̃k+1
a 0 Ha

0 M̃k+1
c −Hc

HT
a −HT

c 0









q̇k+1
a,inter

q̇k+1
c,inter

Rk+1



 =





0
0

(HT
c q̇

k+1
c,free−HT

a q̇
k+1
a,free)− U̇k+1





[26]

Theinteractionmotioncan be computedat thelocal level solvingtwo subproblems
(omittingk+1) :

{

U̇ = U̇free+WR

law(U,R) = true
[27]
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whereU̇free = HT
c q̇c,free−HT

a q̇a,free andW = HT
c M̃

−1
c Hc −HT

a M̃
−1
a Ha,

and

q̇a,inter = M̃−1
a HaR [28]

q̇c,inter = M̃−1
c HcR [29]

The local solver needs the projection of the freevelocity on the boundary of the
subdomainsand theprojection of the inverseof thepseudomass-matrix M̃a or M̃c.

The resulting velocity is :

q̇k+1
a = q̇k+1

a,free+ q̇k+1
a,inter [30]

q̇k+1
c = q̇k+1

c,free+ q̇k+1
c,inter [31]

Note that the DDM problem can be simply extended to the periodic formulation
using the relations [14] and themapping [16].

3.4. Multi domain solver

The classical NSCD approach and its periodic extension rely on a Non Linear
GaussSeidel (NLGS) algorithm to solve theproblem.
The spirit of the methodis the following. Considering, one by one, the local systems
to solve for each contact α :

{

U̇α = U̇α
free +WααRα +

∑

β 6=αWαβRβ

Law(gα,Uα,n,Uα,t,Rα,n,Rα,t) = true
[32]

the contributions due to other contacts (β 6= α) are frozen taking updated values if
β < α or old values if β > α.

Equations[32] can besolved usingany of the followingmethod:

2D context

– An explicit uncoupled resolution if Wαα is diagonal

– A coupled normal-tangent graphintersection(Jean, 1999)

– A pseudo-potential approach (bi-potential) (DeSaxcéet al., 1991)

– Linear Complementarity Problem (LCP) as local solver

3D context

– An explicit resolution if Wαα is diagonal (Renouf, 2004)

– A pseudo-potential approach (DeSaxcéet al., 1991)

– A Generalized Newtonalgorithm (Alart et al., 1991)

– Linear Complementarity Problem (LCP) as local solver
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3.5. Global-to-local strategy and dedicated platform

The corresponding global-to-local strategy is summarized for one iteration of the
Newton-Raphsonalgorithm in Figure6.

Thestrategy restson the local/global levels :

– at theglobal level, theFiniteElement method(includingtheperiodic extension)
is taken into account,

– at the local level, thestandard nonsmooth contact framework isused.

For lower programmingcost, thesoftwarestrategy development retained herewas
not to develop from scratch the entire software but to reuse and extendexisting libra-
ries. It permits to take advantagesof each library update while developing the whole
software.

Thesoftwareplatform, called Xper (’eXtendedcohesive zonemodel andPERiodic
homogenization’) , respects the two levels strategy (Figure6) :

– at theglobal level, the extended FiniteElement methodismanaged bythePELI-
CANSlibrary (PELICANS, 2009). This software, developed bytheFrench ’I nstitut de
Radioprotectionet deSûretéNucléaire’ (I RSN) isatoolboxfor theimplementation of
variousnumerical methodsdedicated to the solution of systems of partial differential
equations. To take into account complex nonlinear constitutivemodels, the library is
coupled with theMatLib library, developed byStainier (Stainier et al., 2003),

– at thelocal level, the complex interactionsbetween bodiesaretaken into account
by the LMGC90 library (LMGC90, 2009), developed by Duboisand Jean (Duboiset
al., 2003). LMGC90 is a platform for the modeling interaction problems including
multi -physics.

For more details concerning the implementation of the software, see the appen-
dix 7.1.

In the following, both the abiliti esof thenumerical strategy andtheXper software
are ill ustrated onfractureof heterogeneousmedia.

4. Application to the fracture of heterogeneousmaterials

4.1. Cohesive zone interaction law

Examples presented deal with fracture of heterogeneous materials. The fracture
model is based on a cohesive/volumetric micromechanical approach involving Fric-
tional Cohesive Zone Models (FCZM). These models rest on coupling traction-
separation interaction law to some frictional contact model. The cohesive-friction
coupling is a key concept of fracture of heterogeneous media : whatever the overall
loading of such a media (including pure mode I loadings), interfaces between phases
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Local

contact increment α

calculation : (Wαγ)
k

calculation : (U̇α)k+1
i+1

calculation : (Rα)k+1
i+1

Global

build : M̃k+1

freevelocity calculation

periodic : mapping

condensation

periodic : mapping

calculation : q̇k+1
i+1

update : qk+1
i+1

q̇k+1
free

H,HT

(Wαγ)
k

Local solver

pk+1
i+1

Figure 6. Global-to-Local coupling : one iteration of Newton-Raphson. In dashed
boxes : periodic case
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with different Poisson ratio are locally subjected to combination of shear and tensile
loading.

The interaction law relating the displacement jump U to the stressR, used to
close the NSCD framework, is obtained introducinga cohesivestress, called Rcoh =
Rcoh

N
N +Rreac

T , in theSignorini-Coulomb problem [22]-[23] (Peraleset al., 2006) :

−(RN +Rcoh
N ) ∈ ∂IR+

(UN ), [33]

(RT +Rcoh
T ) ∈ ∂U̇T

(

µ|RN +Rcoh
N |‖U̇T ‖

)

. [34]

Rcoh = β

(

CNN ⊗N + CT

UT ⊗UT

‖UT ‖2

)

·U [35]

whereN is theunit normal vector of the cohesive zone,CN andCT denote respecti-
vely the initial normal and tangential stiffnessof theperfect interface(MPa/m).

Thesurfacevariableβ, initially introduced byFremond(Fremond, 1987),playsthe
role of a surfacedamage variable. The evolution law of this variable is governed by
Equations[36] and [37], where the functiong describes thesoftening processleading
from perfect interfaceto crack (β = 1 : the interfaceis undamaged, 0 < β < 1 : the
interfaceispartially damaged andβ = 0 : the interfaceis fully damaged) :

β = min(g(‖U‖), g(‖U‖max)), [36]

g(x) =



















β0 if x ≤ δ0,

β0
δ0
x

(

1−

(

x− δ0
δc − δ0

)2
)

if δ0 < x < δc,

0 if x ≥ δc,

[37]

where δ0 =
Rmax

2

(

1

CN

+
1

CT

)

, δc =
3

2

(

w

Rmax
+

δ0
6

)

, 0 ≤ β0 ≤ 1 is an initial

surfacedamage,w is a referencefracture energy (J /m2), Rmax is themaximum value
of the cohesivestress(MPa), ‖U‖max is themaximum value reached by‖U‖ during
thefractureprocess. In a2D case, Figure7 showsrespectively (a) thenormal behavior
(with ‖UT ‖ = 0) and (b) the tangential behavior (withRN constant) associated with
theFCZM [33]-[37].

This Frictional Cohesive Zone Model takes into account the progressive damage
between two bodies and the post-fracture frictional contact on the created crack lips.
Different modelscan be used accordingto thematerial (brittle, ductile) by specifying
thedifferent evolutionlaws[36]-[37] (Michel et al., 1994; Tvergaard, 1990; Alfanoet
al., 2001; Peraleset al., 2006).
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0

RN

Rmax

UN

δ0 δc

(a)

0

‖RT‖

Rmax

‖UT ‖

δ0 δc

µRN

(b)

Figure 7. The 2D FCZM : (a) normal behavior (UT = 0) and(b) tangent behavior
(UN = 0, RN constant)

4.2. Examples

In what follows, the finite element discretization is based on linear displacement
triangular elements that are arranged in a "crossed-triangle" quadrilateral pattern. The
analysisconsiders2D plane-strain conditions.

The considered miscrostructure is composed of a metal matrix (Zircaloy-4) and
inclusions (δ-hydrides). The Zircaloy-4 behavior is assumed to be elastoplastic (J2
plasticity, YoungModulusE = 99GPa, Poisson’s ratio ν = 0.325, Yield in tension
σ0 = 450MPa, Hardening ModulusHY = 850MPa) (Balourdet et al., 1999; Ca-
zalis et al., 2005) and hydrides to be neo-Hookean (E = 135GPa, ν = 0.32)
(Yamanaka et al., 1999; Yamanaka et al., 2001). We assume that the Zircaloy-4 and
the hydrides inclusions have the same density ρ = 7800kg/m3. The FCZM coeffi-
cients of Zircaloy-4, zirconium hydrides and Zircaloy-hydride interface are respec-
tively : CZr

N = 2 × 1018Pa/m, wZr = 0.5J/m2, RZr
max = 1GPa, CZrH

N = 2CZr
N ,

wZrH = 0.8wZr, RZrH
max = 1.25RZr

max, CZr−ZrH
N = 2CZr

N , wZr-ZrH = 0.001wZr,
RZr-ZrH

max = 0.045RZr
max, if the interfaceis considered as ’weak’ or wZr-ZrH = 1000wZr,

RZr-ZrH
max = 45RZr

max if the interfaceis considered as ’strong’ .

Moreover, we assume alow frictioncoefficient µ = 0.05 andsame compliancefor
thenormal and tangential behaviorsCN = CT .

ThePELICANSlibrary managesthefinite element part of theproblem : thestruc-
ture geometry, the inclusions distribution and morphology, the boundary conditions,
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the periodicity, the discretization and the global solver. The LMGC90 library takes
into account theFCZM between each body. Thematerial propertiesof thematrix and
the inclusionsaremanaged by theMatLib library.

4.2.1. Body-to-body interaction : influenceof interfacepropertieson the fracture
of a brittleheterogeneousmaterial

This example deals with the fracture of a bimaterial. Each mesh is considered
as an independent body (body-to-bodyinteraction, Figure 1 case). In particular, the
influenceof theinterfacebehavior onthefractureof metal matrix compositesis inves-
tigated. The considered composite is representativeof hydrided Zircaloy-based alloys
at high burnupwhich compose cladding of nuclear fuel rodsafter many years in Pres-
surized Water Reactor.

The structure is composed of a metal matrix (Zircaloy-4) and rectangular aligned
inclusions (δ-hydrides). The structure geometry is a square with length L = 50µm.
Horizontal velocity boundary conditions on the left and right vertical faces are pres-
cribed (respectively V = −1m/s and V = 1m/s). A precrack is introduced at the
bottom perpendicular to the loading(Figure8).

Two casesof bondingstrength valuebetween thetwo phases, strongandweak, are
considered.

Figure 8. Boundary condition (arrows), matrix (light gray), inclusions (dark gray)
and precrack (white line)

Figure9showsthefracturefeaturesfor theweak andstrongmatrix/inclusioncases.
The crack path is significantly influenced by the interfacematrix/inclusions bonding
strength. For the weak interfaces, the cracks propagate inside the matrix and along
the inclusionsboundariesdue to the formation of microcracksalongweak interfaces.
In case of strong interfaces, the cracks propagate throughthe inclusions due to the
highcohesivestrength with thematrix. Theseresultsare consistent with the following
criterion (Raous et al., 2002; Raous et al., 2001; He et al., 1989; Siegmund et al.,
1997; Martin et al., 1998; Xu et al., 1998) : the transition between deflection and
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penetration occurs for a ratio of interfacefracture energy wint to inclusion fracture
energywi in therange [0.013, 0.25]. In other words, whenwint < 0.013wi thematrix
crack is deflected at the interface(case of weak interface) ; when wint > 0.25wi the
matrix crack propagatesthroughthe inclusion(case of stronginterface).

Figure 10 shows the evolution of the stressduring cracking process. During the
loading, the stressincreases linearly. When the precrack propagates from the matrix
into thefirst inclusion, thestress startsto decrease. In caseof stronginterfaces, it keeps
decreasing rapidly due to the propagation of the cracks throughthe inclusions while
in case of weak interfaces, it increasesagain due to the formation of microcracksand
their coalescence(precrack isarrested at thematrix/inclusion interface).

The overall energy release rate decreases with increasing interfacial bonding
strength. The energy release for strong interfaces is lower than for weak interfaces.
These results show the importanceof the interfacebonding strength and, in conclu-
sion, a strong interfaceis more deleterious than a weak interfacefrom that point of
view.

(a) (b)

Figure 9. Rupture featuresof the two cases : weak (a) andstrong(b) interfaces

4.2.2. Body-to-body with periodic boundary interaction : fractureof a ductile
heterogeneousmaterial

Since the previous example can be considered as the computation of a structure
behavior, we consider now the same type of heterogeneities but from the point of
view of the material behavior. Moreover, a plastic deformation inside the matrix is
considered in order to underlinethe abiliti esof theMatLib library.

This example deals with the fracture of a bimaterial with periodic conditions and
without precrack (body-to-bodyinteraction, Figure 1 case, with periodic conditions).
The example is the same as the previous one (Section 4.2.1), except that the boun-
dary conditionsare periodic and there is no precrack in the structure. In addition, the
bondingstrength valuebetween thetwo phases isassumed to behigh. A macroscopic
strain gradient isprescribed alongthehorizontal direction.
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Figure 10. Stress(MPa) vs strain (%) for thetwo cases: weak (solid curve) andstrong
(dashed curve) interfaces

Without any initial precrack, a multi fracture initiates in the inclusions, especially
at the locii of high concentration of inclusions (Figure 11). Then, cracks propagate
through growth andcoalescence, leading to the failureof thestructure.

Figure 11. Initiation of cracks (white line) in the inclusions

Figure12showstheoverall stress-strain curve. Theoverall behavior isductileuntil
an uniaxial stressabout 530MPa (the yield stressof the matrix being 450MPa) :
as expected, the presence of elastic inclusions with higher strength than the matrix
increases theoverall yield stress.
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Figure 12. Stress(MPa) vs strain (%) for theperiodic domain

4.2.3. Cluster-to-cluster with periodic boundary interactions: intergranular fracture

This example deals with intergranular fracture in order to show the abilit y of the
method in a cluster-to-cluster strategy. Each grain is a meshed domain related to
each other with FCZM (cluster-to-cluster interaction, Figure 2 case). The conside-
red structure is composed of metal grains (Zircaloy) and two multi -grains inclusions
(δ-hydride). The structure geometry is a periodic square with length L = 100µm
(periodic boundary interaction, Figure3 case), seeFigure13. A periodic Voronoï tes-
sellation isused. A macroscopic strain gradient rate isprescribed alongthehorizontal
direction.

The bonding strength value between hard grains and soft grains is assumed to be
weak.

Figure 13bshows the fractured periodic structure. Again as expected, the cracks
initiate at the boundariesof hard grains. Two main cracks propagate alongthe boun-
dariesof soft grainsand they join together to form a single one, leading to the failure
of thematerial.

Figure14showstheoverall stress-strain curve. Theoverall behavior isbrittle due
to the weak bondingstrength of thegrain boundaries.
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(a) (b)

Figure 13. Periodic meshed bodies : shades of gray represents the grains and the
inclusionsare delimited by thewhite borders (a) andfractured cell (b)

Figure 14. Stress(MPa) vs strain (%) for theperiodic domain
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5. Conclusion and perspectives

This paper presented a numerical framework for the modeling of dynamic crack
propagation in heterogeneous materials. The underlying model rests on a multibody
approach and complex interaction behavior in a periodic extension of the standard
NonSmooth Contact Dynamics framework. This framework has been rewritten as a
dual Schur approach with complex interaction laws between subdomains instead of
“basic” continuity conditions. It can be seen as an extension of the classical nonover-
lapping domain decompositionmethods. In particular, it allows to model complex in-
teractions, discretemedia, periodicmedia, parallelism or multiphysics. The associated
developed software has the following capabiliti es : dynamic, finite strain, non-linear
behaviors, periodic FiniteElement, crack initiationand propagation, nonsmooth post-
fracture behavior. Two examples dealing with the influence of the matrix/inclusion
interfacesoncrack propagationandintergranular fracture in aheterogeneousmaterial
havebeen presented to ill ustrate the abilit y of Xper and of themodelingstrategy.

This strategy and Xper code can be applied to nuclear safety, for example, to de-
terminate the fuel behavior at high burnupin a nuclear reactor or the ageingeffect on
thebehavior of nuclear power plant equipment.

A natural extension of theproposedmodelingframework isparallelism. Each body
can be consideredasan independent meshedsubdomain. In that case, thesubproblems
aresolved on parallel computers. An another applicationismultiphysicsin which each
mathematical problem isposed onadifferent domain. Furthermore, one can introduce
complex interactions law between subdomains.
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7. Appendix

7.1. Overview of the software implementation

The architecture design of the software is based on object oriented techniques.
Object oriented programming(OOP) providesa clear modular structure for programs
and makes it easy to maintain and modify existing code. The fundamental concepts
are (Martin, 1996; Martin, 2003; Meyer, 1997) : inheritance, encapsulation, abstrac-
tionand polymorphism. Oneof theprincipal advantagesof OOPtechniquesover pro-
cedural programming techniques is that they enable programmers to create modules
that do not need to be changed when a new type of object is added. A programmer
can simply create anew object that inheritsmany of its featuresfrom existing objects.
Thismakesobject-oriented programseasier to modify.

For low programmingcost, thestrategy retained hereisnot to developthesoftware
’fr om scratch’ but to reuse andextendexisting libraries. It permits to take advantages
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of the libraries updates while developing the whole software. The framework can be
splitted in two distinct levels (seesection 3) : a global Finite Element resolution (in-
cluding periodic extension) andalocal nonsmoothcontact resolution. TheXper archi-
tecture respects this local/global levels by the coupling of threelibraries : LMGC90,
PELICANSandMatLib. The librariesaredescribed in the following.

7.1.1. Existing libraries

7.1.1.1. LMGC90

TheLMGC90library (LMGC90, 2009) isdeveloped byDuboisandJean (Dubois
et al., 2003). The software is an open platform under the CECILL L icense (CECILL,
2005) for modeling interaction problems between elements including multi -physics.
It allows to model : granular material made of rigid or deformable bodies and with
complex interactions(contact, friction, cohesion, wear, etc.), discretemedia, masonry,
fracture, etc. Themodelingapproach isbased onan hybrid or extendedFiniteElement
Method(FEM) - DiscreteElement Method(DEM), using variousnumerical strategies
such as Molecular Dynamics (MD) or NSCD. In particular, the NSCD algorithm al-
lows to take into account cohesive zone modelswith contact and friction (seesection
3 and 4.1).

Theprogramminglanguageused isFortran90. AlthoughFortran90isaprocedural
programming language, LMGC90 is implemented in the form of modules using Ob-
ject Oriented Programming. In particular, the code is open for extension and closed
for modification, it respectsthe’Open-Closed’ principle(Meyer, 1997). LMGC90can
beused asa library or asa standalonesoftware throughamacro language.

7.1.1.2. PELICANS

The PELICANS library (PELICANS, 2009), developed by the French ’I nstitut de
Radioprotectionet de Sûreté Nucléaire’ (I RSN) under CECILL-C License (CECILL,
2005), isa toolbox for the implementation of variousnumerical methodsdedicated to
thesolution of systemsof partial differential equations(PDEs).

The PELICANS platform is written in standard C++ and is object-oriented. The
constitutive classes are classified in two groups : ’plug-points’ and ’service pro-
vider’ . The ’plug-points’ classes play the role of mother classes and permit user
classes to plug into the platform. The ’serviceprovider’ classes make functionaliti es
available to users. The platform respects the Component-Based Development prin-
ciples, such as the Design by Contract, command-query separation, Liskov substitu-
tion principle, inheritance, namingandself-documentationissues(Martin, 1996; Mar-
tin, 2003; Meyer, 1997).

7.1.1.3. MatLib

The MatLib library is developed by Stainier (Stainier et al., 2003). MatLib is a
material constitutivemodels library. It is based ona variational formalism of thermo-
mechanical constitutiveupdates(Ortiz et al., 1999; Yanget al., 2006). Thisformalism
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usescombinationsof thermodynamicpotentials, naturally involvingan object oriented
structure. The architecture permits the creation of new models from existing models
and their implementation in the library. The models are accessible to users througha
commoninterface. The library iswritten in C++.

7.1.2. Softwarearchitecture

Xper relies on the coupling of the three libraries (seeFigure 15) using OO and
Mixed Programming.

In the current version of the code, theLMGC90library playstheroleof themaster
program in the coupling. It manages, in particular, the time discretization and the
Newtonloops. In thefuture, themaster programwill be an interpreted programwritten
with high-level and OO programming language like Python and independent of the
threelibraries.

LMGC90

PELICANS

MatLib

NSCD + FCZM
b

b

bb b

multibodyFE + #

Constitutive law b

Xper

timediscretization

newton loop

Figure 15. Roleof each library

The choiceof themaster program beingmade, each library hasa clear mechanical
meaning(Figure15) :

– PELICANS managestheperiodic finite element at theglobal level,

– MatLib providesthe nonlinear constitutivemodels(global level),

– LMGC90managesthesurfacebehavior between thebodiesat the local level.

The volumetric behavior is obtained by the coupling of the finite element library
developed from PELICANSandthe constitutivemodelslibrary MatLib. Sincethetwo
libraries are written in C++ language, the coupling is strong. For example, a MatLib
object can be instantiated from a PELICANS class. A PELICANS-MatLib interface
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permits to managetheMatLib objects in the library developed from PELICANS, pre-
serving the independenceof each library.

The surfacebehavior is managed by LMGC90. The coupling between LMGC90
and PELICANS needs Fortran90/C++ Mixed Programming techniques. Two inter-
faces are developed for passing parameters from C++ to Fortran90and back, one in
PELICANSand theother in LMGC90.

This strategy permits to compile all the libraries independently, and then to link
them.

Note that minor changeshavebeen madein theLMGC90andMatLib libraries.

7.1.3. Xper software

Themain featuresof theXper software aresummarized as follows :

– dynamics,

– finite strain,

– non-linear behaviors,

– heterogeneousmaterials,

– periodic Finite Element,

– complex surfacebehavior (i.e. contact and friction),

– mixingFEM-DEM.

Note that for the preprocessing, the postprocessing and the linear algebra, the in-
ternal capabiliti es of the PELICANS and LMGC90 libraries are completed by the
couplingto external software. Thesefunctionaliti esare thusavailable in thesoftware.

To reducethe highcost of softwaredevelopment, existingcodeshavebeen reused
instead of developingthem ’fr om scratch’ . Accordingto this strategy, theimplementa-
tionandthevalidation of theXper project, includingall the featurespresented, repre-
sents 1 man-year. This is a relatively low development costs compared to developing
entirely the featuresof the libraries in a new platform.
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