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ABSTRACT. This paper is devoted to a brief presentation of recent research results upon
structural mechanics code coupling in transient analysis. The domain is supposed to be
decomposed into a series of sub domains which are treated independently with their own time
integration scheme and or their own code. The paper gives a general method which allows to
couple these subdomains. The proposed method is rather general and based upon a weak
vision of dynamic equilibrium equation. This new vision allows to design a coupling strategy
which ensure by design that no energy is introduced or dissipated in the interfaces between
the sub domains. The proposed coupling method hence does not perturb the quality of the
time integrators of each sub domain. This also allows to develop a general code coupler for
transient dynamics. Two examples are given to illustrate the paper.

RESUME. Cet article décrit les derniers résultats de recherche obtenus par I’équipe sur le
theme du couplage de codes en dynamique des structures. Le domaine de calcul est découpé
en plusieurs sous-domaines qui sont calculés indépendamment chacun avec leur propre
algorithme d’intégration temporelle. Ce papier décrit une méthode qui permet de coupler les
codes en assurant une nullité stricte de [’énergie d’interface. Le travail repose sur une vision
faible de l'intégration temporelle des équations d’équilibre, qui permet de concevoir un
algorithme qui vérifie la nullité de I’énergie d’interface. La convergence et la stabilité des
algorithmes des sous-domaines sont préservées par le collage proposé.

KEYWORDS: transient dynamics, sub domain coupling, finite elements.

MOTS-CLES : dynamique transitoire, couplage de sous-domaines, éléments finis.

DOI:10.3166/EJCM.19.11-24 © 2010 Lavoisier, Paris

EJCM - 19/2010. Giens 2009, pages 11 to 24



12 EJCM 19/2010. Giens 2009

1. Introduction

The coupling of subdomains is an active research domain these last ten years. Af-
ter a rather long period of uncertainty on the possibility to develop such a method,
the FETI method ((Farhat, 1993),(Farhat, 1994)) showed the importance and interest
of dual Schurr methods for sub domain coupling. Alternative methods as the Latin
method (Champaney, 1997) (Ladeveze, 2003) use an alternative efficient way to solve
transient sub domain couplings using a weak space time vision of the interface gluing :
the originality for time variable is the use of a non incremental time integration. The
space interfaces are glued using a mixed force and displacement constraint. The Ar-
lequin’s method (Dhia, 1998) uses patches which are added onto the coarse mesh to
get fine space time solutions within the patch domain. A Gravouil ((Gravouil, 2001),
(Combescure, 2002)) extended the FETI concept to show that one could couple sub
domains each of them using any Newmark scheme with a perfect energy conservation
and he also proved the stability of the coupling algorithm : the key ingredient was
the choice to write the coupling equations on the velocity variable. He proved that if
the time step is uniform in all the sub domains the interfaces energy is exactly zero
which ensures the optimal quality of the coupling. He also showed that when time
steps are different in the different sub domains the proposed coupling scheme remains
stable but dissipates some energy at the interfaces. The practical examples neverthe-
less show that this dissipated energy remain small (less than a few %). This interface
dissipation deteriorates the convergence rate of the time integrators in each sub do-
main. For instance if each subdomain has a second order time integration scheme the
coupled problem has only a first order convergence rate. Prakash (Prakash, 2004) re-
cently proposed an improvement of the scheme which ensures no interface dissipation
in case of incompatible time steps but the proposed method is complex to implement
and heavy in terms of a computaytional costs. Morevoer it is limited to Newmark
integration schemes which have limited quality in case of non linear applications.
This paper gives a general framework which allows to couple any one step integration
scheme with incompatible time steps. The paper is organised in three parts : the first
sections gives the basic theoretiacl framework of the coupling formulation, the second
shows its application to some specific integration schemes and the third is devoted to
application examples.

2. Weak formulation of dynamic equilibrium

Let us now describe the weak formulation of dynamic equilibrium of mechanical
systems. We first consider one sub domain, then write the link conditions and extend
the formulation to sub domain coupling.
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2.1. One sub domain

Let us integrate the virtual power on the time slab [0, ¢]. One gets :

W () = f§ (= fo Tr [2(P, ) ew™)] do2
+(fou' ™ £ (P = pin(P7)] a) 3 VO* (1]
+ (fpq, v* " FdS) dr = 0.

In the preceding Equation [1] €2 is the domain, v* the virtual velocity field, P the
considered point in the domain, 7 the integration time, ¢ the stress tensor, p the specific
mass, 4 the acceleration, f”"l the body forces, and F the prescribed forces on the
boundary. If one now introduces a spatial discretization (e.g. Finite elements) one
gets :

W (t) = /0 v (1)T [F (1) 1 M () — F (7)] dr 2]

In Equation [2] Fint ig the internal force vector, F*t the external loads, M the mass
matrix. One now imposes the kinematic constraints by the means of Lagrange multi-
plier link forces A (7). Equation[2] becomes :

Wi (t) = W*(t) + /0 (v ()TN (r)dr + /O A ()T v* (r)dr [3]

Let us observe that the link forces have a similar role than the external loads and that
their dual variable is the velocity field.

Let us now observe the time integration of Equation [3] on a finite time step h (h =
tn+1—tn). Letus denote A () the finite increment of a variable x on time step h. The
contribution of time step h into Equation [3] is :

{ AW* = J.[lf:{»l (v* (r)" [Fint () + Mii (1) }

(4]

SF (1) £ A (7)
+2* (1) v (r)dr

If we now suppose that the time functions Fint (7), i (1), F** (1), v (1) et A (1) are
constant in the time step h, the equilibrium check is equivalent to the minimization
of the virtual power increment AW*. The equilibrium equations are not verified in a
strong sens on the whole time interval h, but only in a weak sense. Nevertheless this is
the basic hypothesis of all usual time integrators (Newmark (Newmark, 1959), HHT
(Hilber, 1977), Simo(Simo, 1991) , Krenk (Krenk, n.d.) et Verlet (Verlet, 1967) (in
its velocity presentation the Verlet’s integration is identical to the Explicit Newmark
integration scheme)). The link forces A shall be supposed to be constant within the
time step h. The mean value theorem allows to state that if a function is continuous
on the time step h there exist an (unknown) instant ¢,,+g € [ty,, tn1] Within this time
interval for which the dynamic equilibrium equations are exactly verified. The precise
definition of this instant depends on the type of integration scheme. Let us now denote
T the mean value of variable x. One has :

AWFE = {]’,[1")’*1 v (’r)ll'(17'1| [Fint 4 MT — Foxt 4 L5] + {_),{;’;*1 v(nT m} (LX) [5]
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2.2. Two sub domains coupling

Let us couple two sub domains A and B glued by interface I'. The link conditions
shall impose the same velocities on both sides of the interface. Let us set :

Vg = LAVA
VE = LBVB

(6]

The increment of virtual power on time step h writes :

@B = @AW" + @) 7 + @) [7]
The power variation associated with link forces is :
(AW~) . = h(LaVa + LeVE) Nag [8]

Equation [8] implies that if the velocities verify the kinematic constraint the variation
of link power is zero and the inverse assertion is also true. One immediately concludes
that this formulation ensures that interface energy is strictly zero. The system energy
is then exactly equal to the sum of the energies of the parts.

This simple idea is the key of the proposed method.

—remark 1 : No hypothesis has been done on the time integration scheme in each
sub domain : it can be then concluded that the proposed method is very general and
does not depend on the time integration scheme provided that it permits to pass from
state n to state n+1 in one step.

—remark 2 : The stability of the system is only governed by the stability of each
part because the interface energy is exactly zero.

—remark 3 : No hypothesis has been done on the time variation of the link forces.
They are piecewise constant functions on each time step. Their value at time steps t,,
for instance must be interpolated between the values on time slab n-1 and n.

—remark 4 : The time weak link conditions is such that the time histories of dis-
placement fields on both sides of the interface may be different but their mean value
is the same on each time step. This is due to the following equation :

tnt1
/ (Lava (1) + Lgvg (7)) dr = 0. [9]
t

n

—remark 5 : The extension of the proposed method to any number of sub domains
is obvious though rather technical.
3. Time integration schemes

Let us now present a unique vision of all usual time integrator (HHT, Newmark,
SIMO, Krenk and Verlet). The incremental form shall be presented with the velocity
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variable. The incremental dynamic equilibrium equations at time step n+1 (including
link forces) write :

(hl—vM—i—hg (1+a) K) Av +LTN = nf, 1 + pf,
—(n+p) Kup, —h(1+a)Kv,
H=w (A1) M+ (14a) (3~ 3) 1K) a, 1o}

LAv=0

5 parameters which allow to define any scheme in the same format are defined in Table
1:

integrator type | HHT | Newmark | SIMO | Verlet | Krenk
o o 0. 0. 0. 0.
B g B i 0. i
7 7 7 > | 2 [ 2
n 1+a 1 1 1 1
I -« 0 1 0 1

Table 1 — Parameter values for any time integration scheme

The equivalent stiffness K, writes :

K. = M-+ (1+a) 2nK 1]
vh Y

The equations system [22] becomes :

I SRR ERIIR S -

where

[13]
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AU= | Au | , A [14]
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and
nfnJrl + ,Uffn Vn
F = 0 , Up= | u, [15]
0 anp
—(14+a)hK —(n+mK (,,7“)[(%71)M+(1+(y)(/17 -;L)h?x]
N = hI 0 (3 —»5)n21 [16]
o o 1y

The displacement increment is the sum of a free part (computed without link force)
and of a link displacement due to the constraints (links) applications :

AU = A[Ufree + AUlink [17]

One uses recurrence formulas to step from state n to state n+1. These formulas
except for Krenk write :

1
Upt1 = Up + hvy, + (5 - 6) h? ap + ﬂhQ An+1 [18]

Vp4l = Vp + (1 - 7) han + 7h Ap+1 [19]

where v and [ are the usual Newmark scheme parameters. For Krenk’s scheme these
recurrence equations are :

h
Upt1 = U, + hvy, + §Av [20]

Vil =V + AV [21]

The stability conditions of HHT scheme is a known function of «, 3 and ~ values
((Geradin, 1997)). No stability demonstration is available for non linear applications.
Simo and Verlet have the same stability properties as Newmark for linear applications
but these first two schemes are also proven to be stable for non linear applications.
Krenk has the same stability properties as Simo scheme.

4. Sub-domain coupling

Link forces have to be added on the common boundaries to “glue” the subdomains.
They are described on Figure(1). Each sub-domain (or code) k uses its own integration
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flty

Figure 1 — Sub-domain gluing

scheme k. The link forces are Lagrange multipliers. The equilibrium equations for sub
domain k are given by :

(72 M+ h2 Ky ) AVF + LTX = il + ikt
— (i + pu) Kgu, — hKgvy [22]
+ ((nk = k) (;_k - 1) My, — (5 — B) thk) ay

Let us now study the coupling between sub domains A and B having the same time
step h. In a second step one shall present the case for which the time steps are different.
4.1. Same time step

The time steps are the same but the time steps are different. One has then to solve :

(M + B2 (14 0a) K ) AVA + LEX = nafil ) + pafyd
—(na+pa)KauZd —h(1+aa)Kavi
+ (14 — p1a) KL - 1) Ma = (1+aa) (%3 —Ba) hQKA] a

YA

(h,lmMB-Fh% (1+aB)KB) AvP -I-LEX: annB-i-l +MBan [23]
— (g +pB)KpuZ —h(1+ap)Kpv?
+(nB — 1B) KL - 1) Mg — (1 + ag) (£ - 3p) hQKB:| ab

B

LAAVA + LBAVB =0
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The matrix expression is then :

) y . Ny 0 0 UA
{‘: :éHﬁ;;‘}:{;é} | o np ol| Uk
ta ! 8 Ls Lg O 0

The same method as for a single sub domain can be applied. One solves the “free”
equilibrium for each sub domain : one hence gets the “free” kinematic quantities. One
then compute the Lagrange multiplier which enforce the kinematic continuity. One
then computes in each sub domain the link kinematic quantities which are added to
the “free” ones to get the problem solution. Steps 1 and 3 are native parallel.

4.2. Different time steps

One shall suppose that time step of sub domain A is an integer multiple of the one
of sub domain B :

hA = th [24]
Let us consider j one of the time steps of sub domain B defined by (j € [1,m — 1]).
Letus set :
. . (+Dhp
Ax = (xj41 — Xj), X= / x(1)dr [25]
jhs

=7
Let us now suppose that the Lagrange multiplier (link force) Ap is constant for all
sub steps h p. Its value is denoted a A g and is constant during time step h 4. This leads
to:

Awigerfece — [ (avh) L + 3 (avP) LE | X [26]

m
j=1

The kinematic constraints on the velocities write :

LAAVA + LBAVB =0 [27]
which also writes :
LaAvA +Y LpAvP =0 [28]
j=1

This leads to a zero interface work. For each macro time step the equilibrium equation
is:

K4AUA + LI + N,UA =Fy [29]
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For each micro(small) time step j the equilibrium equation is :
BA (UP) + LEX + NpUP =Fp [30]

The generalized unknown vector (A[U;-Ee and [Uj-3 ) for each small time step on sub
domain B are simply the summation of preceding (j-1) sub step vectors :

j—1 Jj—2
AUP =) " AUP and UP =UF + ) AUP [31]
i=1 i=1

After some lengthy calculation one get the following matrix system to solve :

[ &% o 0 0 0 o | L ][ avP T r B ownguB ]
Np K 0 o0 o o [ L% avg rB _ npuB
Ng Np K§ O o o L% av¥ B ol
_ : [32]
N Np Np Np k| o |[LE avB B
) o ) ) o [ =% [ % AUS Fim — 1A
| " Tz Lp Lp Lp Lp | La o | | x | L —LaUp —Lply

This manner to express the problem shows that the implementation is not very dif-
ficult. One observes that to get the free kinematic quantities one performs one step
in sub domain A and in the meantime one performs m successive resolutions in sub
domain B. The free solution increment on sub domain B is simply the sum of the m
sub increments. One then solves the interface problem to get the link forces between
the sub domains. One finally computes the so called link kinematic variables in the
same manner as for the the free quantities. This algorithm is naturally parallel and no
communication between A and B is necessary during the sub steps. This method does
no generate any interface energy during the large time step even in case of incompa-
tible time steps.It is simpler than the Prakash method. It is also more general because
it applies for any one step time integrator.

5. Application examples

5.1. The plate case

One considers the wave propagation in a square plate of side L = 1. The Young
is E = 1, the specific mass is p = 1. The Poisson’s ratio is i = 0.3. The loading is

a step load applied to the top right corner of the plate. The plate is fixed at its right
bottom corner.
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Figure 2 — 20 sub domains partition with 5 different integration schemes ( the type of
integrator is displayed in each circle)

The mesh used 4 node finite elements in plane strain. Figure (2) shows the sub do-
main decomposition each of the having its own time step. The scheme parameters
are given in Table 2. 5 time integrators with 5 different time steps are combined :
h; = m; hy Vi € {1..5} the smallest one being h; = 0.016. Let is also observe that
spatial meshes are incompatible at the interfaces : a kinematic interface continuity
constraint is chosen here. The computation uses 100 small time steps. The interface
work value (Figure 3) is about 107!, The total strain energy being close to 1 one
observes a zero interface energy.

Scheme n° «a y B
1 0.0 | 0.5 0.25
2 0.0 | 0.5 0.66
3 0.0 | 0.6 | 0.3025
4 —-0.2 | 0.7 0.36
5 0.0 | 0.55 | 0.27565

Table 2 — Parameters used in the simulation, «, v and 3
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my | M2 | M3 | M4 | M5

1 2 4 8 16

Table 3 — Time step ratios used

x107"

Figure 3 — Interface Work W;opa1

5.2. A Pipe in elasto plasticity

A pipe meshed in shell elements is the subjected to a step bending load of 210° N
at one extremity and clamped at the other one. The pipe has a radius of 1m and a
length of 8 m it is 0.5cm thick. It is stiffened by 4 equally spaced axial and 4 radial
stiffeners placed every 2m the first and last one being at 1m from the extremities.
All stiffeners are 0.1m high and 0.5cm thick. Figure[4) displays the pipe. It is made of
steel (Young’s modulus 200000MPa, Poisson’s ratio 0.3, Yield stress 200MPa, density
8). It is meshed with DKT shell element and has about 8700 nodes. It is decomposed
in six subdomains.

The black and white subdomains (close to the clamped part) are computed using the
average acceleration Newmark scheme. The two grey subdomains (in the middle of
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Figure 4 — Mesh of the pipe and its sub domains

the pipe) use on the one hand the mid point integration rule and on the other hand the
Krenk’s integration scheme. The material is supposed to be linear elastic in these 4
sub domains. The two other subdomains (close to the loaded part) are computed using
the dynamic explicit Newmark time integrator and are non linear. The 4 implicit sub
domains use a time step which is 100 times higher than the two explicit sub domains.
The results are displayed in Figure(5) for m=100. The response is rather good and
the interface energy has been computed to be less than 1010 of the maximum strain
energy.

6. Conclusion

This papers gives a simple method to construct assemblies of time integrators
which do not dissipate at the interface. It relies on a simple basic weak vision of time
integration of equilibrium equations. The schemes allow to have some freedom to the
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Figure 5 — Results of sub domain pipe computation with m=100

kinematic interface variables which are not identical during the whole time step. These
schemes can be extended to non linear dynamic computations. One should study with
more care how does this type of interface treatment behaves in the frequency domain.
For instance which frequency distortions this type of interface treatment induces.
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