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ABSTRACT. This paper describes the Reduced Order Modeling (ROM) for fluid rigid body
interaction problem and discusses Proper Orthogonal Decomposition (POD) utilisation. The
principal difficulty for using POD being the moving domains, a referenced fixed domain has
been introduced. The POD has been applied for the velocity field obtained on the fixed
domain. Then a method to reduce dynamical system for rigid body fluid interaction has been
developed. This method consists in treating the entire fluid-solid domain as a fluid. The rigid
body has then been considered as a fluid, by using a high viscosity which can play the role of
a penalisation factor of the rigidity constraint. The fluid flow problem is then formulated on
the reference domain and POD modes have been used in the weak formulation.

RESUME. Ce papier décrit la réduction de modéle pour les problémes d’interaction entre un
fluide et un solide rigide. La méthode de réduction de modéle utilisée ici est la décomposition
orthogonale aux valeurs propres (POD). La principale difficulté d’application de la POD
étant liée au caractére mobile des domaines, un domaine de référence est utilisé. La POD est
alors appliquée au champ de vitesse dans le domaine fixe. Ensuite une méthode de réduction
de modele pour les problemes d’interaction fluide-solide rigide est introduite. Cette méthode
considere [’ensemble du domaine fluide-solide comme un domaine fluide. Ainsi le solide
rigide est considéré comme un fluide par I’intermédiaire d’'une forte viscosité, qui joue le réle
de facteur de pénalisation de la contrainte de rigidité. La base POD est alors utilisée dans la
formulation faible et permet d’obtenir un systéme dynamique réduit.
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1. Introduction

Using computational models in order to predict Fluid Structure Interadion (FS)
phenomenonis today widespread. However, the computationd cost can be an impor-
tant limiting factor and consequently to reducethe computational time is an important
issiein fluid mechanics.

In the present paper, we study reduced order modelling (ROM) in these contexts.
The ROM based ona projedion o the problem’s equations onto a basis obtained by
a first computation is considered, this makes the building of ROM quite expensive.
The main oljediveisto use the constructed ROM in shape optimisation for a set of
parameters diff erent from those used to build them, or, another example, for alonger
time period than the first computation. The st of the building o ROM would be
also compensated. It would be dso interesting for coupged problems if the reduced
model which has been constructed for the phenomenawhich have alarger time scde
is olved with the smaller time scde. Ancther example deds with adive control or
stability study.

The most well-known technique in fluid mecdhanics is the Proper Orthogoral De-
composition (POD). This method hes been succesfully applied in fluid structure in-
teradion for small displacements of the structure (Lieu et al., 2006 Anttonen et
al., 2003. For bigger displacaments, Liberge et al. (Liberge, 2008 Liberge et
al., 2007 have proposed an adaptation o the POD method wsing a multi phase for-
mulation. An overview of this methodsis presented in sedion 3

We propose in this article an extansion of the method proposed by Liberge et al.
(2007).

Firstly, this paper recdl s the well-knawn POD method Next, it explainsthe con-
straint of applying POD in FS domain and also proposesasolutionto buld low order
dynamicd systems. At last, the method proposed is applied for atypicd case of FS
with arigid solid domain.

2. Theproper orthogonal decomposition (POD)
The POD formulation

In this dion, the POD methodis briefly introduced, foll owing the formulations
of Lumley (1967). A detailed methoddogy has already been propased in the literature
(Allery, 2002 Libergeet al., 2007 Libergeet al., 2008.

The proper orthogoral decomposition (POD) hasbeen introdwced in fluid medchan-
icsby Lumley (1967 , in order to extrad coherent structuresin aturbulent fluid flow.

Consider aspace2 C R, d = 1,2 or 3, (O, x;, X2, x3) areferencedatum tied to
this pace T C Raninterval, x € Q,t € T. The POD consistsin finding a spatia
function ®, in aHilbert space)’, which gives the optimum representation of avelocity
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field' v € L2 (T, V). Considering M snapshoats of the velocity field during a period
T, and ®; avedor of the POD basis of v, the snapshat POD (Sirovich, 1987 consists
in solving the foll owing eigenvalue problem :

M
%Z(U(ti),v(tk))Ak:)\Ai for i=1...M, (1]
k=1

Where (e, ) is the scdar product of V = L2 (). Next, the POD basis (®;) is
obtained using the aoefficients A¢ and the snapshots v of the velocity field.

M
O (v) = Apv(w,te), fori=1,..., M. [2]
k=1

This basis is orthonamal and fullfills the free divergence? in case of an incom-
pressble fluid, and the relative contribution of ead modei is cgptured by the d@gen-
value )\;. For a given n, the POD basis (optimal in L2) is the best decomposition
which can be obtained in sense of the kinetic energy.

3. POD application in Fluid Structure Interaction
3.1. Mathematical formulation

The POD, as it has been developped previoudly, leals to a spatial basis. Conse-
quently, this method can na be goplied diredly in fluid structure interadion for the
fluid velocity field; the fluid domain being time variant and the POD basis being spa-
tial, thereforeis not time dependent. The problem considered can beill ustrated by the
computation o the POD vedors by the snapshot method Considering a time variant
domain 2y and M snapshat of a velocity field v, which is defined on ;. The snap-
shot problem needs buil ding the snapshot matrix, i.e the matrix C composed by c¢;;,
where

V’L,jzl,,M

cij = (v (e, t;),v (e, 1)) = / v(z,t;) v (z, t;)de,

Qf

How to definethe Q2 domainif the fluid domain is diff erent at diff erent time steps
(t; and t;)? An classc gpplication o the POD consists in storing the snapshots of

1. v can be dso avedor whase the comporents are the presson, the density, the vorticity...
2. Insense of distributions.
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the velocity field in amatrix V and next, in computing the matrix C acordingto the
following operation:;

Cc="vVvV, [3]

where TV denates the transpose of the matrix V. The POD basis is computed ac
cording to the Equation [2]. Next, the ROM is built by projeding the discretised
Navier-stokes equation orto the POD basis. Thus, the scdar product is diff erent from
that defined in the previous equation and daes not take in acourt that the domain is
moving. This methodworksin fluid mecdhanics, becaise the domain is fixed, but can-
cdsfor fluid structure interadion problems. It has been tested by Liberge (2008 on
aone dimensional case of the Burgers equation couped with a spring and the results
obtained was bad. Liberge et al. (2007 have proposed a method for applying POD
in fluid structure interaction. We propcsein this article an extensionto the interadion
between turbulent fluid flow and stuctures of the method presented by Liberge et al.
(2007 and, in Sedion 4.3, a comparisonwith the result of a dassc gopplicaion o the
POD.

3.2. Proposed solution

We proposein this sdionamethodto obtain alow order dynamicd system with a
noninea formulation. The first step consistsin buildingaPOD basis. Utturkar et al.
(2005 used a fixed uniform grid to compute POD modes arounda membrane wing.
Thefluid velocity field isinterpolated from the time variant grid to afixed uriform one
and the POD basis is computed onthe fixed grid. We propaose to extend the method
for the cese of a moving solid body byconsidering a fixed uniform grid containing
al thetime variant grid (fluid and solid), and then interpolating the fluid and the solid
velocity field from the time variant grid to the fixed uriform one. Next, the POD
basisis computed for the global velocity field v (fluid and solid) on the fixed uniform
grid. Then, a dharaderistic function is introduced to follow the different domains.
This method hes been used by Libergeet al. (2007 for the POD application for fluid
structure interadion problems.

Figure 1 shows a schematic description d the problem domain of interest, where
Q,(t) isthedomain occupied by the moving body €24 (¢) isthemoving spatial domain
uponwhich the fluid motion is described; I';(¢) is the interfacebetween Q,(¢) and
Qy(t), n the outward namal of 2, and 'y = 9. Let decomposeI's in two parts,
I'%, wherethe velocity isimposed and ', where theload isimpased (I'y = ' UT'%).

Due to pradicd reasons, a rigid body has been considered. As the rigid body
Q,(t) changes the position, the interfaceI’;(¢t) moves acordingly. We note Q2 =
Qr(UQ () UTT (2).

v denotesthe global velocity field, decomposed as:

Vo e Q, vz, t)=vs(z,t)lo, (z,t) +vs (2,1) (1 — o, (x,1)), (4]
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Vf = Vs OnF]
of-n=0,-1m onI';.

Figure 1. Schematic description of the problem domain

Where vy denotesthe fluid velocity field, v, the solid and I, the charaderistic func-
tion o the fluid domain :

to, @0 ={ o gee (5

Let note I, the charaderistic function of the solid domain (I, = (1 — g, )).

This method is equivalent to the consideration o the solid domain as Eulerian.
Different methods have been explained in the literature. The most famousiis the Im-
mersed boundry Methodintroduced by Peskin (1973 which leads to a few derived
methods. This method consists in a membrane immersed in a fluid flow, which takes
into acourt by adding a force term to the fluid equation and interpolating the fluid
constraint on the interface One of the main isales is the nonphysicd representation
of thefluid-solid interface That iswhy the authors propose an alternative method, so
cdl ed multiphase method, based onthe fictiti ous domain method developed for fluid
solid-rigid interaction problems by Glowinski et al. (1999 and Patankar et al. (2000.

Thefictitious domain method developed by Patankar et al. (2000 consistsin tred-
ing the entire fluid-solid rigid domain (the fictitious domain) as a fluid, by extending
the Navier-Stokes equations to the solid rigid domain and adding the following rigid
constraint :

D(v)==(vv+v'v)=0 inQ, [6]

N —

This constraint is penali sed in the variational formulation bya viscosity 1, that a
Lagrange multiplier \ is asociated with. It leadsto the following variational formu-
lation:

Hop = JvjpeH' (Q),V-v=0 andv = vr (t) onl“;},
HY. = {oeH (@),0=0 onrgz}, 7]
@ = fecr @) [ aw—of,

Q
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Vu* € HYL andg € L? (Q), findv € Hyp,p € L3 (), A € H' (Q) suchas:

/p @-FU.VU ~v*dm—/pv.v*dx+/ (1-1Io;)D(X): D(v")da
o \0t Q Q !
+/2uD(v):D(U*)dx+/qv-vdx:0,

Q Q

(8]
p and p are defined onthe global domain 2 :

p=Ta,pr+ (1 —Io;) ps 3 p=Tao,us+ (1 —1Ia,) ps, [9]

Where p isthefluid density, . thefluid viscosity andthe solid viscosity 4 isthe
penali sation fador of therigidity constraint, p, isthe solid density, D (v) = 0 denotes
therigid constraint and vr isthe velocity fluid at I's.

Thus a we& formulation is obtained for the global domain 2 with information
abou fluid and solid damain that are contained in the density p and viscosity p func-
tions.

3.3. Low order dynamical system

3.3.1. First approach

The low order dynamicd system has been oltained by choosing POD modes
®;,i=1,---, N foravirtual velocity field.
N M
N is ®ached as ZMZ A > o, a > 0.9999, where \; denotes the

i=1 i=1
eigenvalue of POD problem, and M the snapshat number. Thusthe velocity field v is
evaluated by wsingthe truncated POD basis at N modes.

This decompositionis introduced in Equation [8] and, due to the freedivergence
of the POD basis, the following dyremicd system is obtained :
vVt e [0,T] forn=1...N

N da N N N
za:Hl i=1 j=1 i=1
Qs
8tf +v- V]Igf =0,

[10]
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with

/ p(2,1) ®; (z) - @y (z) d,
9)

A

Bij" :/p(l',t) (V(I)zq)])(bn d{E,

Q

Cm = 2/ M(x7f') tr (D ((I)L) -D ((I)’L)) dx
Q

. :/Q(l—]lgf)tr (D(A)D(®y)) da,

=

Thelast term D,, takesin ac@urt the nonhanogeneousboundary condtionandis
treaed by a penali sation method (Allery, 2002. There ae some diff erences compared
to thelow order dynamicd system obtained using POD basisin classc fluid mecdanics
(Allery et al., 2005 Libergeet al., 2009. Infad coefficient A, B, - - - aretime variant
and must be computed at ead time step. The computational cog at ead time step
shoud be mnsidered as a limitation o the method, but in fad for a small number of
POD modes the computational expense is lessas compared to that of a FS problem
solved with the ALE method This method daes naot require aremeshing step and
seoondy, theinitial problemistransformedinto alow order set of ordinary diff erential
equation.

3.3.2. Second approach

The computational time can also bereduced bythe obtention d asystem with non
time dependent coefficients. The decompasition of the dharaderistic function I, on
aPOD basis ¢, and the decomposition o the Lagrange multiplier on the same basis
of the velocity field yields the following:

N. Ny

a) In, (z,t) =Y i (8) ®F (@), b) A(a,t) =Y ci(t) i (), [11]

i=1 i=1

N, and N; denate the number of POD modes retained for the charaderistic func-
tionandthe Lagrange multiplier. Infad, V; is chosed equal to V.

It leads to the following dyramicd system :

Vi=1,---,Np=1,---,N,

M=

da, N e day,
Prg T (ps — pr) Z Z Ebpflpkl +pf

N
E 1
a/kalBkln
k=1p=1 11=1
N N N,

+(ps =) DD Y araibpBry, + 25 Y axChy, [12]
k=1

k=11=1 p=1

N
+2 (s = pg) )

k=1p=

i

N, N; N

ak‘bpcl%pn = Z Z bpcthhn + G,
1

h=1p=1

o
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db N N. N. N
CL) d_tp + Z Zak‘blgklp =0, b) Z bpak-fp]m =0, [13]
k=11=1 p=1k=1
Apir = / O Dy Pydr 2, = /chgTr (D (34)D (®,)) dz,
Bin = | (21V®)) - @, dx Cin = / Tr (D (&) D (®,,)) dz,
Q Q
B = / O (0, VD)) - Dpdar Dypn = / oS Tr (D (94) D (D,,)) da,
Q 2
gkrlp = / (‘I‘k . V(I)lc) q);dw ]:p]m = CI);’I‘I‘ (D ((I)k) D ((I)n)) dr.
Q Q
[14]

The Equation[13.d)] is the reduction o the convedion equation o the charader-
istic functionandthe Equation[13.b)] isthe reduction of therigid constraint Equation
[6] defined onthe solid damain. Thus, an agebric diff erential equation system, whaose
coefficients can be computed orce, is obtained.

In the present study, two low order dynamicd systems, which transformed the
initial problem into a more simple system of ordinary diff erential equationin a;(t)
with low degrees of freedom have been presented. In pradice a basis using orly a
few POD modes takes more than 90% of the kinetic energy. The methods will be
compared in the next sedion.

4. Application

4.1. Presentation

Ly
Figure 2. Schematic description

These methods have been tested on the configuration described on Figure 2, a
cylindricd rigid body attached to a spring, has been immersed in a fluid flow at
Reynolds number Re = 1690.
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For the fluid parameters, we consider the fluid density p; = 1000 kg.m=3, the
viscosity 1y = 0.001 kg/m.s, the inlet velocity vor = 3.38 - 10~2m.s~*. The solid
parameters are the radius R = 0.025 m, the massequal tom, = 11.78 10~' kg,
which implies a solid density equal to p, = 60 kg.m—3. The stiffnessof the spring
was chosen k£ = 0.559 N - m~! and the dampingto 2.7825 kg - s~ 1.

The energy convergenceis plotted onFigure 3(a). The function::

N M
FN=3"X/> "N, [15]
i=1 j=1

where N is the number of POD modes used and M the total number of modes
computed, is the energy captured with the & first modes. The quasi totality of energy
is captured with orly 6 Pod modes.

Error in L2 norm (Log scale)
hobod

£
|
o)}

7

0 -

B 15 0 0 5 10 15
Nurhber of POD modes Number of POD modes used

(a) Energy convergence per mode  (b) Rewnstruction error versus number
of POD modes used

Figure 3. POD analysis

4.2. POD analysis

First, the POD reconstruction o the velocity field has been evaluated by the dired
POD method. It consists in computing the temporal coefficients by projeding eah
snapshot onto the POD basis :

fork=1,---,M al_, (tx) = (v(e,ty),®;), i=1,---,N. [16]

Figure 3(b) shows the development of the velocity reconstructionerror in L2 norm
acording the number N of modes used. 3 POD modes are sufficient to reconstruct
the velocity field with an error lessthan 2%. However with 2 POD modes the re-
construction df the velocity on the gravity center of the rigid bodyis not satisfactory
(Figure 4(a)). The objedive of this work is to reconstruct the velocity field and the
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solid displacement, that is why more modes have been added. Figure 4(b) shows that
6 POD modes are enoughto recnstruct the velocity field at the solid gravity center.

0,002} 0002

0001 0,001
0,000} 0.000}
~0.001} ~0.00:

—0.002} —0.002

(8 with 1 and 2 modes (b) with 5 and 6 modes

Figure 4. Second component of the velocity on the gravity center of the rigid body :
+ initial and reconstructed

Thisnumber is aufficient acordingto the literature of POD study of a ¢ylinder. In
case of turbulent flow aroundafixed cylinder at a Reynolds number of 140000, Perrin
et al. (2006 considered that 10 POD modes are sufficient to oktain the essential of the
Van Karman vortices.

4.3. Reduced Order Modelling

The low order dynamicd systems are built with 6 POD modes. Table 1 compares
the computational time using the STARCD software, for the first low order dynami-
cd system (LODS) (Equation [10]) and the second LODS (Equation [12]). The last

Table 1. Comparison of CPU times

STARCD ALE | LODS[10] | LODS[17]
CPU time 726 143 21

propaosed solutionis the faster. The first gives a gain in term of computational time,
but the computational cost of the coefficients at ead time step is moreimportant. The
gainin term of CPU times obtained with the system (Equation[12]) is sgnificant.

Figure 5 plotsthe position d the gravity center acordingto axis x, (the displace
ment has been blocked alongx; ). Theresult has also been compared with the method
explained at the end d the sedion (Sedion 3.1). The same number of POD modes
has been considered for bath, the dired methodand the method roposed in this arti-
cle. The result obtained by low order dynamicd system agrees with the results of the
reference cae.
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Figure 5. Position of gravity centre : —, initial solution; +, obtained by our ROM
method with 6 modes; e, obtained by the direct method with 6 modes

5. Conclusion

In this paper the ROM methodapplied for Fluid structure interadion problem has
been presented. The Proper Orthogoral Decomposition (POD) method hes been cho-
sen as it can be well applied to problems of fluid mechanics. The main difficulty
resides in the fad that the domain is moving, thus time variant, whil e the POD basis
has gatial properties. The proposed solution consists in computing the POD basis
for the global velocity field (fluid and solid). Two methods for building ROM by low
order dynamicd system have been proposed. These methods use fictitious domain ap-
proach and consist in extending the Navier-Stokes equations to the solid domain. The
first method leads to a dynamica system whose the mefficients have to be compute
at ead time step. A gain in term of computational time has been observed in case
of the first method, however the second solution leads to a better gain. The proposed
approach has been validated by atest onarigid cylinder oscill atingin afluid flow at a
Reynolds number 1690.
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