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ABSTRACT. This paper describes the Reduced Order Modeling (ROM) for fluid rigid body 
interaction problem and discusses Proper Orthogonal Decomposition (POD) utilisation. The 
principal difficulty for using POD being the moving domains, a referenced fixed domain has 
been introduced. The POD has been applied for the velocity field obtained on the fixed 
domain. Then a method to reduce dynamical system for rigid body fluid interaction has been 
developed. This method consists in treating the entire fluid-solid domain as a fluid. The rigid 
body has then been considered as a fluid, by using a high viscosity which can play the role of 
a penalisation factor of the rigidity constraint. The fluid flow problem is then formulated on 
the reference domain and POD modes have been used in the weak formulation. 

RÉSUMÉ. Ce papier décrit la réduction de modèle pour les problèmes d’interaction entre un 
fluide et un solide rigide. La méthode de réduction de modèle utilisée ici est la décomposition 
orthogonale aux valeurs propres (POD). La principale difficulté d’application de la POD 
étant liée au caractère mobile des domaines, un domaine de référence est utilisé. La POD est 
alors appliquée au champ de vitesse dans le domaine fixe. Ensuite une méthode de réduction 
de modèle pour les problèmes d’interaction fluide-solide rigide est introduite. Cette méthode 
considère l’ensemble du domaine fluide-solide comme un domaine fluide. Ainsi le solide 
rigide est considéré comme un fluide par l’intermédiaire d’une forte viscosité, qui joue le rôle 
de facteur de pénalisation de la contrainte de rigidité. La base POD est alors utilisée dans la 
formulation faible et permet d’obtenir un système dynamique réduit. 
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1. Introduction

Using computational models in order to predict Fluid Structure Interaction (FSI)
phenomenonis today widespread. However, the computational cost can be an impor-
tant limitingfactor andconsequently to reducethe computational time isan important
issue in fluid mechanics.

In the present paper, we study reduced order modelli ng (ROM) in these contexts.
The ROM based ona projection of the problem’s equations onto a basis obtained by
a first computation is considered, this makes the building of ROM quite expensive.
The main objective is to use the constructed ROM in shape optimisation for a set of
parameters different from those used to build them, or, another example, for a longer
time period than the first computation. The cost of the building of ROM would be
also compensated. It would be also interesting for coupled problems if the reduced
model which has been constructed for the phenomenawhich have alarger time scale
is solved with the smaller time scale. Another example deals with active control or
stabilit y study.

The most well -known technique in fluid mechanics is the Proper Orthogonal De-
composition (POD). This method has been succesfully applied in fluid structure in-
teraction for small displacements of the structure (Lieu et al., 2006; Anttonen et
al., 2003). For bigger displacements, Liberge et al. (Liberge, 2008; Liberge et
al., 2007) have proposed an adaptation of the POD method using a multiphase for-
mulation. An overview of this methods is presented in section 3.

We propose in this article an extansion of the method proposed by Liberge et al.
(2007).

Firstly, this paper recalls the well -known POD method. Next, it explains the con-
straint of applyingPOD in FSI domain andalso proposesasolutionto build low order
dynamical systems. At last, the method proposed is applied for a typical case of FSI
with a rigid solid domain.

2. The proper orthogonal decomposition (POD)

The POD formulation

In this section, the POD methodis briefly introduced, following the formulations
of Lumley (1967). A detailed methodology hasalready been proposed in theliterature
(Allery, 2002; Libergeet al., 2007; Libergeet al., 2008).

Theproper orthogonal decomposition(POD) hasbeen introduced in fluid mechan-
ics by Lumley (1967) , in order to extract coherent structures in a turbulent fluid flow.

Consider aspaceΩ ⊂ R
d, d = 1, 2 or 3, (O,x1,x2,x3) areferencedatum tied to

this space, T ⊂ R an interval, x ∈ Ω, t ∈ T. The POD consists in finding a spatial
functionΦ, in aHilbert spaceV , which givestheoptimum representation of avelocity
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field1 v ∈ L
2 (T,V). ConsideringM snapshots of the velocity field during a period

T, andΦi avector of thePOD basisof v, thesnapshot POD (Sirovich, 1987) consists
in solving the followingeigenvalueproblem :

1

M

M
∑

k=1

(v (ti) , v (tk))Ak = λAi for i = 1 . . .M, [1]

Where (•, •) is the scalar product of V = L
2 (Ω). Next, the POD basis (Φi) is

obtained using the coefficientsAi
k andthe snapshotsv of thevelocity field.

Φi (x) =

M
∑

k=1

Ai
kv (x, tk) , for i = 1, . . . ,M. [2]

This basis is orthonormal and fullfills the freedivergence2 in case of an incom-
pressible fluid, and the relative contribution of each mode i is captured by the eigen-
value λi. For a given n, the POD basis (optimal in L

2) is the best decomposition
which can beobtained in senseof thekinetic energy.

3. POD application in Fluid Structure Interaction

3.1. Mathematical formulation

The POD, as it has been developped previously, leads to a spatial basis. Conse-
quently, this methodcan not be applied directly in fluid structure interaction for the
fluid velocity field; the fluid domain being time variant and the POD basis beingspa-
tial, thereforeisnot timedependent. Theproblem considered can be ill ustrated bythe
computation of the POD vectors by the snapshot method. Consideringa time variant
domain Ωf andM snapshot of a velocity field v, which is defined onΩf . The snap-
shot problem needs building the snapshot matrix, i.e the matrix C composed by cij ,
where

∀i, j = 1, · · · ,M

cij = (v (•, ti) , v (•, tj)) =

∫

Ωf

v (x, ti) · v (x, tj) dx,

How to definetheΩf domain if thefluid domain isdifferent at different timesteps
(ti and tj)? An classic application of the POD consists in storing the snapshots of

1. v can be also a vector whose the components are the pression, the density, the vorticity...
2. In sense of distributions.



44 EJCM – 19/2010. Giens 2009

the velocity field in a matrix V and next, in computingthe matrix C according to the
following operation:

C =T
VV, [3]

where T
V denotes the transpose of the matrix V. The POD basis is computed ac-

cording to the Equation [2]. Next, the ROM is built by projecting the discretised
Navier-stokesequation onto thePOD basis. Thus, thescalar product is different from
that defined in the previous equation and does not take in account that the domain is
moving. Thismethodworks in fluid mechanics, because thedomain is fixed, but can-
cels for fluid structure interaction problems. It has been tested by Liberge (2008) on
a one dimensional case of the Burgers equationcoupled with aspring and the results
obtained was bad. Liberge et al. (2007) have proposed a method for applying POD
in fluid structure interaction. We propose in thisarticle an extension to the interaction
between turbulent fluid flow and stuctures of the method presented by Liberge et al.
(2007) and, in Section 4.3, a comparisonwith the result of a classic application of the
POD.

3.2. Proposed solution

Weproposein this sectionamethodto obtain alow order dynamical system with a
nonlinear formulation. The first step consists in buildingaPOD basis. Utturkar et al.
(2005) used a fixed uniform grid to compute POD modes arounda membrane wing.
Thefluid velocity field is interpolated fromthetimevariant grid to afixed uniformone
and the POD basis is computed on the fixed grid. We propose to extend the method
for the case of a moving solid body byconsidering a fixed uniform grid containing
all the timevariant grid (fluid andsolid), and then interpolatingthefluid andthesolid
velocity field from the time variant grid to the fixed uniform one. Next, the POD
basis is computed for the global velocity field v (fluid andsolid) on thefixed uniform
grid. Then, a characteristic function is introduced to follow the different domains.
This method has been used by Libergeet al. (2007) for the POD application for fluid
structure interaction problems.

Figure 1 shows a schematic description of the problem domain of interest, where
Ωs(t) is thedomain occupied bythemoving body;Ωf (t) is themovingspatial domain
uponwhich the fluid motion is described; ΓI(t) is the interfacebetween Ωs(t) and
Ωf (t), n the outward normal of Ωs andΓf = ∂Ω. Let decomposeΓf in two parts,
Γv
f , wherethevelocity is imposed andΓσ

f , wheretheload is imposed (Γf = Γv
f ∪Γσ

f ).

Due to practical reasons, a rigid body has been considered. As the rigid body
Ωs(t) changes the position, the interfaceΓI(t) moves accordingly. We note Ω =
Ωf (t) ∪ Ωs (t) ∪ ΓI (t).
v denotesthe global velocity field, decomposed as :

∀x ∈ Ω, v (x, t) = vf (x, t) IΩf
(x, t) + vs (x, t)

(

1− IΩf
(x, t)

)

, [4]
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Ωf

Ωs

ΓI

n

nf

vf = vs onΓI

σf · n = σs · n onΓI .

Figure 1. Schematic description of the problem domain

Wherevf denotesthefluid velocity field, vs the solid andIΩf
the characteristic func-

tion of thefluid domain :

IΩf
(x, t) =

{

1 if x ∈ Ωf (t)
0 else if

, [5]

Let note IΩs
the characteristic function of thesolid domain

(

IΩs
=

(

1− IΩf

))

.

This method is equivalent to the consideration of the solid domain as Eulerian.
Different methods have been explained in the literature. The most famous is the Im-
mersed boundary Method introduced by Peskin (1973) which leads to a few derived
methods. This methodconsists in a membrane immersed in a fluid flow, which takes
into account by adding a force term to the fluid equation and interpolating the fluid
constraint on the interface. One of the main issues is the non-physical representation
of thefluid-solid interface. That is why the authorspropose an alternativemethod, so
called multiphase method, based onthe fictitious domain method developed for fluid
solid-rigid interaction problemsby Glowinski et al. (1999) andPatankar et al. (2000).

Thefictitiousdomain method developed byPatankar et al. (2000) consists in treat-
ing the entire fluid-solid rigid domain (the fictitious domain) as a fluid, by extending
the Navier-Stokes equations to the solid rigid domain and adding the following rigid
constraint :

D (v) =
1

2

(

▽v +▽T v
)

= 0 in Ωs, [6]

This constraint is penalised in the variational formulation bya viscosity µs, that a
Lagrange multiplier λ is associated with. It leads to the following variational formu-
lation :

HvΓ =
{

v|v ∈ H1 (Ω) ,∇ · v = 0 and v = vΓ (t) onΓv
f

}

,

H0

vΓ =
{

v|v ∈ H1 (Ω) , v = 0 onΓv
f

}

,

L2

0 (Ω) =

{

q ∈ L2 (Ω) |

∫

Ω

qdx = 0

}

,

[7]
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∀v⋆ ∈ H0

vΓ andq ∈ L2 (Ω), findv ∈ HvΓ , p ∈ L2

0 (Ω) , λ ∈ H1 (Ω) such as :

∫

Ω

ρ

(

∂v

∂t
+ v · ∇v

)

· v
⋆

dx−

∫

Ω

p∇ · v
⋆

dx+

∫

Ω

(

1− IΩf

)

D (λ) : D (v⋆) dx

+

∫

Ω

2µD (v) : D (v⋆) dx+

∫

Ω

q∇ · vdx = 0,

[8]

ρ andµ aredefined ontheglobal domainΩ :

ρ = IΩf
ρf +

(

1− IΩf

)

ρs ; µ = IΩf
µf +

(

1− IΩf

)

µs, [9]

Whereρf is thefluid density,µf thefluid viscosity andthesolid viscosity µs is the
penalisationfactor of therigidity constraint, ρs is thesolid density, D (v) = 0 denotes
the rigid constraint andvΓ is thevelocity fluid at Γv

f .

Thus a weak formulation is obtained for the global domain Ω with information
about fluid and solid domain that are contained in the density ρ and viscosity µ func-
tions.

3.3. Low order dynamical system

3.3.1. First approach

The low order dynamical system has been obtained by choosing POD modes
Φi, i = 1, · · · , N for avirtual velocity field.

N is searched as
N
∑

i=1

λi/

M
∑

i=1

λi > α, α > 0.9999, where λi denotes the ith

eigenvalueof POD problem, andM the snapshot number. Thusthe velocity field v is
evaluated by using the truncated POD basis at N modes.

This decomposition is introduced in Equation [8] and, due to the freedivergence
of thePOD basis, the following dynamical system is obtained :
∀t ∈ [0, T ] for n = 1 . . .N



















N
∑

i=1

dai
dt

Ain +
N
∑

i=1

N
∑

j=1

ai (t) aj (t)Bijn +
N
∑

i=1

ai (t)Cin + En +Dn = 0,

∂IΩf

∂t
+ v · ∇IΩf

= 0,

[10]
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with

Ain =

∫

Ω

ρ (x, t)Φi (x) · Φn (x) dx,

Bijn =

∫

Ω

ρ (x, t) (∇Φi ·Φj) · Φn dx,

Cin = 2

∫

Ω

µ (x, t) tr (D (Φi) · D (Φn)) dx

En =

∫

Ω

(

1− IΩf

)

tr (D (λ)D (Φn)) dx,

Thelast termDn takes in account thenonhomogeneousboundary conditionandis
treated byapenalisationmethod(Allery, 2002). There aresomedifferencescompared
to thelow order dynamical systemobtained usingPOD basisinclassic fluidmechanics
(Allery et al., 2005; Libergeet al., 2008). In fact coefficientA,B, · · · aretimevariant
and must be computed at each time step. The computational cost at each time step
should be considered as a limitation of the method, but in fact for a small number of
POD modes the computational expense is lessas compared to that of a FSI problem
solved with the ALE method. This method does not require a remeshing step and
secondly, theinitial problemistransformedinto alow order set of ordinary differential
equation.

3.3.2. Second approach

The computational time can also bereduced bytheobtention of asystem with non-
time dependent coefficients. The decomposition of the characteristic function IΩs

on
a POD basisΦc, and the decomposition of the Lagrangemultiplier on the same basis
of thevelocity field yields the following:

a) IΩs
(x, t) =

Nc
∑

i=1

bi (t)Φ
c
i (x) , b) λ (x, t) =

Nl
∑

i=1

ci (t)Φi (x) , [11]

Nc andNl denote the number of POD modes retained for the characteristic func-
tionand theLagrangemultiplier. In fact, Nl is chosed equal toN .

It leads to the following dynamical system :

∀ i = 1, · · · , N p = 1, · · · , Nc

ρf
dan
dt

+ (ρs − ρf )

N
∑

k=1

Nc
∑

p=1

dak
dt

bpApkl + ρf

N
∑

k=1

N
∑

l=1

akalB
1

kln

+ (ρs − ρf )

N
∑

k=1

N
∑

l=1

Nc
∑

p=1

akalbpB
2

pkln + 2µf

N
∑

k=1

akC
1

kn

+2 (µs − µf )

N
∑

k=1

Nc
∑

p=1

akbpC
2

kpn =

Nl
∑

h=1

Nc
∑

p=1

bpchDphn + Gn,

[12]



48 EJCM – 19/2010. Giens 2009

a)
dbp
dt

+

N
∑

k=1

Nc
∑

l=1

akblEklp = 0, b)

Nc
∑

p=1

N
∑

k=1

bpakFpkn = 0, [13]

Apkl =

∫

Ω

Φc
pΦkΦldx C2

kpn =

∫

Ω

Φc
pTr (D (Φk)D (Φn)) dx,

B1

kln =

∫

Ω

(Φk∇Φl) · Φndx C1

kn =

∫

Ω

Tr (D (Φk)D (Φn)) dx,

B2

klpn =

∫

Ω

Φc
p (Φk∇Φl) ·Φndx Dphn =

∫

Ω

Φc
pTr (D (Φh)D (Φn)) dx,

Eklp =

∫

Ω

(Φk · ∇Φc
l )Φ

c
pdx Fpkn =

∫

Ω

Φc
pTr (D (Φk)D (Φn)) dx.

[14]

The Equation [13.a)] is the reduction of the convectionequation of the character-
istic functionandtheEquation[13.b)] is thereduction of therigid constraint Equation
[6] defined onthesolid domain. Thus, an algebric differential equationsystem, whose
coefficientscan be computed once, is obtained.

In the present study, two low order dynamical systems, which transformed the
initial problem into a more simple system of ordinary differential equation in ai(t)
with low degrees of freedom have been presented. In practice, a basis using only a
few POD modes takes more than 90% of the kinetic energy. The methods will be
compared in the next section.

4. Application

4.1. Presentation

y

x

D

Γ
v
f

Γ
σ
f

ΓI
Ωf

L1

L2

Figure 2. Schematic description

These methods have been tested on the configuration described on Figure 2, a
cylindrical rigid body, attached to a spring, has been immersed in a fluid flow at
Reynoldsnumber Re= 1690.
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For the fluid parameters, we consider the fluid density ρf = 1000 kg.m−3, the
viscosity µf = 0.001 kg/m.s, the inlet velocity vΓ = 3.38 · 10−2m.s−1. The solid
parameters are the radiusR = 0.025 m, the massequal to ms = 11.78 10−1 kg,
which implies a solid density equal to ρs = 60 kg.m−3. The stiffnessof the spring
was chosen k = 0.559 N · m−1 and thedamping to 2.7825 kg · s−1.

The energy convergenceis plotted onFigure3(a). The function :

FN =

N
∑

i=1

λi/

M
∑

j=1

λj , [15]

where N is the number of POD modes used and M the total number of modes
computed, is the energy captured with thek first modes. The quasi totality of energy
is captured with only 6 Podmodes.
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Figure 3. POD analysis

4.2. POD analysis

First, thePOD reconstruction of thevelocity field hasbeen evaluated by thedirect
POD method. It consists in computing the temporal coefficients by projecting each
snapshot onto thePOD basis :

for k = 1, · · · ,M adi=1 (tk) = (v (•, tk) ,Φi) , i = 1, · · · , N. [16]

Figure3(b) showsthedevelopment of thevelocity reconstructionerror inL
2 norm

according the number N of modes used. 3 POD modes are sufficient to reconstruct
the velocity field with an error less than 2%. However with 2 POD modes the re-
construction of the velocity on the gravity center of the rigid bodyis not satisfactory
(Figure 4(a)). The objective of this work is to reconstruct the velocity field and the
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solid displacement, that is why moremodes havebeen added. Figure 4(b) shows that
6 POD modesare enoughto reconstruct thevelocity field at thesolid gravity center.
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vg

1 mode POD
2 modes POD

(a) with 1 and2 modes
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0.004
vg

5 modes POD
6 modes POD

(b) with 5 and6 modes

Figure 4. Second component of the velocity on the gravity center of the rigid body :
+ initial and reconstructed

Thisnumber is sufficient accordingto the literatureof POD study of a cylinder. In
caseof turbulent flow aroundafixed cylinder at aReynoldsnumber of 140000, Perrin
et al. (2006) considered that 10 POD modesaresufficient to obtain the essential of the
Van Karman vortices.

4.3. Reduced Order Modelling

The low order dynamical systems are built with 6 POD modes. Table 1 compares
the computational time using the STARCD software, for the first low order dynami-
cal system (LODS) (Equation [10]) and the secondLODS (Equation [12]). The last

Table 1. Comparison of CPU times

STARCD ALE LODS[10] LODS [12]
CPU time 726 143 21

proposed solution is the faster. The first gives a gain in term of computational time,
but the computational cost of the coefficientsat each timestep ismoreimportant. The
gain in term of CPU timesobtained with the system (Equation[12]) is significant.

Figure5 plots theposition of thegravity center accordingto axisx2 (thedisplace-
ment hasbeen blocked alongx1). Theresult hasalso been compared with themethod
explained at the end of the section (Section 3.1). The same number of POD modes
has been considered for both, the direct methodand the method proposed in this arti-
cle. The result obtained by low order dynamical system agrees with the results of the
reference case.
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multiphase method
initial solution

direct method

Figure 5. Position of gravity centre : −, initial solution; +, obtained by our ROM
method with 6 modes; •, obtained by the direct method with 6 modes

5. Conclusion

In this paper the ROM methodapplied for Fluid structure interaction problem has
been presented. TheProper Orthogonal Decomposition(POD) method has been cho-
sen as it can be well applied to problems of fluid mechanics. The main difficulty
resides in the fact that the domain is moving, thus time variant, while the POD basis
has spatial properties. The proposed solution consists in computing the POD basis
for the global velocity field (fluid and solid). Two methods for buildingROM by low
order dynamical system havebeen proposed. Thesemethodsusefictitiousdomain ap-
proach andconsist in extendingtheNavier-Stokesequationsto thesolid domain. The
first method leads to a dynamical system whose the coefficients have to be compute
at each time step. A gain in term of computational time has been observed in case
of the first method, however the secondsolution leads to a better gain. The proposed
approach hasbeen validated byatest ona rigid cylinder oscill ating in afluid flow at a
Reynoldsnumber 1690.
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