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ABSTRACT. In this paper we review the possibilities associated with the use of Proper
Generalized Decompositions for solving models established in highly multidimensional
spaces. This technique has also been recently extended to problems that can be, under some
circumstances, seen as multidimensional.

RESUME. Dans ce travail on passe en revue les possibilités offertes dans le cadre de la PGD
(Proper Generalized Decomposition) pour la résolution de modéles définis dans des espaces
multidimensionnels. L application de cette derniere technique est étendue ici aux réactions
chimiques avec un petit nombre de molécules réactives. Ces modéles sont gouvernés par des
équations appelées « équations maitresses ». lls présentent une difficulté liée a un caractére
fortement multidimensionnel que nous sommes parvenus a surmonter.
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1. Introduction

Models defined in highly multidimensional spaces are ubiquitous in many
branches of Sciences and Engineaing. Beginning from the most clasdcd description
of atomic structure, arising from Schrédinger equation, plenty of models present this
unique feaure of being defined in spaces with a number of dimensions notably high
than three Other examples of thisfeaure include many moddsfor complex fluid mo-
delling, or the modelling o chemicd readions at very low concentrations (i.e., those
governed by the Chemicd Master Equation).

Themain difficulty related to these models concernsthe difficulty of establishinga
(finite dement, finite diff erence) mesh in such ahigh number of dimensions. Consider,
for instance, a one-dimensional problem whaose numericd description involves, say,
ten finite dements. If the model is extended to two-dimensional settings, the mesh
will be compased by 10 x 10 elements. If the problem becomes three-dimensional the
mesh increases to 10® elements, and so on In the limit, for an 80-dimensional space
ahardly imaginable mesh of 108" elements would be necessary to solve the problem.
But 1080 is preds=ly the presumed number of elementary particles in the universe,
so “ No computer existing, or that will ever exist, can break thisbarrier becauseitisa
caastrophe of dimension” (LaugHinet al., 2000.

This frustrating charaderistic of highly-dimensional models has given rise to the
so-cdl ed curse of dimensionality. One posdble solutionliesin the use of sparse grids
(Bungartz et al., 2004). However the use of sparse grid is restricted to models with
moderate multi dimensionality (upto 20). Ancther technique aleto circumvent, or at
least dl eviate, the aurse of dimensionality consists of using a separated representation
of the unknown field. Basicdly, the separated representation of a generic function

u(x1, -+ ,xp) (@so known asfinite sum decompasition) writes::
=N
u(x1, -, xp) ~ ¥ Fl(x1) x -+ x FP(xp) [1]
=1

Note that the coordinates x;, i« = 1,---, D, are defined in spaces of moderate
dimension, i.e. x; € §; C R%, d; < 3. Thus, the dimension o the model results
S2=" d;. Eventually, one of these mordinates could bethetimet € Z C R+.

Thiskind o representationis not new, it was widely employed in the last decales
in the framework of quantum chemistry. In particular the Hartree-Fock (that involves
asingle product of functions) and past-Hartree-Fock approaches (as the MCSCF that
invalves afinite number of sums) made use of a separated representation o the wave-
function (Cancéset al., 2003 (Chinestaet al., 2008).

We propaosed recantly a technique ale to construct, in a way completely trans-
parent for the user, the separated representation of the unknown field involved in a
multidimensional partial differential equation. This technique, originally described
and applied to multi-bead-spring FENE models of polymeric liquids in Ammar et
al. (2006, was extended to transient models of such complex fluids in Ammar et
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al. (2007). More complex models (involving dff erent coudings and nonlineaities)
based on the reptation theory of palymeric liquids were analyzed in Mokdad et al.
(2007).

Coming badk to models defined in spaces of moderate dimension (d x D, d =
1,2, 3) but whaose solutions evolve in large time intervals, if one uses gandard in-
cremental time-discretizaions, in the general case (modds involving time-dependent
parameters, nonlinea models...), one must solve & least alinea system at ead time
step. When the time step beaomes too small as a consequence of stability require-
ments, and the simulation time interval is large enough standard incremental simu-
lation becomes inefficient. To ill ustrate this senario, one could imagine the simple
readion-diffusionmodel that describesthe degradation d plastic materials, where the
charaderistic time of the chemicd readioninvolved in the material degradationisin
the order of some microsecnds and the one related to the diffusion o chemicd sub-
stances (that also represents the material degradation charaderistic time itself) is of
the order of yeas. In this case standard incremental techniques must be replacel by
other more dficient strategies.

One paosshility consistsagain in performing a separated representation o the unk-
nown field, that in the present case reducesto :

=N
u(x,t) ~ Z X;(x) - Ty(t) [2]

that all ows, as we describe later, to norrincremental time integration strategies, which
can reduce spedaaularly the CPU time.

This gpacetime separated representation is not a new propasal. In fad such de-
compositions were propased many yea ago by Pierre Ladeveze & an ingredient of
the powerful nontlinea-non-incremental LATIN solver that he proposed in the 80s.
During the last twenty yeas many works were succesSully acoomplished by the La-
devezésgroup. Theinterested reader can refer to (Ladeveze 1999 and the references
therein. In the radial approximation approach (the name given in the pionea works of
Ladevezg functionsdepending onspace adthe ones depending ontimewere apriori
unknawn, and they were computed by an appropriate minimizationtechnique.

This paper reviews ome of the basic feaures of the method, together with some
interesting applicationsin different fields.

2. Basicsof the proper generalized decomposition

Basicdly, the separated representation of a generic functionu(z,- -+ ,2p) (also
known as finite sums decompasition) reals:

i=N
u(@y, -+, xp) & Y Fi(w1) x - X Fh(p) [3]
i=1
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This kind o approximation orly neels a technique ale to corstruct, in a way
completely transparent for the user, the separated representation o the unknawn field
involved in a partial differential equation.

The technique that we proposed for computing the different functions involved
in Equation [3)] consists of an alternating dredions lineaization strategy that we
summarize here. For the sake of clarity, and without any lossof generality, we restrict
our discussonto the D-dimensional Poison's equation:

Au = —f(l‘l,xg,...,xp), [4]

where u isascdar function o (z1, z2, ..., zp). Problem [4] is defined in the domain
(71,22,...,xp) € Q = (—L,+L)P with vanishingessential boundiry condtions.
The problem solution can be written in the form :

D
u(x1, x2, ..., Tp) :ZajHij(:L'k), [5]
k=1

j=1 =

where Fy; is the j basis function, with urit norm, which only depends on the k"
coordinate.

It is well known that the solution df numerous problems can be acwrately ap-
proximated using a finite (sometimes very reduced) number (V) of approximation
functions, i.e. :

D
u(xl,xg,...,acp) %ZO&J‘HF]CJ‘(I'}C). [6]
Jj=1 k=1

The previous expresson impli es the same number of approximation functionsin
ead dimension, but ead ore of these functions could be expressed in a discrete form
using dff erent number of parameters (nodes of the 1D grids).

Now, an appropriate numerica procedureis needed for computing the efficients
a; aswell asthe N approximationsfunctionsin ead dimension.

The propased numericd scheme consists of an iteration procedure that solves at
ead iterationn the following threesteps:

Step 1: Projection of the solution in a discrete basis

If we asaume the functions Fy;(Vj € [1,..,n];Vk € [1,...,D]) known (veri-
fying the boundiry condtions), the aefficients o; can be computed by introducing
the goproximation o « into the Galerkin variational formulation associated with
Equation[4] :

/Q Vu* - VudQ = /Q u* f dQ [7]
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Introdwcingthe goproximation o v andu™* :

n D
u(z1, T2, ..., TD) :ZajHij(xk) (8]
j=1 k=1
and
n D
u*(x1, 22, ...,ZD) :Za;’f Hij(xk) [9]
j=1 k=1
we have
n D n D
/ v Za}f HFkJ(xk) -V Zaj H Frj(zg) | d2=
Q j=1 k=1 =1 k=1
n D
:/ St [T Fis(aw) | £ do [10]
Q\j=1 k=1
Now, we sssumethat f(x1,--- ,2p) can bewrittenin the form
m D
f(-Th'” amD) %Zkah(xk) [11]
h=1k=1

Equation[10] invalvesintegrals of a product of D functionsead ore definedin a
different coordinate. L et H,f):1 gk (xy) be oneof these functionsto be integrated. The
integral over €2 can be performed by integrating ead functionin its definitioninterval
and then multi plying the D computed integralsacordingto :

D D .L
(zg) dQ = (zg)dxy [12]
/QkE[lgk Tk kl;[l/_Lgk T )aTk

which makes posgble the numericd integrationin highly dimensional spaces.

Now, due to the abitrariness of the ooefficients o}, Equation [10] alows to
compute the n-approximation coefficients «;, solving the resulting linea system
of size n x n. This problem is linea and moreover rarely exceals the order of
tens of degrees of freedom. Thus, even if the resulting coefficient matrix is densely
popuated, the time required for its lution is negligible with resped to the one
required for performingthe goproximation basis enrichment (step 3).
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Step 2 : Checking convergence

From the solution o u at iteration n given by Equation [8] we cmpute the
residual Re related to Equation[4] :

[13]

If Re < ¢ (epsilonisasmall enough @rameter) the iteration process sops, yiel-
ding the solution u(z1, - - - ,xp) given by Equation [8]. Otherwise, the iteration pro-
cedure continues.

The integral in Equation [13] can be written as the product of one-dimensional
integrals by performinga separated representation o the square of the residual.

Step 3 : Enrichement of the approximation basis

From the ooefficients «; just computed the gproximation besis can be anri-

ched by adding the new function Hszl Fy(nt1)(x1). For this purpose we solve the
nonlinea Galerkin variational formulationrelated to Equation[4] :

/ Vu* - VudQ = / w* f dQ [14]
Q Q

using the goproximation of u given by :

n D D
u(z1, T2, ..., TD) =Zoszij(:Ck)+HRk(Jik) [19]
k=1 k=1

j=1
The weighting function can be expressed as:

u*(z1, 2, ..., xp) =

= RI(Il) XRQ(I‘Q) Xoew XRD($D)+' : '+R1(1‘1) XR2($2) Xoee XR*D(J)D)
[16]

This leads to a nontlinea variational problem, whose solution all ows to compute
the D functions Ry (zx ). Functions Fj,(,, 1) () arefinaly obtained by namalizing,
after convergenceof the nonlinea solver, the functions Ry, Rs, ..., Rp.

To solve this problem we introduce adiscretization o those functions Ry (zy).
Ead ore of these functions is approximated using a 1D finite dement description. If
we asume than p;, nodes are used to construct the interpalation o function Ry (z,)
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in the interval [—L, L], then the size of the resulting dscrete nortlinea problem is
Zﬁzf) pi. Thepriceto pay for avoidingawhole mesh inthe multi dimensional domain
isthe solution of anonlinea problem. However, even in high dmensionsthe size of
the nonlinea problems remains moderate and no particular difficulties have been
foundin its solution upto hundeds dimensions. Concerning the computation time,
even when the nonlinea solver converges quickly, this 4ep consumes the main part
of the global computingtime.

Different nonlinea solvers have been analyzed : fixed-paoint, Newton o one
based on an dternating dredions sheme. In this work the last strategy was re-
tained. Thus, in the enrichment step, function R“{“(ml) is updated by asaiming
known all the others functions (given at the previousiteration o the nonlinea solver
R3(x3),- -+, R3(zp)). Then, functions R (1), R (x3),--- , RS (xp) are &
med knawn for updating function R (2), and so on urtil updating the last func-
tion k3 (xp). Now the convergenceis chedked by caculating /=7 || RS+ (z;) —
R (x;)||?. If thisnorm is snall enoughwe can define the functions Fj,(,, 1) (k) by
normalizing the functions R;, Ro, ..., Rp and come bad to step 1. On the contrary,
if this norm is nat small enough a new iteration o the nontlinea solver shoud be
performed by upditing functions R; ™2 (z;), i = 1,---, D and then checing again
the conwvergence Despite its smplicity, our experience proves that this drategy isin
faa very robust.

3. Application of the PGD to the simulation of cell signaling processes

When chemicdly reading spedes are present at very low concentrations (in the
number of tens or hundeds of moleaules, for instance) the resulting state can nat be
modeled acairately as deterministic andthe inherent randamnessof the system shoud
be taken into acourt. Thisis the case, for instance, when modeling gene regulatory
networks. It is well known that small numbers of moleaules can alter these networks
significantly (Hasty et al., 2001) (Sreenath et al., 2008.

Itisasowell known that under some drcumstances (awell stirred mixture, fixed
volume andfixed temperature), such asystem can be considered Markovian, andthat it
isgoverned by the so-cdl ed Chemicd Master Equation(CME) (Munsky et al., 2006),
which isaset of linea ordinary diff erential equations.

3.1. The chemical master equation
When deding with chemicd system in which the diff erent spedes are present at

very low copy nunbers, it is necessary to work with the number of moleaules present
at eat timeinstant, instead of working, as usual, with the mncentration o eat spe-
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cies. Thus, consider awell mixed system, at constant volume and temperature, descri-
bed by the state veaor

Z(t) = (#A,#B,#C,#D,...)T, [17]

with initial state Z(tg) = zo. Here, A, B, etc., represent diff erent chemicd spedes.
When some readionr; occurs, the system moves from z to z*, where the changein
the number of moleaulesis equal to its goichiometry in the readionr; :

LN in . in
Tj 18] ;T1+ Sy T2+ 0+ Sy TN
k;

i out out out
> s1 01 + 85T + o SN AN, [18]

with k; the rate constant of readion ;. In turn, siir"f“‘ represent the stoichiometric
coefficients of thei-th spedesand z;, represent the concentrationsof ead biochemicd
spedes.

This datetransition dependsonthe probabilit y that the changesdueto any readion
occur as described by the propensity function. For any readion j :

a;(z)dt = the probability, given Z(t) = z, that r; oceursin [t, ¢ + dt]

This date transition resultsin a change of moleaules of eat spedes:

vy = sl + 2%
or, equivalently,
aj(z — vj)
z — vj—>z, [19]
and
a;(z)
z—> 2z +v;. [20]

Let us define the probability that ead spedes exists in z number of moleaules at
anytimet :
P(z,t|z0,t0) = Prob{Z(t) = z, given Z(to) = zo}.
The CME describes the time evolution o the probability taking into acount eadh
propensity a; :
8P(Z, t|Z0, to) -
ot N
Z [aj(z — ’Uj)P(Z — ’Uj,t‘Zo,to) — aj(z)P(Z,t‘Zo,to)] .
J
[21]
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In compad notation, we will write the CME heredter as

OP(z,t)
o AP(z,1), [22]
where operator A contains the propensiti es of eat readion:
A=A [23]
J

Note that the choice of the probability instead of chemicd concentrations as es-
sential variable of the problem eliminates the need of determining the rate constants
of ead readion, and trandates the problem to finding the vaue of the propensiti es.

3.2. A method based on proper generalized decompositions

The purposed methodis constructed by asauming that the essential variable of the
problem, the probability of havinga particular chemicd state, is given by afinite sum
of separable functions (separated representation), i.e.,

P(z,t) =Y o F(21) ® Fi(22) @...® F{(2n) @ Fy(t), [24]

j=1

where, as mentioned before, the variables z; represent the number of moleaules of
spedes: present at agiven timeinstant. This particular choice of the form of the basis
functions allows for an important reduction in the number of degrees of freedom of
the problem, nxy x N x nr ingtea of (ny)", where N isthe number of dimensions
of the state space adn  the number of degrees of freedom of eat one-dimensional
grid established for ead spatial dimension. For this to be useful, one has to assime
that the probability is negligible outside some interval, and therefore substitute the
infinite domain by a subdamain [0, ..., m — 1], m being the chasen limit number
of moleaules for any spedesin the smulation. A similar assimption is behind aher
methods in the literature, such as the Finite State Projedion algorithm, for instance
(Munsky et al., 2009.

The CME is then written in a similar form, as expressed in Equation [23], by
expandingthe operator A in the form

na
A=) A®A® - @Ay QI [25]

j=1
where A; represent the matrix form of ead operator A; involved in the CME and

I represents the identity matrix, ading onthe terms depending ontime only. Their
particular form will be seen readily.
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PL lacl cl Rirc-2
l | | |

Figure 1. Schematic mechanism of the toggle switch. The constitutive P;, promoter
drives the expression of the lacl gene, which produces the lac repressor tetramer.
The lac repressor tetramer binds the lac operator sites adjacent to the Ptrc — 2
promoter, thereby blocking transcription of c¢I. The congtitutive Ptrc — 2 promoter
drives the expression of the ¢ gene, which produces the \-repressor dimer. The A-
repressor dimer cooperatively binds to the operator sites native to the P, promoter,
which prevents transcription of lacl

3.3. Simulation of a toggle switch

The behaviour of the A-phage virus is one the most studied and well-known
examples in gene regulatory networks. When a baderiophage )\ infeds a cdl, ei-
ther stays dormant or it reproduces until the dead of the cdl. The resulting behaviour
depends crucialy on two competing proteins that inhibit mutually ead other, see a
schematic representation in Figure 1. The so-cdled togde switch is composed of a
two-gene q-repressve network.

The operator form of the CME for this example is composed by two terms
(Heglandet al., 2007) : A = A; + Ao, given by:

A1P<2’1722) = 3 iizzf)(,z’l — 1,2’2) + 6(2:1 + 1) . P(Zl + 1,Zg>—
(ﬂjiz2 +46- 21) P(Zl,ZQ). [26]

and A, equivalent with z; and z, interchanged. We computed the solution for § =
0.05,a=1.0,y=1.0and 3 = 0.4.

The simulation started from a non-physiologicd state in which bah proteins sho-
wed a very high probability aroundz; = 2o = 15. Despite this initial state, after
t = 100s (Figure 2) one has a cae where both average values of both proteins and
small levels of the one protein combined with higher level of the other protein are
quite likely, and this remains the case for the stationary distribution as well (Hegland
etal., 2007, Figure 3.
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Marginal PDF for time = 100

0.12 —Protein 1
—Protein 2

0 10 20 30 40

Figure 2. Marginal probability distribution function at ¢ = 100s. Axes denote the
number of protein 1 and 2

P(zl,zz) for time = 300s

x 10"

-0.02) . i : 10

z 20
1 60 0 10

Figure 3. Solution at steady state (¢ ~ 300s) by separation of variables. Axes denote
the number of protein 1 (abscissa) and protein 2 (ordinate)

4. Conclusions

We have reviewed here the esential feaures of the Proper Generalized Decom-
paosition technique. Thistechniqueis particularly useful for the numericd solution o
models defined in highly-dimensional spaces. As a particularly challenging example
we have presented the ssimulation df gene regulatory networks, in particular that be-
haviour of the virus baderiophage A. This virus, although \ery simple, sinceits be-
haviour is governed by oy two competing proteins, is very well known, and clealy
shows the potential of the techniquein the field of Computational Biology.
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