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ABSTRACT. In this paper we review the possibilities associated with the use of Proper 
Generalized Decompositions for solving models established in highly multidimensional 
spaces. This technique has also been recently extended to problems that can be, under some 
circumstances, seen as multidimensional. 

RÉSUMÉ. Dans ce travail on passe en revue les possibilités offertes dans le cadre de la PGD 
(Proper Generalized Decomposition) pour la résolution de modèles définis dans des espaces 
multidimensionnels. L’application de cette dernière technique est étendue ici aux réactions 
chimiques avec un petit nombre de molécules réactives. Ces modèles sont gouvernés par des 
équations appelées « équations maîtresses ». Ils présentent une difficulté liée à un caractère 
fortement multidimensionnel que nous sommes parvenus à surmonter. 
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1. Introduction

Models defined in highly multidimensional spaces are ubiquitous in many
branchesof Sciences andEngineering. Beginning from the most classical description
of atomic structure, arising from Schrödinger equation, plenty of models present this
unique feature of being defined in spaces with a number of dimensions notably high
than three. Other examplesof this feature includemany modelsfor complex fluid mo-
delli ng, or the modelli ng of chemical reactions at very low concentrations (i.e., those
governed by theChemical Master Equation).

Themain difficulty related to thesemodelsconcernsthedifficulty of establishinga
(finite element, finitedifference) mesh in such ahigh number of dimensions. Consider,
for instance, a one-dimensional problem whose numerical description involves, say,
ten finite elements. If the model is extended to two-dimensional settings, the mesh
will be composed by10× 10 elements. If theproblem becomesthree-dimensional the
mesh increases to 103 elements, and so on. In the limit, for an 80-dimensional space,
a hardly imaginablemesh of 1080 elements would be necessary to solve the problem.
But 1080 is precissely the presumed number of elementary particles in the universe,
so “ No computer existing, or that will ever exist, can break thisbarrier because it is a
catastropheof dimension” (Laughlin et al., 2000).

This frustrating characteristic of highly-dimensional models has given rise to the
so-called curse of dimensionality. Onepossiblesolution lies in theuse of sparse grids
(Bungartz et al., 2004). However the use of sparse grid is restricted to models with
moderatemultidimensionality (up to 20). Another technique able to circumvent, or at
least alleviate, the curseof dimensionality consistsof usingaseparated representation
of the unknown field. Basically, the separated representation of a generic function
u(x1, · · · ,xD) (also known as finite sum decomposition) writes :

u(x1, · · · ,xD) ≈

i=N
∑

i=1

F 1
i (x1) × · · · × FD

i (xD) [1]

Note that the coordinates xi, i = 1, · · · , D, are defined in spaces of moderate
dimension, i.e. xi ∈ Ωi ⊂ R

di , di ≤ 3. Thus, the dimension of the model results
∑i=D

i=1 di. Eventually, oneof these coordinatescould be the timet ∈ I ⊂ R
+.

This kind of representation is not new, it was widely employed in the last decades
in the framework of quantum chemistry. In particular the Hartree-Fock (that involves
a single product of functions) and post-Hartree-Fock approaches(as the MCSCF that
involvesafinitenumber of sums) madeuseof aseparated representation of thewave-
function(Cancèset al., 2003) (Chinestaet al., 2008).

We proposed recently a technique able to construct, in a way completely trans-
parent for the user, the separated representation of the unknown field involved in a
multidimensional partial differential equation. This technique, originally described
and applied to multi -bead-spring FENE models of polymeric liquids in Ammar et
al. (2006), was extended to transient models of such complex fluids in Ammar et
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al. (2007). More complex models (involving different couplings and non-linearities)
based on the reptation theory of polymeric liquids were analyzed in Mokdad et al.
(2007).

Coming back to models defined in spaces of moderate dimension (d × D, d =
1, 2, 3) but whose solutions evolve in large time intervals, if one uses standard in-
cremental time-discretizations, in the general case (models involving time-dependent
parameters, non-linear models ...), onemust solve at least a linear system at each time
step. When the time step becomes too small as a consequence of stabilit y require-
ments, and the simulation time interval is large enough, standard incremental simu-
lation becomes inefficient. To ill ustrate this scenario, one could imagine the simple
reaction-diffusionmodel that describesthedegradation of plastic materials, wherethe
characteristic time of the chemical reaction involved in the material degradation is in
the order of some microsecondsand the one related to the diffusion of chemical sub-
stances (that also represents the material degradation characteristic time itself) is of
the order of years. In this case standard incremental techniques must be replaced by
other more efficient strategies.

Onepossibilit y consistsagain in performingaseparated representation of theunk-
nown field, that in thepresent case reduces to :

u(x, t) ≈

i=N
∑

i=1

Xi(x) · Ti(t) [2]

that allows, aswedescribe later, to non-incremental time integrationstrategies, which
can reducespectacularly theCPU time.

This space-time separated representation is not a new proposal. In fact such de-
compositions were proposed many year ago by Pierre Ladeveze as an ingredient of
the powerful non-linear-non-incremental LATIN solver that he proposed in the 80s.
During the last twenty years many works were successfully accomplished by the La-
deveze’sgroup. Theinterested reader can refer to (Ladeveze, 1999) andthereferences
therein. In the radial approximationapproach (thenamegiven in thepioneer worksof
Ladeveze) functionsdepending onspace andtheonesdepending ontimewere apriori
unknown, and they were computed byan appropriateminimizationtechnique.

This paper reviews some of the basic features of the method, together with some
interestingapplications in different fields.

2. Basics of the proper generalized decomposition

Basically, the separated representation of a generic functionu(x1, · · · , xD) (also
known as finitesumsdecomposition) reads :

u(x1, · · · , xD) ≈

i=N
∑

i=1

F i
1(x1) × · · · × F i

D(xD) [3]
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This kind of approximation only needs a technique able to construct, in a way
completely transparent for the user, the separated representation of the unknown field
involved in a partial differential equation.

The technique that we proposed for computing the different functions involved
in Equation [3)] consists of an alternating directions linearization strategy that we
summarizehere. For thesakeof clarity, andwithout any lossof generality, we restrict
our discussion to theD-dimensional Poisson’sequation :

△u = −f(x1, x2, ..., xD), [4]

whereu is a scalar function of (x1, x2, ..., xD). Problem [4] is defined in the domain
(x1, x2, ..., xD) ∈ Ω = (−L,+L)D with vanishingessential boundary conditions.
Theproblem solutioncan bewritten in the form :

u(x1, x2, ..., xD) =

∞
∑

j=1

αj

D
∏

k=1

Fkj(xk), [5]

where Fkj is the jth basis function, with unit norm, which only depends on the kth

coordinate.

It is well known that the solution of numerous problems can be accurately ap-
proximated using a finite (sometimes very reduced) number (N ) of approximation
functions, i.e. :

u(x1, x2, ..., xD) ≈

N
∑

j=1

αj

D
∏

k=1

Fkj(xk). [6]

The previous expression implies the same number of approximation functions in
each dimension, but each oneof thesefunctionscould be expressed in adiscrete form
using different number of parameters(nodesof the 1D grids).

Now, an appropriatenumerical procedureisneeded for computingthe coefficients
αj as well as theN approximationsfunctions in each dimension.

The proposed numerical scheme consists of an iteration procedure that solves at
each iterationn the following threesteps :

Step 1 : Projection of the solution in a discrete basis

If we assume the functions Fkj(∀j ∈ [1, ..., n];∀k ∈ [1, ..., D]) known (veri-
fying the boundary conditions), the coefficients αj can be computed by introducing
the approximation of u into the Galerkin variational formulation associated with
Equation [4] :

∫

Ω

∇u∗ · ∇udΩ =

∫

Ω

u∗f dΩ [7]
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Introducingthe approximation of u andu∗ :

u(x1, x2, ..., xD) =

n
∑

j=1

αj

D
∏

k=1

Fkj(xk) [8]

and

u∗(x1, x2, ..., xD) =

n
∑

j=1

α∗

j

D
∏

k=1

Fkj(xk) [9]

we have

∫

Ω

∇





n
∑

j=1

α∗

j

D
∏

k=1

Fkj(xk)



 · ∇





n
∑

j=1

αj

D
∏

k=1

Fkj(xk)



 dΩ =

=

∫

Ω





n
∑

j=1

α∗

j

D
∏

k=1

Fkj(xk)



 f dΩ [10]

Now, we assumethat f(x1, · · · , xD) can bewritten in the form

f(x1, · · · , xD) ≈

m
∑

h=1

D
∏

k=1

fkh(xk) [11]

Equation [10] involves integralsof a product of D functionseach onedefined in a
different coordinate. Let

∏D

k=1 gk(xk) beoneof these functionsto be integrated. The
integral over Ω can beperformed by integratingeach functionin itsdefinition interval
and then multiplying theD computed integralsaccordingto :

∫

Ω

D
∏

k=1

gk(xk) dΩ =
D
∏

k=1

∫ L

−L

gk(xk)dxk [12]

which makespossible thenumerical integration in highly dimensional spaces.

Now, due to the arbitrariness of the coefficients α∗

j , Equation [10] allows to
compute the n-approximation coefficients αj , solving the resulting linear system
of size n × n. This problem is linear and moreover rarely exceeds the order of
tens of degrees of freedom. Thus, even if the resulting coefficient matrix is densely
populated, the time required for its solution is negligible with respect to the one
required for performingthe approximation basis enrichment (step 3).
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Step 2 : Checking convergence

From the solution of u at iteration n given by Equation [8] we compute the
residual Re related to Equation[4] :

Re =

√

∫

Ω (△u + f(x1, · · · , xD))
2

‖u‖
[13]

If Re < ǫ (epsilon is a small enough parameter) the iteration process stops, yiel-
ding the solutionu(x1, · · · , xD) given by Equation [8]. Otherwise, the iteration pro-
cedure continues.

The integral in Equation [13] can be written as the product of one-dimensional
integralsby performinga separated representation of the squareof the residual.

Step 3 : Enrichement of the approximation basis

From the coefficients αj just computed the approximation basis can be enri-
ched by adding the new function

∏D

k=1 Fk(n+1)(xk). For this purpose we solve the
non-linear Galerkin variational formulationrelated to Equation[4] :

∫

Ω

∇u∗ · ∇udΩ =

∫

Ω

u∗f dΩ [14]

using the approximation of u given by :

u(x1, x2, ..., xD) =
n

∑

j=1

αj

D
∏

k=1

Fkj(xk) +
D
∏

k=1

Rk(xk) [15]

Theweighting functioncan be expressed as :

u∗(x1, x2, ..., xD) =

= R∗

1(x1)×R2(x2)×· · ·×RD(xD)+ · · ·+R1(x1)×R2(x2)×· · ·×R∗

D(xD)

[16]

This leads to a non-linear variational problem, whose solution allows to compute
theD functionsRk(xk). FunctionsFk(n+1)(xk) are finally obtained by normalizing,
after convergenceof thenon-linear solver, the functionsR1, R2, ..., RD.

To solve this problem we introduce adiscretization of those functions Rk(xk).
Each one of these functions is approximated using a 1D finite element description. If
we assume than pk nodes are used to construct the interpolation of functionRk(xk)
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in the interval [−L, L], then the size of the resulting discrete non-linear problem is
∑k=D

k=1 pk. Thepriceto pay for avoidingawholemesh in themultidimensional domain
is the solution of a non-linear problem. However, even in high dimensions the sizeof
the non-linear problems remains moderate and no particular difficulties have been
foundin its solution upto hundreds dimensions. Concerning the computation time,
even when the non-linear solver convergesquickly, this step consumes the main part
of theglobal computingtime.

Different non-linear solvers have been analyzed : fixed-point, Newton or one
based on an alternating directions scheme. In this work the last strategy was re-
tained. Thus, in the enrichment step, function Rs+1

1 (x1) is updated by assuming
known all the others functions(given at the previousiteration of thenon-linear solver
Rs

2(x2), · · · , Rs
D(xD)). Then, functions Rs+1

1 (x1), R
s
3(x3), · · · , Rs

D(xD) are assu-
med known for updating functionRs+1

2 (x2), and so on until updating the last func-
tionRs+1

D (xD). Now the convergenceis checked by calculating
∑i=D

i=1 ‖Rs+1
i (xi) −

Rs
i (xi)‖

2. If this norm is small enoughwe can define the functionsFk(n+1)(xk) by
normalizing the functions R1, R2, ..., RD and come back to step 1. On the contrary,
if this norm is not small enough, a new iteration of the non-linear solver should be
performed by updating functionsRs+2

i (xi), i = 1, · · · , D and then checking again
the convergence. Despite its simplicity, our experienceproves that this strategy is in
fact very robust.

3. Application of the PGD to the simulation of cell signaling processes

When chemically reacting species are present at very low concentrations (in the
number of tens or hundreds of molecules, for instance) the resulting state can not be
modeledaccurately asdeterministic andtheinherent randomnessof thesystem should
be taken into account. This is the case, for instance, when modeling gene regulatory
networks. It is well known that small numbers of molecules can alter these networks
significantly (Hasty et al., 2001) (Sreenath et al., 2008).

It is also well known that under some circumstances (a well stirred mixture, fixed
volume andfixed temperature), suchasystem can be consideredMarkovian, andthat it
isgoverned bytheso-called Chemical Master Equation(CME) (Munsky et al., 2006),
which is aset of linear ordinary differential equations.

3.1. The chemical master equation

When dealing with chemical system in which the different species are present at
very low copy numbers, it is necessary to work with thenumber of moleculespresent
at each time instant, instead of working, as usual, with the concentration of each spe-
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cies. Thus, consider awell mixed system, at constant volume andtemperature, descri-
bed by the state vector

Z(t) = (#A,#B, #C,#D, . . .)T , [17]

with initial state Z(t0) = z0. Here, A, B, etc., represent different chemical species.
When somereactionrj occurs, thesystem movesfrom z0 to z

∗, where the change in
thenumber of molecules is equal to its stoichiometry in the reactionrj :

rj : sin
1,jx1 + sin

2,jx2 + · · · + sin
N,jxN

kjGGGGGGAsout
1,jx1 + sout

2,jx2 + · · · + sout
N,jxN , [18]

with kj the rate constant of reaction rj . In turn, sin,out
i,j represent the stoichiometric

coefficientsof thei-thspeciesandxk represent the concentrationsof each biochemical
species.

This statetransition dependsontheprobabilit y that the changesdueto any reaction
occur as described by thepropensity function. For any reaction j :

aj(z)dt ≡ theprobabilit y, given Z(t) = z, that rj occurs in [t, t + dt]

This state transition results in a changeof moleculesof each species :

vij = s
in
i,j + s

out
i,j ,

or, equivalently,

z − vj

aj(z − vj)GGGGGGGGGGGGGGGAz, [19]

and

z

aj(z)GGGGGGGGGAz + vj . [20]

Let us define the probabilit y that each species exists in z number of molecules at
any time t :

P (z, t|z0, t0) ≡ Prob{Z(t) = z, given Z(t0) = z0}.

The CME describes the time evolution of the probabilit y taking into account each
propensity aj :

∂P (z, t|z0, t0)

∂t
=

∑

j

[aj(z − vj)P (z − vj , t|z0, t0) − aj(z)P (z, t|z0, t0)] .

[21]
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In compact notation, wewill write the CME hereafter as

∂P (z, t)

∂t
= AP (z, t), [22]

whereoperator A contains the propensitiesof each reaction :

A =
∑

j

Aj [23]

Note that the choice of the probabilit y instead of chemical concentrations as es-
sential variable of the problem eliminates the need of determining the rate constants
of each reaction, and translates theproblem to finding thevalueof the propensities.

3.2. A method based on proper generalized decompositions

Thepurposed methodis constructed byassuming that the essential variableof the
problem, theprobabilit y of havinga particular chemical state, is given byafinitesum
of separable functions(separated representation), i.e.,

P (z, t) =

nF
∑

j=1

αjF
j
1 (z1) ⊗ F

j
2 (z2) ⊗ . . . ⊗ F

j
N (zN ) ⊗ Ft(t), [24]

where, as mentioned before, the variables zi represent the number of molecules of
species i present at agiven time instant. Thisparticular choiceof the form of thebasis
functions allows for an important reduction in the number of degrees of freedom of
theproblem, nN × N × nF instead of (nN )N , whereN is thenumber of dimensions
of the state space andnN the number of degreesof freedom of each one-dimensional
grid established for each spatial dimension. For this to be useful, one has to assume
that the probabilit y is negligible outside some interval, and therefore substitute the
infinite domain by a subdomain [0, . . . , m − 1]N , m being the chosen limit number
of molecules for any species in the simulation. A similar assumption is behind other
methods in the literature, such as the Finite State Projection algorithm, for instance
(Munsky et al., 2006).

The CME is then written in a similar form, as expressed in Equation [23], by
expandingthe operator A in the form

A =

nA
∑

j=1

A
j
1 ⊗ A

j
2 ⊗ · · · ⊗ A

j
N ⊗ I, [25]

where Ai represent the matrix form of each operator Ai involved in the CME and
I represents the identity matrix, acting onthe terms depending ontime only. Their
particular form will beseen readily.
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Figure 1. Schematic mechanism of the toggle switch. The constitutive PL promoter
drives the expression of the lacI gene, which produces the lac repressor tetramer.
The lac repressor tetramer binds the lac operator sites adjacent to the Ptrc − 2
promoter, thereby blocking transcription of cI . The constitutive Ptrc − 2 promoter
drives the expression of the cI gene, which produces the λ-repressor dimer. The λ-
repressor dimer cooperatively binds to the operator sites native to the PL promoter,
which prevents transcription of lacI

3.3. Simulation of a toggle switch

The behaviour of the λ-phage virus is one the most studied and well -known
examples in gene regulatory networks. When a bacteriophage λ infects a cell , ei-
ther stays dormant or it reproducesuntil the dead of the cell. The resulting behaviour
depends crucially on two competing proteins that inhibit mutually each other, see a
schematic representation in Figure 1. The so-called toggle switch is composed of a
two-gene co-repressivenetwork.

The operator form of the CME for this example is composed by two terms
(Heglandet al., 2007) : A = A1 + A2, given by :

A1P (z1, z2) =
αβ

β + γz2
P (z1 − 1, z2) + δ(z1 + 1) · P (z1 + 1, z2)−

(

αβ

β + γz2
+ δ · z1

)

P (z1, z2). [26]

and A2 equivalent with z1 and z2 interchanged. We computed the solution for δ =
0.05, α = 1.0, γ = 1.0 andβ = 0.4.

The simulationstarted from a non-physiological state in which both proteins sho-
wed a very high probabilit y aroundz1 = z2 = 15. Despite this initial state, after
t = 100s (Figure 2) one has a case where both average values of both proteins and
small l evels of the one protein combined with higher level of the other protein are
quite likely, and this remains the case for the stationary distribution as well (Hegland
et al., 2007), Figure3.
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4. Conclusions

We have reviewed here the essential features of the Proper Generalized Decom-
position technique. This technique is particularly useful for the numerical solution of
models defined in highly-dimensional spaces. As a particularly challenging example
we have presented the simulation of gene regulatory networks, in particular that be-
haviour of the virus bacteriophageλ. This virus, although very simple, since its be-
haviour is governed by only two competing proteins, is very well known, and clearly
shows thepotential of the techniquein thefield of Computational Biology.
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