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ABSTRACT. The Discrete-Continuous Model, a coupling between dislocation dynamics and 
finite elements simulations, is used for modelling size effects in the mechanical properties of 
single-crystal superalloys. Both formation and evolution of the dislocation microstructures 
are analysed, and the crucial role of the storage of signed dislocations at the interfaces is 
discussed. The onset of plasticity is found to scale as the inverse of the channel width, and 
polarised dislocation networks at the interfaces significantly increase the flow stress with 
respect to a bulk crystal. 

RÉSUMÉ. Le Modèle Discret-Continu, utilisant un couplage entre simulations de dynamique 
des dislocations et des éléments finis, permet un calcul de l’effet de taille contrôlant le 
comportement mécanique d’un superalliage monocristallin. La formation et l’évolution des 
microstructures de dislocations sont étudiées, et le rôle majeur de l’accumulation des 
dislocations signées aux interfaces est discuté. L’écoulement plastique est initialement 
controlé par la largeur des couloirs de matrice et un éccrouissage fort est justifié par une 
accumulation de dislocations d’interfaces polarisées. 
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1. Introduction

Single-crystal nickel-baseγ/γ′ superalloysare extensively used in applicationsre-
quiring high strength and fatigue resistanceup to elevated temperatures. They mainly
consist of two phases: aductiledisordered fccNi matrix (theγ phase) and hard coher-
ent L12 ordered precipitates (the γ′ phase), regularly distributed in roughly cuboidal
shapes with faces parallel to the {100} planes. A substantial increase of the macro-
scopic flow stressof the single crystal can be achieved by decreasing the precipitate
size while keeping the volume fraction constant, for instance as measured by Duhl
(Duhl, 1987) for PWA1480, a representative single-crystal superalloy.

One approach to model their mechanical response is by using aperiodic unit cell
representation of the microstructure, where the two phasesare represented as a paral-
lelepiped with the mechanical properties of the precipitate, embedded inside another
with thoseof thematrix. Many authorshavemodelled themechanical behaviour for an
idealised microstructure using the Finite Element (FE) method, for instance(Pollock
et al., 1992; Nouailhaset al., 1997). However, the effect of theprecipitatesize cannot
be predicted by classical continuum theories, because they do not contain an intrin-
sic length scale. Several more sophisticated theories have been developed which, in
variousways, include alength-scaledependence(Acharyaet al., 2000; Gurtin, 2000).
Some attempt to incorporate an internal length throughthe concept of Geometrically
Necessary Dislocations(GND) introduced byNye(Nye, 1953). Non-local continuum
plasticity theories such as(Forest et al., 2000) or strain-gradient based plasticity using
the evolution of GND densities have also been applied to the simulation of the flow
behaviour of single crystal superalloys (Busso et al., 2000).

Nevertheless, Dislocation Dynamics (DD) simulation appears to be the most ap-
propriate tool to address such microstructural issues and the origin of the size effect.
DD simulations have already been carried out on a composite material subjected to
simple shear by (Cleveringa et al., 1997; Cleveringa et al., 1998) or on a constrained
strip (Shu et al., 2001). Both studies were carried out in 2D, and the main feature
controlli ng the plastic response is the formation of pile-ups. However, for the single
crystal γ/γ′ superalloys, such pile-ups are not observed experimentally so the size
effects observed there must be caused by another mechanism. This is why full 3D
simulations areneeded here, as in (Grohet al., 2005).

In thisarticle, the effect of the channel width at constant γ′ volumefraction onthe
tensile plastic deformation of single-crystal γ/γ′ superalloys is investigated using the
Discrete-Continuous Model (DCM). Emphasis is put on the elementary mechanisms
governing the yield stressin multislip conditions.

2. The Discrete-Continuous Model

The DCM (Lemarchand et al., 2001) is a method to solve complex boundary
value problems of dislocated bodies, which cannot be done by conventional DD
codes. Competing methods exist in the literature, for instance (Van der Giessen et
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al., 1995; Fivel et al., 1999; Zbib et al., 2002), but it is beyondthe scope of this arti-
cle to discusstheir relative merits and drawbacks. The DCM consists of two codes,
microMégas (DD) and ZéBuLoN (FE), coupled into a unified system. The DD code
accounts for thedislocation dynamicsandcomputes theplastic strain incrementsgen-
erated by dislocation glide and the associated stress, just as any other classical con-
stitutive law. The FE code predicts the strain increment and verifies the mechanical
equili brium of the boundary value problem, using the plastic strain distribution and
the stressesgiven by theDD simulation.

In this approach, material defects are modeled using eigenstrains (Mura, 1987).
In the framework of elastic theory, dislocation loops can bedescribed as a set of thin
plate-like coherent inclusions(Figures1a−c). Thiselementary dislocationslip, whose
directionandamplitudeisgiven bytheBurgersvector b, isphysically localised on one
cristallographic slip plane and bounded by a singularity at the dislocation line. In the
DCM scheme, the displacement jump associated to the dislocation loop propagates
with the dislocation line on a specific crystallographic plane. It is then distributed
over a slab of thicknessh. Outside the sheared volume, such distributions reproduce
the elastic fields of dislocations well (Figure1d) .

The simulated cell contains a precipitate surrounded by six channels, and is dis-
cretised by 4096 quadratic FE and 56361 degrees of freedom. Periodic Boundary
Conditions(PBC) are applied at all external boundaries. Calculationswereperformed
on threedifferent unit cells scaled up with the same mesh discretisation. Two cases
are shown in Figure 2. In all simulations, theγ′ volume fraction was 0.61, yielding a
constant ratio between channel width and precipitate size of 0.16, while varying the
channel width w = 0.08, 0.16, and 0.24 µm. In order to avoid PBC artifacts due to

Figure 1. (a) Eigenstrain εp
31 associated to a dipolar dislocation loop at the integra-

tion points in a finite element mesh. (b) View in 2D. (c) Thepresenceof the eigenstrain
creates a displacement jump of value b (×200). (d) Stressfield σ31 due to the loop,
calculated by the DCM
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Figure 2. Two simulated volumes with different channel widths and precipitate sizes
but with thesameprecipitate volumefraction of 0.61. Dislocationmicrostructures (a)
before any mechanical loading and(b) at 0.2% plastic strain

self-annihilation of dislocation loops (Madecet al., 2003), the precipitates have or-
thorhombic dimensions 0.48x × 0.50x × 0.52x µm3, with x a scaling parameter to
assessthe effect of precipitate sizewith x = 1, 2 or 3.

Isotropic elasticity is assumed everywhere with shear modulus µ = 51 GPa and
Poissonratio ν = 0.37. In theDD code, thelatticeparameter a = 0.36 nm isassumed
identical in both phases. This implies aBurgers vector of length b ≈ 0.25 nm.

Shearing of the precipitates has been incorporated into the DCM (Vattré et al.,
2009) andit correctly reproducesthe anomaloustemperaturedependence(Westbrook,
1967) of the bowing-assisted cutting process. In the γ′ phase the main parame-
ter controlli ng the dynamics of precipitate shearing is a configuration stress τAPB,
which accounts for an anti-phase boundary (APB) creation or recovery throughthe
APB energy γAPB. All simulations in this paper are carried out at 850◦C with
γAPB = 350 mJ.m−2 (Veyssière et al., 1997). At this temperature dislocations do
not penetrate into theprecipitates, which isconsistent with experimental observations
at small plastic deformations (Carry et al., 1977; Pollock et al., 1992), where the dis-
location loops move throughthe channels, bowing out between the precipitates when
a threshold stressτOrowan ≈ µb/w is reached.

Initial conditions in DCM simulations should be as close as possible to the exper-
imental conditions in terms of dislocation density, dislocation sourcedistribution and
dislocation entanglement. The initial configuration in a DCM simulation is generated
with a Volterra shearing procedure (Devincreet al., 2003). This procedure is needed
to set up an eigenstrain distribution in the FE mesh that is mechanically compatible
with the initial dislocation microstructure. The initial dislocation distributionconsists
only of dipolar loops, i.e. four connected edgesegmentswith thesameBurgersvector
(Figure 1). In this manner, dislocation segments act as Frank-Read sources and build
up an interconnected dislocation network freeof pending lines. A total dislocation
density ishomogeneously assigned to the12 octahedral slipsystems in the form of 24
dipolar loops.
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Table 1. Parameters used in the DCM simulations

Parameter Symbol Value Unit

Magnitude of Burgers vector b 2.5×10−10 m
Shear modulus µ 51 GPa
Poisson ratio ν 0.37 -

Damping constant B 1×10−4 Pa.s
Latticefrictionγ phase τF 107 MPa

APB energy γAPB 350 mJ.m−2

Initial dislocation density ρ0 6.2 × 1013 m−2

Misfit strain δ −3 %
Imposed strain rate γ̇ 20 s−1

In real materials, an additional strengthening mechanism is due to the latticemis-
match between the two phases. In the DCM simulations, it can be accounted for with
apreliminary thermo-elastic FE calculation, in which themicrostructure isartificially
heated from an initial statewithout misfit at room temperature. Thisrequirestwo ther-
mal expansion coefficients, aγ andaγ′

, respectively associated to theγ matrix andγ′

precipitate, and the appropriate heating interval ∆T . The misfit strain δ is then given
by (aγ′ − aγ)∆T , here equal to−3% at 850◦C.

As explained in (Vattré et al., 2010), an initial relaxation, where the APB energy
and the coherency stressdrive the dislocations towards the interfaces, is needed. The
dislocation configuration is supposed to be relaxed when there are no more disloca-
tions inside the precipitate. After the process, the total dislocation density on the 12
octahedral slip systems is 6.2 × 1013 m−2. As shown in Figure 2a, the dislocations
have moved to the interfaces where they locally reducethe coherency stress.

During the simulations, the relaxed dislocation configurations for the three mi-
crostructures are subjected to a pure tensile loading alongthe [001] crystallographic
axis. In order to run calculations within a reasonable time, a high resolved strain rate
of γ̇ = 20 s −1 is imposed. By comparison with the relaxed dislocation network in
Figure2a, Figure2bshowsthedense interfacial dislocation network obtained at 0.2%
plastic strain. In these calculations, the DD simulation time step is 5 × 10−11 s and
theFE timestep is ten timesas long. All simulation parametersare listed in Table (1).

3. Simulation results

3.1. Mechanical responses

Figure 3a shows the simulated stress-strain curves. Two different stages can be
distinguished. A first stage corresponds to a transient regime from zero to 0.01%
plastic strain, duringwhich plastic deformationmainly results from thebowout of the
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(a) (b)

Figure 3. (a) Effect of morphologies on the simulated stress-strain curves. The solid
straight lines represent linear fits, andthe dotted vertical li ne indicates the boundary
between the first and second stages. (b) Flow stressτf at 0.01%, 0.1% and 0.2%
plastic strain versus the inverse of the width w of the channel. The straight lines
represent fits of the dependenceon1/w

dislocations initially present inside the channels. A second stage corresponds to the
irreversibleplastic deformationfrom 0.01% plastic strain upto the end of simulations.
During this secondstage, thestrain hardening rate isconstant and plastic deformation
arises from dislocations passing around the precipitates. Irrespective of the strain
value, theflow stressincreases significantly with decreasing channel width.

3.2. Flow stress and work-hardening

To quantify the size effect, the values of the 0.01% yield stress (called Orowan
stresshere) τOrowan, the values of the flow stresses at 0.1% and 0.2% plastic strain,
τf,0.1% and τf,0.2% respectively, and the rate of hardening θ are given in Table (2).
The instantaneous work-hardening rate is defined as θ = ∆τ/∆γ, with τ and γ the
shear strain and the flow stressresolved onthe most active octahedral slip system.

Table 2. Flow stressand hardening of the threemorphologiesof aγ/γ′ single crystal
superalloy. The symbols τOrowan, τf,0.1%, τf,0.2% and θ denote the Orowan yield
stressat 0.01% plastic strain, the flow stresses at 0.1% and 0.2% plastic strain and
the hardening rate, respectively

x w (µm) τOrowan (MPa) τf,0.1% (MPa) τf,0.2% (MPa) θ/µ

1 0.08 164 243 320 0.149
2 0.16 83 155 212 0.142
3 0.24 55 108 152 0.134
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The flow stressτf increases with decreasing specimen size. To quantitatively as-
sessthis size effect, the flow stressis plotted in Figure 3b at 0.01%, 0.1% and 0.2%
plastic strain as a function of 1/w, showing that the simulation results can be related
to a1/w scaling law. In particular, the value of the 0.01% yield strength corresponds
quantitatively to the critical macroscopic Orowan stress, expressed here as

τOrowan = 1.02 µb/w. [1]

In addition, Figure 3b depicts the values of the flow stressτf at 0.1% and 0.2%
plastic strain, asafunction of 1/w. TheOrowan-like law fitswell to thedata in Figure
3b at all plastic strain levels and theflow stressmay be given as

τf = kµb/w, [2]

with k = 1.19 at 0.1% plastic strain andk = 1.32 at 0.2% plastic strain. Equation (2)
means that the flow stressis strongly dependent on the channel width.

The effect of specimen sizeon hardening is quantified in Table (2) by the values
of θ/µ. The work-hardening rate θ increases with decreasing specimen size. These
values can be related to dislocation storage at the interfaces, i.e. the sizedependence
of θ is related to thedislocation density deposited there, as will be discussed next.

3.3. Dislocation densities

Figure4ashowsthe evolution of thedislocation densityρ with plastic strain. At the
same γ′ volume fraction, the dislocation density increases linearly with strain, more
rapidly so for smaller channel widths. Figure4b ill ustrates thedislocationstoragerate
dρ/dγ as a function of plastic strain. The rate is constant during the secondstage, and
Figure 4c ill ustrates the saturated density rate as a function of 1/bw, where they can
be related through

dρ

dγ
= 2.17

1

bw
. [3]

Relation (3) can be viewed as expressing a macroscopic storage rate, which is
governed by a dislocation mean freepath (Kocks, 1976). This result, i.e. a dislo-
cation storage rate proportional to 1/w, means that the dislocation mean freepath is
mainly controlled by the material microstructure, and not by dislocations spacing as
commonly observed in many materials. Here, it has been shown with the simulation
(Vattré et al., 2010) that there is a noticeable decrease in the dislocation junction pro-
duction rate after somestraining. Hencethe contribution of forest interaction to strain
hardening is weak and the size-dependenceof the flow stresscannot be correlated to
the mean spacing between dislocations. Instead, as explained in the following, the
plastic reponse iscontrolled here by the channel width.
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(a) (b)

(c)

Figure 4. (a) Evolution of dislocation density with plastic strain corresponding to
the stress-strain responses of Figure 3a for all specimen sizes. (b) Rate of the total
dislocation density with plastic strain. Horizontal li nes represent the saturation rate
during the secondstage. (c) Saturation rate of the dislocation density evolution as a
function of 1/bw. The line represents a linear fit

3.4. Distribution of dislocation density

In order to quantify the local dislocation density variation, average densities were
calculated over strips of 8 nm thicknessrunning parallel to the interfaces. Two densi-
ties are considered: the total dislocation density, and thepolarised dislocation density
obtained by the Nye tensor α (Nye, 1953). The latter gives the closure mismatch of a
linear path traced ona threedimensional surface enclosinga volumeV containing an
arbitrary dislocation microstructure. In the discrete sense, this tensor is computed by
adding upthe contributions of every dislocation segment according to

αij =
1

V

N∑

k=1

lkbk
i tkj , [4]

where N is the number of segments in V , lk the length of segment k, bk its Burgers
vector, and tk its unit li ne vector. Only a local polarised dislocation density produces
anet, non-vanishing Nye’s tensor.
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(a) (b)

Figure 5. (a) Total dislocation density distributions acrossthe channel at 0.1% and
0.2% plastic strain for w = 0.08 µm. (b) Averaged polarised dislocation density αeq

calculated by Equation (4)

As shown in Figure5a, the total dislocation density ishigher at the interfaces than
within the channel, andthedensity of thesestored dislocations increaseswith ongoing
deformation. No pile-ups are observed, contradicting 2D DD simulations. The corre-
spondingaveraged polarised dislocation density profilesαeq = sign(α11)

√
αijαij are

shown in Figure5b. It showsthat thedislocation densities located at thetwo interfaces
are polarised. This strongly affects the local flow stressduring [001] tensile loading
because it induces internal stressesopposite to the applied stress, thereby reducing the
dislocation mobilit y in the channels.

4. Discussion

As discussed in the previous section, when the Orowan critical shear stress is
reached, the dislocations are sufficiently curved to glide into a channel. The chan-
nel width playsan important role in this threshold which, in thesimulated results, isat
about 0.01% plastic strain. Themicroplastic phase(i.e. from 0 to 0.01%) corresponds
to the bowout of preexisting dislocations in the channels between the interfaces. For
larger channel widths, dislocations glide longer distances before being blocked by in-
terfaces. The threshold stressdepends on the channel width according to 1.02 µb/w
(Equation 1). The theoretical value of this stress is also verified throughcollective
effects and multi -slip conditions in 3D DD simulations.

When the critical Orowan stressis reached, a dislocation loopexpands on a glide
plane within the channel and deposits dislocation segments at the interfaces. These
segments have ascrew or ±60◦ mixed character, and give rise to a polarised disloca-
tion density at the interfaces (Figure 5b). Their accumulation between the soft matrix
andthehard precipitategeneratesinternal stresses, andcontributes strongly to thehigh
work-hardening for 〈001〉-oriented specimens.
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Figure 6. Proportionality factor α for Taylor hardening versus plastic strain, corre-
sponding to Figures 3a and 4a

The dislocation density increases almost linearly with plastic strain, and at the
sameγ′ volume fraction the rateof increase is larger for smaller channel widths (Fig-
ure 4a). Moreover, the dislocation density rate dρ/dγ increases with decreasing chan-
nel width. In a consistent manner, strengthening is related to an increase of stresses
inside the channels when the specimen sizeis reduced. This phenomena is associated
with the emergence of a dislocation density polarised at the interfaces. Simulations
of dislocation dynamics show that a network of interfacial dislocations is formed in
3D without pile-up and the interfacedislocations accommodate the strain gradient
between both phases.

In physical theories of crystal plasticity, the dislocation density is commonly used
as the structural parameter for macroscopic descriptions of plastic flow, with the flow
stressτ governed by Taylor-like hardening:

τ = αµb
√

ρ, [5]

where α is a constant in the range 0.3−0.5 when plastic flow is controlled by forest
interactions (Sevill ano, 1993). Figure 6 shows the evolution of α with strain for the
threesimulated specimens. The stabili sed values lie in the range 1.3−1.8, far above
the typical range of 0.3−0.5. In other words, in these particular microstructures, the
elementary mechanism restricting dislocation mobilit y is stronger than forest interac-
tions. The γ/γ′ interfacewith its polarised network of interfacedislocations act as a
strong barrier opposed to dislocation glide. Also, it must benoted that the evolution of
ρ isnot thesame aspredicted by the classical storage-recovery model for dislocation-
dislocation interactions in bulk crystals. This is becausehere the storage rate is only
function of the channel width (Equation 3).

5. Conclusions

The mechanical response of nickel-base single-crystal γ/γ′ superalloys under
[001] loading at 850oC has been simulated by the Discrete-Continuous Method
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(DCM). Within theDCM, plastic flow isdirectly simulated byadislocation dynamics
code, providing a physically justified manner for including dislocation glide, multi -
plication, annihilation and interactions with theγ′ precipitates. Moreover, it contains
an intrinsic length scale: the length of the Burgers vector. As at 850oC dislocations
cannot penetrate into the precipitate, this work focused onthe effect of the channel
width onthemacroscopic flow stressat constant γ′ volumefraction. Themain results
are:

– Thesize effect is significant for both theflow stressandthework-hardeningrate.
Theonset of theirreversibleplastic regimebelow which dislocationscannot curve and
glide within channels is inversely proportional to the channel width w.

– No pile-ups were observed in the simulations, so the mean freepath is not re-
duced by a source-shortening mechanism. The dislocations are located at the inter-
faces, and the interfacial dislocation density increases by glide of mobile dislocations
throughthe channel which deposit immobile segments at the interfaces.

– The proportionality factor α between the flow stressand the square root of the
dislocation density is significantly higher (1.3−1.8) in these microsctructures than in
most single phased materials (0.3−0.5). This is because the dislocation density is not
distributed randomly but into apolarised interfacial network, thereby creatingastress
field in the channels opposing dislocation motion.

These findings raise fundamental questions regarding the formulation of extended
plasticity theoriesfor modelli ngwork hardening, which should includethelong-range
internal stressgenerated by the polarised dislocation density.
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