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ABSTRACT. We propose a new numerical method for computing the response of structures made 
of heterogeneous nonlinear elastic materials. The first step is to define a representative 
volume element (r.v.e.) associated to the microstructure. Then, the effective potential, or the 
overall strain density function, is computed numerically for a finite set of points in the 
macroscopic strains space. In the computation of structure, stress and tangent stiffness 
tensors can be obtained through interpolation and derivation in the discrete set of potential 
values. Material properties contrast, anisotropy and morphology of microstructure are 
arbitrary. 

RÉSUMÉ. Nous présentons une nouvelle méthode numérique simple pour calculer la réponse de 
structures constituées de matériaux hétérogènes élastiques non linéaires. Après avoir défini 
un volume élémentaire représentatif, le potentiel effectif (fonction densité d’énergie des 
déformations macroscopiques) pour le VER est calculé numériquement pour un ensemble fini 
de points dans l’espace des déformations macroscopiques. Lors du calcul de structure, les 
tenseurs des contraintes et tangents peuvent être obtenus par interpolation et dérivation dans 
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1. Introduction

Computing the response of nonlinear structures is a fundamental problem in en-

gineering. When the material constituting a structure is highly heterogeneous at the

microscopic level, a computationally efficient strategy consists in homogenizing the

material so as to obtain its macroscopic constitutive law. Though considerable pro-

gress has been made in analytical or semi-analytical methods (see e.g. Suquet (1998),

Willis (2000)), the restrictive assumptions inherent to analytical methods limit their

use for the computation of structures consisting of nonlinear heterogeneous materials

of complex microstructure and subjected to arbitrary macroscopic loadings.

On the other hand, the recent drastic increase in the performance of computers has

made possible to develop computational multiscale methods for computing structures

formed of nonlinear heterogeneous materials. These methods treat separately two or

more scales of interest. In non-concurrent multiscale methods (usually restricted to

linear problems), a representative volume is defined, and the effective coefficients are

computed by solving a limited number of problems associated with different boun-

dary conditions (see e.g. Kanit et al. (2003)). In the non-linear case, the number of

possible loading cases is in principle infinite, it is thus necessary to couple both scales

and to run computations concurrently at both scales (see Figure 1). This family of me-

thods, found in the literature under names such as "Concurrent Multiscale Methods",

"Multilevel Finite Element" or "Computational Homogenization" (see, e.g., Smit et

al. (1998), Feyel (1999), Kouznetsova et al. (2004)) are based on a simple idea : each

macroscopic integration point is first associated with a representative volume element

(r.v.e) of the material. Macroscopic strain relative to the integration point is then pres-

cribed as boundary conditions for the r.v.e. The relevant homogenization problem is

finally solved numerically for every increment of the macroscopic loading imposed

on the structure. These methods show many attractive features in comparison with

the aforementioned analytical approaches : it becomes possible to handle general lo-

cal constitutive laws as well as complex and evolving microstructures. However, their

main shortcoming is the computational cost which is still high even though use is

made of techniques like model reduction (Yvonnet et al. (2007)) or parallel compu-

ting (Feyel (1999)) dedicated to reducing it.

In this work we propose a new numerical method for computing the response of

structures made of nonlinear heterogeneous materials. The first step is to define a re-

presentative volume element (r.v.e.) associated to the microstructure. Then, the effec-

tive potential, or overall strain density function, is computed numerically for a finite

set of points in the macroscopic strain space. In the structures computation, stress and

tangent tensors can be obtained through interpolation and derivation in the discrete

set of potential values. Material properties contrast, anisotropy and morphology of

microstructure are arbitrary. The technique, proposed in the small strains elastostatics

context in Yvonnet et al. (2009), is extended in this paper to finite strains.
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Figure 1. Schematic view of concurrent and non-concurrent multiscale methods : in

concurrent multiscale methods, information is exchanged between scales during the

computations ; in non-concurrent multiscale methods, pre-computed data on the mi-

croscopic scale are utilized by the macroscopic model

2. Review of nonlinear homogenization for hyperelastic materials

We consider a representative volume element (r.v.e) Ω with external boundary ∂Ω
in the reference configuration of a composite consisting of N homogeneous hyper-

elastic phases. The subdomain of Ω occupied by phase r ∈ {1, 2, ..., N} is denoted

by Ωr and described by the characteristic function χ(r) such that χ(r)(X) = 1 for

X ∈ Ωr and χ(r)(X) = 0 for X /∈ Ωr. We shall symbolize the volume average over

Ωr by 〈.〉r and the one over Ω by 〈.〉. In particular, c(r) =
〈

χ(r)
〉

is the volume frac-

tion of phase r. The interfaces between the phases of the composite are taken to be

perfect.

Let be given the local strain-energy density function Ψ of the composite under

investigation by

Ψ(X,C) =
N
∑

r=1

χ(r)(X)Ψ(r)(C), [1]

where Ψ(r) is the strain-energy density function of phase r, assumed to be convex.

A material points is identified by its position vector X in the reference configuration,

while the current position of the same point is denoted by x in the deformed configu-

ration Ω(t). The deformation gradient F at X is defined as F = ∂x
∂X . The constitutive

behavior of the phases is assumed to be purely elastic and characterized byΨ(r) which
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are functions of the right-Cauchy-Green strain tensor C = F
T
F. In the Lagrangian

description, the local constitutive law is then given by :

S(X) = 2
∂Ψ

∂C
(X,C). [2]

where S is the second Piola-Kirchhoff stress tensor which must satisfy the equili-

brium equation

div(FS) = 0 in Ω [3]

in the absence of body forces. Under the length-scale separation hypothesis, the effec-

tive stored-energy function Ψ̄ of the composite is defined by (Hill (1972))

Ψ̄(C̄) = inf
C∈K(C̄)

〈Ψ(X,C)〉 = inf
C∈K(C̄)

N
∑

r=1

χ(r)
〈

Ψ(r)(C)
〉(r)

[4]

where K denotes the set of kinematically admissible strain tensors. From the defini-

tion (4), it can be shown that Ψ̄ is objective, so that Ψ̄(C̄) = Ψ̄(Ū), where Ū is the

macroscopic right stretch tensor in the polar decomposition of the macroscopic de-

formation gradient F̄ = R̄Ū, with R̄ denoting the macroscopic rotation tensor. Note

that Ū 6= 〈U〉 and R̄ 6= 〈R〉. It follows from the above definition that the global or

macroscopic constitutive relation for the composite is then given by :

S̄ = 2
∂Ψ̄

∂C̄
(C̄), [5]

where S̄ = 〈F〉−1 〈P〉 is the macroscopic second Piola-Kirchhoff stress tensor ex-

pressed in terms of the average first Piola-Kirchhoff stress tensor 〈P〉. Different types

of boundary conditions can be considered, such as uniform traction, uniform strain, or

periodical boundary conditions. In this work we use the periodical ones, namely

u(X) = (F̄− 1)X+ ũ(X) on ∂Ω, [6]

with ũ(X) being periodical on ∂Ω. In this work, we solve the local problem to com-

pute the effective potential Ψ̄. As Ψ̄ is invariant with respect to a rotation R̄, we can

express the boundary conditions with respect to C̄. Using polar decomposition and

choosing arbitrarily R̄ = 1 we obtain F̄ = Ū = C
1/2 and then :

u(X) = (C̄1/2 − 1)X+ ũ(X) on ∂Ω. [7]

In this work, the main purpose of the proposed numerical method is to provide a

twice continuously differentiable numerical estimation for the effective strain-energy

density function Ψ̄.
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Figure 2. (a) Macroscopic strain domain for a 2D-compressible problem. Deformed

r.v.e. associated with selected macroscopic strains states are depicted ; (b) continuous

interpolation of the numerical potential in the C̄11 − C̄22 plane

3. The method of numerically explicit potentials

The method of Numerically Explicit Potentials (NEXP for short) was originally

proposed in Yvonnet et al. (2009) in the case of small elastic strains and is extended in

this paper to hyperelasticity. The main idea is to replace the potential w̄(ε̄) by Ψ̄(C̄),
though some difficulties related to the definition of the macroscopic strain domain

exist. An appropriate methodology is currently developed and will be presented in

details in a future work.

When a hyperelastic composite is under investigation, the form of Ψ̄ as a function

defined over the macroscopic strain space E is in general unknown and cannot be

exactly specified in terms of a finite number of parameters. In other words, Ψ̄ has not

an exact finite representation. However, once Ψ̄ has been accurately evaluated for a

sufficient number of points of E , we expect that, under certain regularity conditions

for Ψ̄, there is a good continuous but finite approximation Ψ̄∗ for Ψ̄ such that Ψ̄∗(C̄)
is close enough to Ψ̄(C̄) for any point C̄ of E .

In this work, we first consider an r.v.e. Ω of the hyperelastic composite and accu-

rately estimate Ψ̄ for a sufficient number of points of E by the finite element method,

as illustrated in Figure 2. Then, a continuous approximation Ψ̄∗ of Ψ̄, is constructed

by interpolating the computed discrete values of Ψ̄. The interpolation functions used

are required to be twice continuously differentiable (or C2), so that we can finally ob-

tain the approximated effective stress-strain relation and tangent stiffness tensor by

calculating the first and second derivatives of Ψ̄∗.
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3.1. Discrete representation of the potential

The space E consisting of all macroscopic strain tensors C̄ will be referred to as

the loading space, since, in the following, the macroscopic variable prescribed on the

boundary ∂Ω of Ω is an element C̄ of E . Let {e1, e2, e3} be a three-dimensional (3D)

orthonormal basis. Here, we decompose C̄ as follows :

C̄ = C̄1e1 ⊗ e1 + C̄2e2 ⊗ e2 + C̄3e3 ⊗ e3 +
C̄4√
2
(e2 ⊗ e3 + e3 ⊗ e2)

+
C̄5√
2
(e1 ⊗ e3 + e3 ⊗ e1) +

C̄6√
2
(e1 ⊗ e2 + e2 ⊗ e1) . [8]

The following relations arise :

C̄1 = C̄11, C̄2 = C̄22, C̄3 = C̄33,

C̄4 =
√
2C̄23, C̄5 =

√
2C̄31, C̄6 =

√
2C̄12. [9]

It is well-known that this notation is mathematically more consistent than the traditio-

nal Voigt one. In a similar way, we can introduce the components S̄α (α = 1, 2, ..., 6)
and S̄ij(i, j = 1, 2, 3) of the macroscopic stress tensor S̄, which are related by the

relations similar to (9).

In the general situation, the potential Ψ̄ is defined over E which can be viewed as

a six-dimension vector space, i.e.

Ψ̄ = Ψ̄(C̄1, C̄2, ..., C̄6), [10]

and the effective stress-strain relation and the effective tangent elastic tensor L̄ =
∂2Ψ̄/∂C̄∂C̄ are given by

S̄α = 2
∂Ψ̄

∂C̄α
, L̄αβ = γL̂αβ , L̂αβ = 4

∂2Ψ̄

∂C̄α∂C̄β
. [11]

where the values of γ for the different combinations of α and β are provided in Yvon-

net et al. (2009). However, we are sometimes interested only in a particular problem,

for example a plane-strain problem relative to the plane x1 − x2. In such a case, Ψ̄
depends only on C̄1, C̄2 and C̄6, and the value range of the suffixes α and β in (11) are

{1, 2, 6}. In this section, we focus our attention only on the general situation. When

a specific problem is in question, it is relatively easy to adapt the general method

presented in this section.
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3.2. Interpolation methods

Several techniques can be used to interpolate the effective potential data in the ma-

croscopic strain space. In Yvonnet et al. (2009), we have proposed two techniques,

though many others could be investigated. When the data is structured in the form

of a high-dimensional grid, a simple technique is the multidimensional cubic spline

interpolation of Habermann et al. (2007). However, for high-dimensional stain space,

the computational times and memory requirement needed to carry out the interpola-

tion process narrows down its uses. We have proposed an efficient interpolation tech-

nique based on separated variables representation of the potential (see e.g. Carol et al.

(1970), Kiers (2000)). The aim is to find a separated variables representation of the

potential in the form :

Ψ̄(C̄1, C̄2, ..., C̄6) ≈ Ψ̄∗(C̄1, C̄2, ..., C̄6) =

R
∑

r=1

φ̃r
1(C̄1)φ̃

r
2(C̄2)...φ̃

r
6(C̄6) ,

[12]

where φ̃r
j(C̄j) are the interpolated values of φr

j :

φ̃r
j(C̄j) =

n
∑

k=1

Nk(C̄nj)
{

φr
j

}

k
. [13]

In Eq. (13), Nk are one-dimensional C2 interpolation function associated with node k,

and n denotes the number of nodes supporting the shape functionsNk(C̄j) whose va-

lue at C̄j is different from zero. The procedure to construct the vectorsφr
j is described

in Yvonnet et al. (2009). The stress can be expressed by

S̄∗
i (C̄1, C̄2, ..., C̄6) = 2

R
∑

r=1











∏

k 6=i

φ̃r
k(C̄k)







∂φ̃r
i (C̄i)

∂C̄i



 , [14]

where

∂φ̃r
i (C̄i)

∂C̄i
=

n
∑

k=1

∂Nk(C̄i)

∂C̄i
{φr

i }k . [15]

The approximated value L̂
∗ of L̂ is evaluated in a similar manner, by using (11).

In this work, the functions Ni are chosen to be one-dimensional C2 cubic spline func-

tions, even though other C2 interpolation schemes can be considered. For a strain

domain of high dimension, this approach only requires finding the coefficients of one-

dimensional spline functions, and thus only a small system of equations has to be

solved, which saves computational time and memory. Furthermore, the separated re-

presentation technique needs only storing one-dimensional discrete functions and thus

p× d×R values.
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4. Numerical example

4.1. Validation tests

Firstly, we test the accuracy of the proposed method by comparing it with full

FEM calculations. We consider a r.v.e. as depicted in Figure 6c. Each phase is assumed

isotropic and governed by a constitutive law deriving from the following strain density

function :

Ψ(C) =
1

2
λ (log(J))

2 − µlog(J) +
1

2
µ (Tr(C)− 3) . [16]

The corresponding stress (second Piola-Kirchhoff stress) is expressed by

S(C) = λlog(J)C−1 + µ
(

I−C
−1

)

. [17]

The following parameters are used within each phase : Ei = 10000 MPa, νi = 0.3, Em

= 100 MPa, νm = 0.4, where µ = E/(2(1 + ν)) and λ = Eν/((1 + ν)(1 − 2ν)),
and the indices i and m refer to the inclusion and matrix, respectively. We first com-

pute the NEXP in a strain domain chosen as : C̄11 ∈ {0.5; 1.1}, C̄22 ∈ {0.9; 3.5}
and C̄12 ∈ {−1.6; 0.1}. In this 2D example involving a compressible material, the

macroscopic strain domain is three-dimensional. We chose 11 points were defined re-

gularly within each axis. Some points in this strain space led to a divergence of the

computations due to very large distortion and entanglement of the materials between

the inclusions. For those points, a special extrapolation procedure, defined more in

details in a forthcoming paper, has been utilized to carry out the interpolation proce-

dure. We then define some paths along the strain space, not matching the computed

data. For each path, we compute the NEXP solution via the above framework, by sim-

ply interpolating the data. Both energy and stress solutions are compared with a full

FEM computation. We can notice from Figures 3 and 4 that in both cases, very good

agreement between the proposed approximation and a full computation is noticed. De-

formed configurations corresponding to the strains states A,B and C in Figures 3 and

4 are depicted in Figure 7.

4.2. A two scales example

Many numerical examples in the small strains contexts have been presented in

Yvonnet et al. (2009) to study the accuracy and efficiency of the method in that case.

Here we present preliminary results of the computation of structures made of hete-

rogeneous materials at finite strains. The r.v.e. associated with the microstructure is

depicted in Figure 6 (c). The same constitutive laws and parameters as in previous

example are used within each phase. The microstructure then exhibits a high pro-

perties contrast (see phase response in Figure 8). The numerical potential is the one

computed in the previous example. The structure, depicted in Figure 6 (a-b), is stret-

ched along the e2-axis. The response of the composite structure is provided in Figure

8. This example shows that a simple mixture rule (corresponding to the Voigt upper
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Figure 3. Computed value of the effective potential (a) and the effective stresses (b)

along a strain path. Comparison between NEXP and a full FEM computation. The

loading path involves biaxial traction
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loading path involves uniaxial stretching combined with shear

bound) dramatically overestimates the rigidity of the material and highlights the use-

fulness of the method elaborated. The von Mises stress field of the sample composed

of the matrix material, composite and inclusion material, respectively are shown in

Figure 7, as well as the deformed configuration of the sample for each case.
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Figure 5. Deformed configurations of the r.v.e. for loading states A, B and C (see

Figures 3 and 4)
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Figure 6. a) Geometry of the composite tensile sample problem ; b) mesh of a quarter

of the structure ; c) mesh of the r.v.e
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5. Conclusion

A non-concurrent multiscale method has been proposed to compute the response

of structures made of nonlinearly elastic heterogeneous materials at small and large

strains. The key idea is to first compute numerically the effective strain-energy po-

tential for a number of points discretizing the macroscopic strain space. The resulting

data are stored in the form of a hypermatrix or a set of vectors. The estimation of the

effective strain-energy potential valid for the whole of the macroscopic strain space is

then constructed by appropriately interpolating the preliminary discrete results. The

effective stress-strain relation and tangent tensor are finally derived in a numerically

direct and explicit way via efficient multi-dimensional interpolation techniques. The

method possesses the following features :

(a) Once the Numerically Explicit Potential is constructed after the preliminary

stage, the stress and elastic tangent tensors can be readily evaluated without any new

local FE computations. The numerical treatment necessary to determining the effec-

tive stress and elastic tangent tensors is far less than performing a local nonlinear FE

computation as in concurrent methods. Nevertheless, the present method is in this

work restricted to non-dissipative materials, while concurrent methods have not this

limitation.

(b) In concurrent methods, the only way to compute the tangent tensor is to achieve

numerical evaluation by a perturbation method (Feyel, 1999), implying additional

costly finite element computations. In the present method the tangent elastic tensor

can be derived explicitly from the NEXP.

(c) The method is not limited on the use of FEM at the local level, any alternative

solver can be used.
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(d) The preliminary computations can be costly for 3D problems or very complex

microstructures. However, as the local problems for nodal effective responses are in-

dependent, parallel computations can be straightforwardly implemented.

However, the present work is limited to nonlinearly elastic heterogeneous materials

without internal variables. Extension of the basic idea of the proposed approach to the

homogenization of other nonlinear heterogeneous materials is being envisaged and

will be presented in forthcoming works. Another future direction of this work is the

introduction of uncertainties at the microscopic level to study their influence on the

macroscopic response of the material.
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