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ABSTRACT. We address here the case of electron-matter elastic interaction as it occurs in
Transmission Electron Microscopy (TEM) experiments. In the forward problem, we show that
it is possible to derive the scattered electron wave function as the solution of a Helmholtz
equation. This equation depends on the spatial potential associated with the analyzed sample,
and can be relevantly solved using the Finite Element Method (FEM). Then we present an
inverse formulation dealing with the determination of the sample’s potential when the total
wave function is measured at the exit plane of the sample.

RESUME. Nous nous intéressons ici au cas de [interaction élastique électron-matiere
rencontrée dans un microscope électronique en transmission (MET). A partir du potentiel
spatial caractérisant [’échantillon observé, nous montrons que le probléeme direct permettant
d’obtenir la fonction d’onde électronique a la sortie de 1’échantillon peut s écrire comme une
équation de Helmholtz, qui peut étre résolue de fagon pertinente par la méthode des éléments
finis (MEF). Une formulation du probleme inverse qui a pour but de retrouver le potentiel de
I’échantillon a partir de la fonction d’onde mesurée a la sortie de I’échantillon est également
présentée.
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1. Introduction

Problemsdedi ngwith wave scateringin aheterogeneousmedium areinvestigated
in applicaions, whose asciated scdes can be extremely diff erent (seismic waves,
ultrasound waves, etc.), and are typicdly solved using the Finite Element Method
(FEM), whatever the scde of the problem may be (seefor example (Epanomeritakis
et al., 2008 for the cae of seismic waves). Here we want to addressthe case of
eledron-matter elastic interadion as it occurs in Transmisson Eledron Microscopy
(TEM) experiments (Smith et al., 1982. The aswciated gadl is to determine the
eledronic structure of a sample by studying how it scatersan eledronwave.

In the forward problem, we assume that we know the spatial potential field associ-
ated with the sample onthe dedronic scde, andwe cdculate onthe aomic scdethe
scdtering o the dedron wave function. By introducing nonrestrictive simplifying
asaumptions, it is posshble, even onthis cde, to use the FEM to carry out the cdcula-
tion with areasonable computational cost. Then the obtained numericd result can be
compared with scateringinformation measured in TEM.

To gofurther, we can define the foll owing inverse problem to determine the dec
tronic structure of the studied sample: we look for the spatial potential field that leads
to anumericdly cdculated scatered eledronwave function, which is as close & pos-
sible to the experimental one. The solutions of an inverse problem, however, are well
known to be unstable and nad unique. As we have shown in (Puel et al., 2008, the
determination o a spatially-variable field of properties consists in an inverse prob-
lem that is awkward to regularize, particularly with typicd Tikhonovregularization
terms. Thereforewe propacse here astrategy inspired from (Bangerth et al., 2007) and
based ona spedfic spatial discretization o the sample's paentia field. Thisfield is
numericdly sough by means of a mesh that is independent from the mesh used for
the resolution o the wave scatering problem. This gedfic mesh isinitially coarse,
in order to regularizethe inverse problem, but can then be iteratively refined by wsing
locd error estimators classcdly used in mesh adaption, to increase the acaracy of
theidentified spatial potential field.

2. Theoretical framework of the forward electron scattering problem

Classcdly, theincident eledroncan be considered as a complex plane wave func-
tion asociated with a given red wave vedor k;:

¥i(x) = 9; exp(ik; - x) [1]

when thetime harmonic fador isremoved. In an empty domain (2., thiswave function
satisfies the foll owing Schrodinger equation, expressed in atomic units (a.u., distances
in Bohr and energiesin Hartree):

5 A = By 2
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where E; = ||k;||?/2 isthe energy of the incident eledron, and Ay isthe Lapladan
operator with resped to the spacevariable x. The domain 2, correspondngto the
sample is charaderized by a spatial potential field V,, associated with the sample’'s
eledronsand nuclei, which vanishes rapidly outside €.

The complete problem to solve shoud consider theincident dedronaswell asthe
sample’'s particules in the following generic Schrodinger equation:

5 (Bt A s + [Vea 0 30) + Va0t = B 3

where v.s = 1es(x, X;) isthe total wave function associated with the total energy £
of the system. The sample's potential i s expressed as the sum of two paentials V; and
V.s correspondngto the sample’'s slf-interadion and the incident eledron’s interac
tion with the sample respedively. x and x, stand for the spacevariable as<ociated
with the incident eledron and al the other particles respedively.

- -

_____

Figure 1. Considered damain for the dedron scattering problem

In order to decupethetermsrelated to theincident eledronfrom those asciated
with the sample, we use the result from (Wang, 1995 consisting in approximatingthe
total wave function ¢ as the product of two wave functions ¢; and ¢, asciated
with the sample and the incident eledron respedively. Asaresult, ¢, shoud satisfy
the foll owing equation:

A9 + V() = (B~ B)ye(x) 4

where F,; isthe sample’'senergy andV isthe sample'spatential as e bytheincident
eledron:

Vi(x) = / Ve (3, 30) [ () s (5]

In the particular situation of inelastic scattering, when ||k;|| is not constant aaoss
the domain, the latter system hasto be solved asawhale, and guantum transiti ons oc-
curringinside the sample can be theoreticadly observed (Schattschneider et al., 2009.
Onthe contrary, in the case of elastic scateringthat we want to addresshere, it isthen
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posdble to simplify the previous equation using an approximation commonly used in
TEM: the incident eledron’s velocity is very large, so that the energy £ — E, can
be gpproximated by the incident eledron’s energy F;, which is known. In addition,
it is possble to go further by expressng the dedron wave function as the sum of
the known incident wave v; and o the unknowvn scatered wave 4. The scatered
eledronwave function ) hasto satisfy the foll owing Helmhaltz equation:

A+ By = Vil (6]

where we have considered that V' is snall when compared to E;.

In the conventional TEM environment, the outgoingwave v; + 14 is magnified by
aseries of magnetic lenses all owingan analysisboth inimaging ar in diffradion mode
(i.e. with a Fourier transform of the wave). The intensity of the final wave ¢ is then
colleded on cevices such as a screen, animaging date or aCCD camera. Inthiscase,
¢ results from the cnvdution o ; + 14 with the TEM’s transfer function, which
mostly takesinto acourt the df eds of the defocus and o the objedivelens phericd
aberration. Inthefollowing, we will not addressthese defeds, and, disregarding gven
scde endrotationfadors, wewill consider asthe outgoingwave intensity the dedron
wave function's square modue ||+ ||2 = || + vq||? cdculated ona virtua plane
3. located at the exit side of the sample, as depicted in Figure 1.

3. Numerical resolution of the forward electron scattering problem

From the previous edion, it is obtained that the forward problem consistsin solv-
ing the Helmholtz Equation [6] for the scattered eledronwave function .

3.1. Theclassical approach vs. the FE computation

The dasscd approach consistsin consideringthe Greaen’sfunctionassociated with
the Helmhaltz equationto be solved:

o(r) = % 7

After multi plying Equation [6] with g and integrating by parts, the scattered wave
function; can be expressed as.

val) = [ VeI lalx— yidy = (Vi) ) (9 €

In pradice, 14 isthen cdculated using the multi slice method, which divides the sam-
ples into several dlices with resped to the thickness (Ishizuka et al., 1977 Stadel-
mann, 1987 Williams et al., 1996 Kirkland, 1998. Althoughclasdcdly used, this
method recesdtates a more or lessempiricd choice of these dices' size andis nat
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able to take into acourt the waves that may be refleded badk and forth between the
atoms.

Instead of using the previous method we prefer to consider an approach that is
able to solve Equation [6] withou further assumptions. This approach shoud then be
ableto ded with non periodicd samples (i.e. with asingle defead) as well asto take
into acourt all the wavesinteradingin the problem.

Therefore we propose to use the FEM, althoughthis requires some adaptations.
Thefirst oneisrelated to thefad that theinitial problem [6] is defined onadomain €2,
whose dimensions are infinite. In spite of this, it can be shown that the scattered wave
function ), is of the evanescent kind far from the considered sample, which allowsto
boundthe domain 2. with aboundiry dencted 3, in Figure 1. On thisboundary the
foll owing evanescent condtionis applied, as proposed in (Popoy, 2006:

Ma
n = i||ki|[va [9]

where n stands for the unit outward namal alongthe boundiry > ..

The main difficulty, however, lies in the high-frequency content of the problem
to be solved. While interatomic distances are aou 5 a.u. (and sample’s thickness
about 10° a.u.), an estimate of the incident wave lengthis \; = 0.05 a.u. If we sssume
that 10 FE degrees of freedom par wave length are to be used in order to acarately
discretize the cdculated wave, an amourt of 10° degrees of freedom is required to
mesh asingle aystalline cdl, which would beimpradicd as such without additional
adaptations.

3.2. Paraxial approximation

In order to ded with the high-frequency content of 14, the paraxial approximation
consistsin searching for the unknavn ¢4 such that:

ha(x) = Q;d(X) exp(ik; - x) [10]

where k; is the incident wave vedor, alongthe microscope’s axis in the case of par-
allel ill umination (which corresponds to classcd experimental condtions). Even if,
formally, this approximation daes not imply that the scatered wave function shoud
be oriented along the incident wave's diredion, this fits wel with the TEM’s exper-
imental condtions, where dl the rays that are diffraded with an angle greder than
abou 30 mrad are truncated by the microscope’s transfer function.

By using the gpproximation[10] into Equation[6], one gets:
Ly . ~ -
§A¢d +iki - Vipg = Vh; inQ, [11]
becaise E; = ||k;||?/2. Similarly, the evanescent condition [9] gives, with [10]:

O

o =ikl = ki 1)t 0N Sog [12]
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3.3. Numerical FE resolution

The numericd resolution of the previousgroup d equationsfirst consistsin choos-
ing finite dimensional spaces vV}, and W), using typicad FE discretizaions associ-
ated with a given mesh Mj,. Then the discrete forward problem consists in finding
Q;d,h € W, such that:

1 - ) .
/ <—§V7ﬁd’h -Vuwy +ik; - de’hw;i)
Qe
[ ~ -
[0l =k wdap = [ Vidiwi veews (13
Yoo Qe

whereV and-* standfor the gradient operator andthe complex conjugaterespedively.
Vi € Vy, isthe spatial discretization o the sample’s potential V' onthe mesh M,,.

As a example to demonstrate the validity of the proposed approach, we choose a
very thin 2D sample made of pure a-iron. The potential V' asociated with the aystal
is dmulated by means of a Yukawa's potential (Ashkroft et al., 2002):

N exp(—ary)
V=> Vo——= [14]
k=1 "k

where r, stands for the distance from the k-th nucleus (out of N nuclei), and V,, and
a aretwo constantsto set. Thispotentia is discretized onthe mesh Mj,.

085 o I".— '\-J:-.\- - |
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Figure 2. (a) FE forward calculation o ||¢).||? = || + 4||? for an a-iron sample
(b) FFT of the outgoing wave function; + 14 onthe \virtual plane X,

Figure 2 shows the cdculation with 600, 000 degrees of freedom of the intensity
[0el |2 = ||tbs + tbal|? in @200 keV-microscope with |[k;|| = 130 rad/(au.). The
chaosen sample, whose thickness (2 nm) is below adua experimental values, is ori-
ented alongthe [001] diredion, and the asociated Yukawa's potential is represented
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in Figure 2 with isoli nes representing the location of the sample'snuclei. Since Equa-
tion[13] is linea with resped to the incident wave's amplitude @,h as well asthe
potential’s amplitude V,,, both values are set equal to 1. In addition, an absorption
coefficient of 5.10~2 is introduced to improve the cnvergence of the cdculation
Eventually the Fast Fourier Transform (FFT) of the outgoingwave function ¢; + g4
is depicted in Figure 2. Diffraded beams clealy appea, acording to Bragg's law
relative to the interatomic distances and the incident wave length ;.

4. Formulation of theinverse electron scattering problem

Theinverse problem consistsin determiningin §2. the spatial potential field V' such
that the dedronic wave'sintensity |[t; + 1)q||?, which is numerically calculated with
V}, onthe virtual plane X,,, best fits the measured intensity ||+, ||* of the outgaing
wave. By thismeans, it shoud be possbleto deted adefed within the studied sample.

The usual technique is to introduce the discrepancy between the cdculated and
the measured intensities through a misfit function (Beilina et al., 2005 Beilina et
al., 2009:

1 7 T2 2\? | o 2
g =g [ (14 9all = ) +5 [ v =Va) [15
Ym Qy

where « is aregularization parameter to be set, and 2, C . the domain where the
potential V' islooked for. V4 is apotentia field, which is chasen a priori. Typicdly
this latter is asaumed to be dose to the sought patentia field: for example, when
deding with the detedion o a defed within the sample, one can choose the patential
asciated with the perfed crystal. In this latter case, the inverse problem consists in
finding the defed by means of the involved modificaion o the potential.

4.1. Adjoint state formulation

The minimization d the previous misfit function [15] is usudly performed by
means of gradient-based techniques. In oder to avoid time-consuming cdculations as
well asinacarrades asociated with numerica diff erentiation, the derivative of 7 (V)
isanalyticdly introduced by means of an adjoint state problem. The solution z of this
adjoint state problem can be considered as a Lagrange multiplier introduced in the
following Lagrangian function £(¢4, V, 2):

Lla Vo) =7 [

Zm

~ ~ 2
(1 +- Gl = loml) + 5 [ v =Vay
1_ -~ . ~ -
+ Re {/ (—EV’(/Jd -V + (lkz - Vg — V’L/JZ)Z*> }
Qe

+R0{/Eoc %(Hkiﬂ —k; ~n)z/3dz*} [16]



124 EJCM -19201Q Giens 2009

where (14, V, 2) are considered as independent and Re stands for the red part. Min-
imizing J (V') with ¢4 verifying Equations[11]-[12] is then equivalent to writing the
first-order stationarity condtionsfor £(v4, V, 2).

The first-order stationarity condition with resped to 1, leads to the adjoint state
problem, which is very close to the forward problem:

%Az+ik1;-Vz:0inQe [17]
0z

a_fl — —i(||ki|| + ki - m)z on X [18]
1[0 - -

5 || 52]| = (16 + G = 1) G+ G2) onz, (19

where [[-]] standsfor the discontinuity gap. The aljoint state can be interpreted as the
solution o a badkwards wave scatering problem.

Then thefirst-order derivative of ﬁ(qf)d, V, z) with resped to V" all ows usto express
the diredional derivative of the misfit function easily:

DyJ(V)6V = DyL(Ya,V,z)6V

_ / (a(V = Vo) — Re(y; =) ) oV [20]

Qy

4.2. Numerical resolution of the inverse problem

The minimum of the misfit function 7(V') is oought as Dy J (V) 0V = 0 V4V,
which could be rewritten as the foll owing compatibilit y equation:

Re(¥}2*) = a(V — V) inQ, [21]

The regularization described in [15] does not consider at al the issue of global min-
imizers. Condtions to insure their existence ae provided by (Chavent, 1991). The
minimization problem eventually consists in solving threePartial Differential Equa-
tions with unknavns (zﬁd,v,z): the forward problem [11]-[12], the ajoint prob-
lem [17]-[18]-[19] and the compatibility Equation [21]. The identification process
resultsin the resolution of asystem, which ishighly nonlinea in the spatiall y-variable
unknowvn field V.

The FE numericd resolutionthen consistsin finding (’(Z)dJL, Vi, 2n) € Wh X Vp, X
W), such that:

1_ -~ . ~
/ <_§de,h . VU)Z + |ki . de,hw;;>
Qe

i N N
+/ §(||ki|| — ki - n)g pwy, = / Vai nwy,  Ywp € Wh, [22]
Yoo Qe
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1 . i
/ <——Vzh~Vw7fL—|ki-Vzhw;§> +/ LIkl + ks - )z
Q 2 s 2

e oo

b [ (10 Gl = 10 l) i+ G, =0 Vun € W [23
Zm
| (alVh = Van) = Re(@iya)) Vi =0 WoVi € Wi (24
Q'U

For thetime being, instead of adtual experimental data, we use synthetic data such
as those obtained with Equation [13]. The resolution o the inverse problem "as is'
can lea to some difficulties, mainly coming from the fad that we want to determine
a spatialy-variable represented by a large amourt of scdar values to be identified,
whereas experimental informationis <arce The mesh used for the discretizaion o
thisfield may then influencethe resolution of the inverse problem, andevenif itis not
the case, using amesh which hasto be fine enoughto ded with the cdculation o the
forward and adjoint solutions can lead to avery costly identification process

4.3. Iterative strategy using two different meshes

For all these reasons, we propacse to apply the strategy inspired from (Bangerth
et al., 2007) and described in (Puel et al., 2008, where the spatial discretization o
the field to be identified is achieved with a mesh different from the one asciated
with the cdculation o the forward and adjoint solutions. So we introducetwo distinct
meshes: a sufficiently refined mesh M, for the resolution o the forward and adjoint
problems [22]-[23], and a carse mesh My for the discretizaion o the sougtt field
V' and the resolution o the compatibility equation [24]. Then the discrete problem
consistsin finding (de,h, Vi, zn) € Wr X Vg x Wy, such that:

1 . .
/ (—§V'(/Jd,h - Vwy, +ik; - Viﬁd,}bw;’;)
Qﬂ

i 7 * 7 *
+/ §(||ki|\ —k; -n)g pw, =/ T Vs pwj, Ywn, € Wy, [25]
Yo

e

1 . i
/ <——V2’h . VUJZ —ik; - VZ}{LUZ) +/ —(Hle +k; - n)zhwz
Q. \ 2 Seo 2

+/z (||1/~Ji,h+1;d,h

m

I - |Wm||2) (in +Dap)wy =0 Y, €Wy, [26]

/ (a(VH — Vor) — Re(JJ;iHHZ,zZ)) SV =0 YoV e Vy [27]
Q,
where W, and Vg are asciated with the fine mesh M;, and the coarse mesh M g
respedively. I1% : W), — Wy andIIH : Vi — V), are spedfic operators (projedion
and extension respedively).
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Of course, theidentified patential field Vi is not very acairate for My is chosen
coarse to regularize the inverse problem. To improve the identificaion further, we
propcse an iterative method based on Bangerth’s work (Bangerth et al., 2007): the
mesh My used for the discretization o the spatial field V' is progressvely refined
acordingto classcd mesh adaption methods. These latter rely on a paosteriori error
estimators, such as estimators quantifying the quality of a mesh regarding the ref-
erence @ntinuows mechanica problem. For implementation pupases, we choose the
classcd L2-normerror indicator based ontheresidual r associated with Equation[27]
as defined in (Eriksonet al., 1996 and (Verfurth, 1996:

1

ers = (/Q H4r2dQ>2 [28]

where H is the locd size of the mesh M. This error indicaor can be split into
locd contributions for every element of the mesh M . Elements whose contribution
belongs to the highest ones (e.g. 5%) are refined. The adaption steps dop when the
first term of the misfit function[15] isbelow agiventhresholdindiredly charaderizing
the quality of the identified spatial field V.

Of course, it would be possble to use similar L2-norm error indicaors to refine
the mesh M;, as well. Here, however, this choice is hot made for implementation
purposes, and we assume that the mesh M,, is aufficiently refined for the resolution
of the forward and adjoint problems[25] and [26].

4.4. 2D example

The previous drategy is applied to the detedion o adefed within a given sample.
First, synthetic data are obtained with Equation[13] using a sample with alaauna &
sean in Figure 3; it is Imply asauumed that the sample’s potential corresponds to the
perfed crystal’s patential minus the potential associated with the missng atom.

Concerning the resolution o the inverse problem, o is st so that both terms in

4
the misfit function [15] have goproximately the same magnitude: o ~ W

The mesh M, asciated with the forward and adjoint problems consists of
5,044 quadratic eements, whereas the initial mesh MY, discretizing the difference
AV =V -V, between the sough potential and the perfed crystal’s potential is made
of 8 linea elements, which constitute the seach damain €2, enclosing the aystal.
Both meshes are depicted in Figure 4.

Figure 3 shows the identified paentia difference AV after 5 refinement steps,
while the asociated mesh M3, made of 1,201linea elementsis visible in Figure 4.
Thestrongest fluctuations are locaed in the vicinity of thelaauna, but several artefads
are visible, mainly close to the boundiries of the seach damain €2,,. This can be an
effed of the regularization, which is all the more avkward to set in the present case
where experimental data are scarce mmparatively with the cmomplexity of the spatial
potential to be identified.
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Loz
L wini: -0.200

Figure 3. (a) FE forward calculation o ||¢).||? = |[v; + t4||? for an a-iron sample
with alacuna(b) Identified paential difference AV after 5iterations

@ (b)

Figure 4. (a) Mesh M, assciated with &d,h (b) Initial mesh MY, asciated with
Vi — Vo (€) Mesh M5, after 5iterations

5. Conclusion

First we showed that eledron-matter elastic interadion as it occursin TEM ex-
periments can be numericdly solved using the FEM. With some nonrestrictive &
sumptions and adaptations, the forward elastic dedron scatering can be reduced into
a Helmholtz equation that can be dficiently solved using a paraxial approximation.
We then oltain the intensity of the total interading wave dter it crossngthe sample.

When dedingwith the inverse problem of identifyinga aystal’s potential fromthe
intensity of the total i nterading wave, one is often confronted with the difficult choice
of arelevant regularizaion. Thisis particularly true when the sought spatia field is
discretized ona FE mesh, for its choice can influencethe result of the identification.

Hereweintroduce ageneral it erative strategy using adaptive meshes. Thegoal isto
use aspedfic mesh M g for the spatial discretizaion dof the potential to be identified.
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Using a carse mesh makes the regularizaion easier, and the identificaion can be
improved by refining M i acordingto classcd error estimators. Further studies will
focus on the identification strategy. In particular, the influence of the sample's sze
and the use of different illumination dredions houd be mnsidered, as well as the
choiceof different regularizationterms and refinement criteria.
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