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ABSTRACT. We address here the case of electron-matter elastic interaction as it occurs in 
Transmission Electron Microscopy (TEM) experiments. In the forward problem, we show that 
it is possible to derive the scattered electron wave function as the solution of a Helmholtz 
equation. This equation depends on the spatial potential associated with the analyzed sample, 
and can be relevantly solved using the Finite Element Method (FEM). Then we present an 
inverse formulation dealing with the determination of the sample’s potential when the total 
wave function is measured at the exit plane of the sample. 

RÉSUMÉ. Nous nous intéressons ici au cas de l’interaction élastique électron-matière 
rencontrée dans un microscope électronique en transmission (MET). À partir du potentiel 
spatial caractérisant l’échantillon observé, nous montrons que le problème direct permettant 
d’obtenir la fonction d’onde électronique à la sortie de l’échantillon peut s’écrire comme une 
équation de Helmholtz, qui peut être résolue de façon pertinente par la méthode des éléments 
finis (MEF). Une formulation du problème inverse qui a pour but de retrouver le potentiel de 
l’échantillon à partir de la fonction d’onde mesurée à la sortie de l’échantillon est également 
présentée. 
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1. Introduction

Problemsdealingwith wavescatteringin aheterogeneousmediumareinvestigated
in applications, whose associated scales can be extremely different (seismic waves,
ultrasoundwaves, etc.), and are typically solved using the Finite Element Method
(FEM), whatever the scale of the problem may be (seefor example (Epanomeritakis
et al., 2008) for the case of seismic waves). Here we want to addressthe case of
electron-matter elastic interaction as it occurs in Transmission Electron Microscopy
(TEM) experiments (Smith et al., 1982). The associated goal is to determine the
electronic structureof a sampleby studying how it scattersan electronwave.

In the forward problem, we assumethat weknow thespatial potential field associ-
ated with the sample on the electronic scale, andwe calculateon the atomic scale the
scattering of the electron wave function. By introducing non-restrictive simpli fying
assumptions, it ispossible, even onthis scale, to usetheFEM to carry out the calcula-
tion with a reasonable computational cost. Then the obtained numerical result can be
compared with scattering informationmeasured in TEM.

To gofurther, we can define the following inverse problem to determine the elec-
tronic structureof thestudied sample: we look for thespatial potential field that leads
to anumerically calculated scattered electronwave function, which isasclose aspos-
sible to the experimental one. The solutionsof an inverseproblem, however, are well
known to be unstable and not unique. As we have shown in (Puel et al., 2008), the
determination of a spatially-variable field of properties consists in an inverse prob-
lem that is awkward to regularize, particularly with typical Tikhonovregularization
terms. Thereforeweproposehere astrategy inspired from (Bangerth et al., 2007) and
based ona specific spatial discretization of the sample’s potential field. This field is
numerically sought by means of a mesh that is independent from the mesh used for
the resolution of the wave scattering problem. This specific mesh is initially coarse,
in order to regularizethe inverseproblem, but can then be iteratively refined by using
local error estimators classically used in mesh adaption, to increase the accuracy of
the identified spatial potential field.

2. Theoretical framework of the forward electron scattering problem

Classically, the incident electroncan be considered asa complex planewavefunc-
tionassociated with a given real wavevector ki:

ψi(x) = ψ̃i exp(iki · x) [1]

when thetimeharmonic factor isremoved. In an empty domainΩe, thiswavefunction
satisfiesthefollowingSchrödinger equation, expressed in atomic units(a.u., distances
in Bohr andenergies in Hartree):

−
1

2
∆xψi = Eiψi [2]
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whereEi = ||ki||
2/2 is the energy of the incident electron, and∆x is the Laplacian

operator with respect to the spacevariable x. The domain Ωs corresponding to the
sample is characterized by a spatial potential field Vs, associated with the sample’s
electronsand nuclei, which vanishes rapidly outsideΩs.

The completeproblem to solveshould consider theincident electronaswell as the
sample’sparticules in the following generic Schrödinger equation:

−
1

2
(∆x + ∆xs

)ψes + [Ves(x,xs) + Vs(xs)]ψes = Eψes [3]

whereψes = ψes(x,xs) is the total wave functionassociated with the total energyE
of thesystem. Thesample’spotential isexpressed asthesumof two potentialsVs and
Ves correspondingto the sample’s self-interactionand the incident electron’s interac-
tion with the sample respectively. x and xs stand for the spacevariable associated
with the incident electronandall the other particles respectively.

Figure 1. Considered domain for the electronscattering problem

In order to decouplethetermsrelated to theincident electronfromthose associated
with thesample, weusetheresult from (Wang, 1995) consisting in approximatingthe
total wave functionψes as the product of two wave functionsψs and ψe associated
with the sample and the incident electron respectively. As a result, ψe should satisfy
the followingequation:

−
1

2
∆xψe(x) + V (x)ψe(x) = (E −Es)ψe(x) [4]

whereEs is thesample’senergyandV isthesample’spotential as seen bytheincident
electron:

V (x) =

∫

Ωs

Ves(x,xs)||ψs(xs)||
2dxs [5]

In theparticular situation of inelastic scattering, when ||ki|| is not constant across
thedomain, the latter system hasto besolved asawhole, and quantum transitionsoc-
curring inside thesample can betheoretically observed (Schattschneider et al., 2009).
On the contrary, in the caseof elastic scatteringthat wewant to addresshere, it is then
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possible to simpli fy the previousequation usingan approximationcommonly used in
TEM: the incident electron’s velocity is very large, so that the energy E − Es can
be approximated by the incident electron’s energyEi, which is known. In addition,
it is possible to go further by expressing the electron wave function as the sum of
the known incident wave ψi and of the unknown scattered wave ψd. The scattered
electronwave functionψd has to satisfy the followingHelmholtz equation:

1

2
∆ψd +Eiψd = V ψi [6]

wherewehave considered that V is small when compared toEi.

In the conventional TEM environment, theoutgoingwaveψi+ψd ismagnified by
aseriesof magnetic lensesallowingan analysisboth in imaging or in diffractionmode
(i.e. with a Fourier transform of the wave). The intensity of the final waveψf is then
collected on devices such asascreen, an imaging plateor aCCD camera. In thiscase,
ψf results from the convolution of ψi + ψd with the TEM’s transfer function, which
mostly takes into account the effectsof thedefocusand of theobjectivelens spherical
aberration. In thefollowing, wewill not addressthesedefects, and, disregarding given
scale androtationfactors, wewill consider astheoutgoingwaveintensity the electron
wave function’s square module ||ψe||

2 = ||ψi + ψd||
2 calculated on a virtual plane

Σm located at the exit side of thesample, asdepicted in Figure1.

3. Numerical resolution of the forward electron scattering problem

From theprevious section, it isobtained that the forward problem consists in solv-
ing theHelmholtz Equation [6] for thescattered electronwave functionψd.

3.1. The classical approach vs. the FE computation

The classical approachconsistsin consideringtheGreen’sfunctionassociatedwith
theHelmholtz equation to be solved:

g(r) =
exp(ik · r)

||r||
[7]

After multiplying Equation [6] with g and integrating by parts, the scattered wave
functionψd can be expressed as:

ψd(x) =

∫

R3

V (y)ψi(y)g(x − y)dy = ((V ψi) ∗ g) (x) [8]

In practice, ψd is then calculated using themultislicemethod, which divides thesam-
ples into several slices with respect to the thickness (Ishizuka et al., 1977; Stadel-
mann, 1987; Willi ams et al., 1996; Kirkland, 1998). Althoughclassically used, this
method necessitates a more or lessempirical choiceof these slices’ size, and is not
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able to take into account the waves that may be reflected back and forth between the
atoms.

Instead of using the previous method, we prefer to consider an approach that is
able to solveEquation[6] without further assumptions. Thisapproach should then be
able to deal with non periodical samples (i.e. with a single defect) as well as to take
into account all thewaves interacting in theproblem.

Therefore we propose to use the FEM, althoughthis requires some adaptations.
Thefirst oneisrelated to thefact that theinitial problem [6] isdefined onadomainΩe
whosedimensionsare infinite. In spiteof this, it can beshown that thescattered wave
functionψd is of the evanescent kind far from the considered sample, which allows to
boundthedomain Ωe with aboundary denotedΣ∞ in Figure1. On thisboundary the
followingevanescent condition is applied, as proposed in (Popov, 2006):

∂ψd
∂n

= i||ki||ψd [9]

wheren stands for theunit outward normal alongtheboundary Σ∞.

The main difficulty, however, lies in the high-frequency content of the problem
to be solved. While interatomic distances are about 5 a.u. (and sample’s thickness
about 105 a.u.), an estimateof theincident wavelength isλi = 0.05 a.u. If we assume
that 10 FE degrees of freedom par wave length are to be used in order to accurately
discretize the calculated wave, an amount of 109 degrees of freedom is required to
mesh a single crystalli ne cell , which would be impractical as such without additional
adaptations.

3.2. Paraxial approximation

In order to deal with thehigh-frequency content of ψd, theparaxial approximation
consists in searching for the unknown ψ̃d such that:

ψd(x) = ψ̃d(x) exp(iki · x) [10]

whereki is the incident wave vector, alongthe microscope’s axis in the case of par-
allel ill umination (which corresponds to classical experimental conditions). Even if,
formally, this approximation does not imply that the scattered wave function should
be oriented along the incident wave’s direction, this fits well with the TEM’s exper-
imental conditions, where all the rays that are diffracted with an angle greater than
about 30 mrad are truncated by themicroscope’s transfer function.

By using the approximation[10] into Equation[6], onegets:

1

2
∆ψ̃d + iki · ∇ψ̃d = V ψ̃i in Ωe [11]

becauseEi = ||ki||
2/2. Similarly, the evanescent condition [9] gives, with [10]:

∂ψ̃d
∂n

= i(||ki|| − ki · n)ψ̃d onΣ∞ [12]
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3.3. Numerical FE resolution

Thenumerical resolution of thepreviousgroup of equationsfirst consistsin choos-
ing finite dimensional spaces Vh and Wh using typical FE discretizations associ-
ated with a given mesh Mh. Then the discrete forward problem consists in finding
ψ̃d,h ∈ Wh such that:

∫

Ωe

(

−
1

2
∇ψ̃d,h · ∇w∗

h + iki · ∇ψ̃d,hw
∗
h

)

+

∫

Σ∞

i
2
(||ki|| − ki · n)ψ̃d,hw

∗
h =

∫

Ωe

Vhψ̃i,hw
∗
h ∀wh ∈ Wh [13]

where∇ and·∗ standfor thegradient operator andthe complex conjugaterespectively.
Vh ∈ Vh is thespatial discretization of the sample’spotential V on themeshMh.

As a example to demonstrate the validity of the proposed approach, we choose a
very thin 2D samplemadeof pureα-iron. Thepotential V associated with the crystal
is simulated bymeansof a Yukawa’spotential (Ashkroft et al., 2002):

V =

N
∑

k=1

Va
exp(−ark)

rk
[14]

where rk stands for the distancefrom thek-th nucleus (out of N nuclei), andVa and
a are two constants to set. Thispotential is discretized onthemeshMh.

(a) (b)

Figure 2. (a) FE forward calculation of ||ψe||2 = ||ψi + ψd||
2 for anα-iron sample

(b) FFT of theoutgoingwavefunctionψi + ψd on the virtual planeΣ∞

Figure 2 shows the calculation with 600, 000 degrees of freedom of the intensity
||ψe||

2 = ||ψi + ψd||
2 in a 200 keV-microscope with ||ki|| = 130 rad/(a.u.). The

chosen sample, whose thickness(2 nm) is below actual experimental values, is ori-
ented alongthe [001] direction, and the associated Yukawa’s potential is represented
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in Figure2 with isolinesrepresentingthe location of thesample’snuclei. SinceEqua-
tion [13] is linear with respect to the incident wave’s amplitude ψ̃i,h as well as the
potential’s amplitude Va, both values are set equal to 1. In addition, an absorption
coefficient of 5.10−3 is introduced to improve the convergence of the calculation.
Eventually the Fast Fourier Transform (FFT) of the outgoingwave functionψi + ψd
is depicted in Figure 2. Diffracted beams clearly appear, according to Bragg’s law
relative to the interatomic distancesand the incident wavelength λi.

4. Formulation of the inverse electron scattering problem

Theinverseproblemconsistsin determininginΩe thespatial potential fieldV such
that the electronic wave’s intensity ||ψ̃i + ψ̃d||

2, which is numerically calculated with
Vh on the virtual plane Σm, best fits the measured intensity ||ψm||2 of the outgoing
wave. By thismeans, it should bepossibleto detect adefect within thestudied sample.

The usual technique is to introduce the discrepancy between the calculated and
the measured intensities through a misfit function (Beili na et al., 2005; Beili na et
al., 2006):

J (V ) =
1

4

∫

Σm

(

||ψ̃i + ψ̃d||
2 − ||ψm||2

)2

+
α

2

∫

Ωv

(V − V0)
2 [15]

whereα is a regularization parameter to be set, andΩv ⊂ Ωe the domain where the
potential V is looked for. V0 is a potential field, which is chosen a priori. Typically
this latter is assumed to be close to the sought potential field: for example, when
dealingwith the detection of a defect within thesample, one can choose the potential
associated with the perfect crystal. In this latter case, the inverse problem consists in
finding thedefect by meansof the involved modification of thepotential.

4.1. Adjoint state formulation

The minimization of the previous misfit function [15] is usually performed by
means of gradient-based techniques. In oder to avoid time-consumingcalculationsas
well as inaccuraciesassociated with numerical differentiation, thederivativeof J (V )
isanalytically introduced bymeansof an adjoint state problem. Thesolutionz of this
adjoint state problem can be considered as a Lagrange multiplier introduced in the
followingLagrangian functionL(ψ̃d, V, z):

L(ψ̃d, V, z) =
1

4

∫

Σm

(

||ψ̃i + ψ̃d||
2 − ||ψm||2

)2

+
α

2

∫

Ωv

(V − V0)
2

+ Re

{
∫

Ωe

(

−
1

2
∇ψ̃d · ∇z∗ + (iki · ∇ψ̃d − V ψ̃i)z

∗

)}

+ Re

{
∫

Σ∞

i
2
(||ki|| − ki · n)ψ̃dz

∗

}

[16]
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where (ψ̃d, V, z) are considered as independent andRe stands for the real part. Min-
imizingJ (V ) with ψ̃d verifyingEquations[11]-[12] is then equivalent to writing the
first-order stationarity conditionsfor L(ψ̃d, V, z).

The first-order stationarity condition with respect to ψ̃d leads to the adjoint state
problem, which is very close to the forward problem:

1

2
∆z + iki · ∇z = 0 in Ωe [17]

∂z

∂n
= −i(||ki|| + ki · n)z onΣ∞ [18]

1

2

[[

∂z

∂n

]]

=
(

||ψ̃i + ψ̃d||
2 − ||ψm||2

)

(ψ̃i + ψ̃d) onΣm [19]

where [[·]] stands for thediscontinuity gap. The adjoint state can be interpreted as the
solution of a backwardswavescattering problem.

Then thefirst-order derivativeof L(ψ̃d, V, z) with respect toV allowsusto express
thedirectional derivativeof themisfit functioneasily:

DV J (V ) δV = DV L(ψ̃d, V, z) δV

=

∫

Ωv

(

α(V − V0) − Re(ψ̃∗
i z

∗)
)

δV [20]

4.2. Numerical resolution of the inverse problem

The minimum of the misfit functionJ (V ) is sought asDV J (V ) δV = 0 ∀δV ,
which could be rewritten as the followingcompatibilit y equation:

Re(ψ̃∗
i z

∗) = α(V − V0) in Ωv [21]

The regularization described in [15] does not consider at all the issue of global min-
imizers. Conditions to insure their existence are provided by (Chavent, 1991). The
minimization problem eventually consists in solving threePartial Differential Equa-
tions with unknowns (ψ̃d, V, z): the forward problem [11]-[12], the adjoint prob-
lem [17]-[18]-[19] and the compatibilit y Equation [21]. The identification process
results in theresolution of asystem, which ishighly nonlinear in thespatially-variable
unknown field V .

TheFE numerical resolutionthen consists in finding(ψ̃d,h, Vh, zh) ∈ Wh ×Vh ×
Wh such that:

∫

Ωe

(

−
1

2
∇ψ̃d,h · ∇w∗

h + iki · ∇ψ̃d,hw
∗
h

)

+

∫

Σ∞

i
2
(||ki|| − ki · n)ψ̃d,hw

∗
h =

∫

Ωe

Vhψ̃i,hw
∗
h ∀wh ∈ Wh [22]
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∫

Ωe

(

−
1

2
∇zh · ∇w∗

h − iki · ∇zhw
∗
h

)

+

∫

Σ∞

i
2
(||ki|| + ki · n)zhw

∗
h

+

∫

Σm

(

||ψ̃i,h + ψ̃d,h||
2 − ||ψm||2

)

(ψ̃i,h + ψ̃d,h)w
∗
h = 0 ∀wh ∈ Wh [23]

∫

Ωv

(

α(Vh − V0,h) − Re(ψ̃∗
i,hz

∗
h)

)

δVh = 0 ∀δVh ∈ Vh [24]

For the timebeing, instead of actual experimental data, weusesynthetic datasuch
as those obtained with Equation [13]. The resolution of the inverse problem "as is"
can lead to some difficulties, mainly coming from the fact that we want to determine
a spatially-variable represented by a large amount of scalar values to be identified,
whereas experimental information is scarce. The mesh used for the discretization of
thisfield may then influencetheresolution of theinverseproblem, andeven if it isnot
the case, using a mesh which has to be fine enoughto deal with the calculation of the
forward andadjoint solutionscan lead to avery costly identification process.

4.3. Iterative strategy using two different meshes

For all these reasons, we propose to apply the strategy inspired from (Bangerth
et al., 2007) and described in (Puel et al., 2008), where the spatial discretization of
the field to be identified is achieved with a mesh different from the one associated
with the calculation of theforward andadjoint solutions. So weintroducetwo distinct
meshes: a sufficiently refined meshMh for the resolution of the forward and adjoint
problems [22]-[23], and a coarse mesh MH for the discretization of the sought field
V and the resolution of the compatibilit y equation [24]. Then the discrete problem
consists in finding(ψ̃d,h, VH , zh) ∈ Wh × VH ×Wh such that:

∫

Ωe

(

−
1

2
∇ψ̃d,h · ∇w∗

h + iki · ∇ψ̃d,hw
∗
h

)

+

∫

Σ∞

i
2
(||ki|| − ki · n)ψ̃d,hw

∗
h =

∫

Ωe

ΠH
h VH ψ̃i,hw

∗
h ∀wh ∈ Wh [25]

∫

Ωe

(

−
1

2
∇zh · ∇w∗

h − iki · ∇zhw
∗
h

)

+

∫

Σ∞

i
2
(||ki|| + ki · n)zhw

∗
h

+

∫

Σm

(

||ψ̃i,h + ψ̃d,h||
2 − ||ψm||2

)

(ψ̃i,h + ψ̃d,h)w
∗
h = 0 ∀wh ∈ Wh [26]

∫

Ωv

(

α(VH − V0,H) − Re(ψ̃∗
i,HΠh

Hz
∗
h)

)

δVH = 0 ∀δVH ∈ VH [27]

whereWh andVH are associated with the fine mesh Mh and the coarse mesh MH

respectively. Πh
H : Wh → WH andΠH

h : VH → Vh arespecific operators(projection
andextensionrespectively).
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Of course, the identified potential field VH is not very accurate for MH is chosen
coarse to regularize the inverse problem. To improve the identification further, we
propose an iterative method based on Bangerth’s work (Bangerth et al., 2007): the
mesh MH used for the discretization of the spatial field V is progressively refined
according to classical mesh adaption methods. These latter rely on a posteriori error
estimators, such as estimators quantifying the quality of a mesh regarding the ref-
erence continuousmechanical problem. For implementation purposes, we choose the
classical L2-normerror indicator based ontheresidual r associated with Equation[27]
as defined in (Erikssonet al., 1996) and (Verfurth, 1996):

eL2 =

(
∫

Ω

H4|r|2 dΩ

)
1

2

[28]

where H is the local size of the mesh MH . This error indicator can be split i nto
local contributionsfor every element of the meshMH . Elementswhose contribution
belongs to the highest ones (e.g. 5%) are refined. The adaption steps stop when the
first termof themisfit function[15] isbelow agiventhreshold indirectly characterizing
thequality of the identified spatial fieldV .

Of course, it would be possible to use similar L2-norm error indicators to refine
the mesh Mh as well . Here, however, this choice is not made for implementation
purposes, and we assume that the mesh Mh is sufficiently refined for the resolution
of the forward andadjoint problems[25] and [26].

4.4. 2D example

Theprevious strategy isapplied to thedetection of adefect within agiven sample.
First, synthetic data are obtained with Equation [13] usinga sample with a lacuna as
seen in Figure 3; it is simply assumed that the sample’s potential corresponds to the
perfect crystal’s potential minus thepotential associated with themissingatom.

Concerning the resolution of the inverse problem, α is set so that both terms in

the misfit function [15] have approximately the same magnitude: α ≈
|Σm|||ψm||4

∞

2|Ωv |||V0||2∞
.

The mesh Mh associated with the forward and adjoint problems consists of
5,044 quadratic elements, whereas the initial mesh M0

H discretizing the difference
∆V = V −V0 between thesought potential andtheperfect crystal’spotential ismade
of 8 linear elements, which constitute the search domain Ωv enclosing the crystal.
Both meshesare depicted in Figure4.

Figure 3 shows the identified potential difference∆V after 5 refinement steps,
while the associated mesh M5

H made of 1,201linear elements is visible in Figure 4.
Thestrongest fluctuationsarelocated in thevicinity of thelacuna, but several artefacts
are visible, mainly close to the boundaries of the search domain Ωv. This can be an
effect of the regularization, which is all the more awkward to set in the present case
where experimental data are scarce comparatively with the complexity of the spatial
potential to be identified.
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(a) (b)

Figure 3. (a) FE forward calculation of ||ψe||2 = ||ψi + ψd||
2 for anα-iron sample

with a lacuna(b) Identified potential difference∆V after 5 iterations

(a) (b) (c)

Figure 4. (a) Mesh Mh associated with ψ̃d,h (b) Initial mesh M0

H associated with
VH − V0 (c) Mesh M5

H after 5 iterations

5. Conclusion

First we showed that electron-matter elastic interaction as it occurs in TEM ex-
periments can be numerically solved using the FEM. With some non-restrictive as-
sumptionsandadaptations, the forward elastic electronscatteringcan bereduced into
a Helmholtz equation that can be efficiently solved using a paraxial approximation.
We then obtain the intensity of the total interactingwave after it crossing thesample.

When dealingwith theinverseproblemof identifyinga crystal’spotential from the
intensity of thetotal interactingwave, oneisoften confronted with thedifficult choice
of a relevant regularization. This is particularly true when the sought spatial field is
discretized ona FE mesh, for its choice can influencethe result of the identification.

Hereweintroduce ageneral iterativestrategy usingadaptivemeshes. Thegoal isto
use aspecific meshMH for the spatial discretization of the potential to be identified.
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Using a coarse mesh makes the regularization easier, and the identification can be
improved byrefiningMH accordingto classical error estimators. Further studieswill
focus on the identification strategy. In particular, the influence of the sample’s size
and the use of different ill umination directions should be considered, as well as the
choiceof different regularizationterms andrefinement criteria.
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