A direct numerical integration scheme
for visco-hyperelastic models using radial
return relaxation

Stéphane Lejeunes* — Stéphane Méo** — Adnane Boukamel*>***

* Laboratoire de Mécanique et d’Acoustique de Marseille (CNRS UPR7051)
31 ch Joseph-Aiguier, F-13402 Marseille

lejeunes@Ima.cnrs-mrs.fr

** Laboratoire de Mécanique et Rhéologie de I’Université de Tours
7 Avenue Marcel Dassault, F-37200 Tours

stephane.meo@univ-tours.fr

*** Ecole Centrale Marseille
Technopole Chateau Gombert, F-13451 Marseille

adnane.boukamel@ec-marseille.fr

ABSTRACT. In this paper, a numerical integration scheme of the evolution laws for
viscohyperelastic models is proposed. The starting points of the method are the exponential
mapping (Reese et al., 1998) and the radial return (Weber et al., 1990; Simo, 1988). The
originality of this work lies in the substitution of a differential tensorial system by a scalar
one with two equations and two unknowns and in a first order Taylor expansion of them. In
this way an analytical approximated exponential solution is finally obtained.

RESUME. On propose dans cet article un schéma numérique d’intégration de lois d’évolutions
visco-hyperélastiques s inspirant a la fois des méthodes par retour en exponentiel (Reese et
al., 1998) et des méthodes par retour radial (Weber et al., 1990 ; Simo, 1988). L originalité
de ce schéma repose a la fois sur la substitution d 'un systeme différentiel tensoriel, traduisant
les lois d’évolutions, par un systeme différentiel scalaire de deux équations a deux inconnues,
et sur un développement limité au premier ordre de ces derniéres. On obtient ainsi une
solution analytique approchée en exponentiel.
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1. Introduction

In the past twenty yeas, the modeling o polymer materials has recdved a very
large mnsiderationin the scientific community. Many finite strain rheologicd mod-
els, which are based onthe intermediate states principle, have been proposed. They
are often seen as a generdlizaion o small strain models andfor most of them, a nu-
mericd implementation hes already been propased. Neverthelessmany of the existing
schemes exhibit li mitations that are not always discussed. Asthe complexity of these
modelshasgrowingin thelast yeas, the question o an efficient and generic numericd
schemeis dill open.

The originality of the present paper liesin an approximation o the evolution laws
by ascdar and linea differential system. This approximationis obtained by wsing a
decompasition d the internal tensorial variablesinto diredion and magnitude. In the
case of asciative plasticity with J2-flow the problem is reduced to the determination
of a scdar parameter. This processis known as the radia-return algorithm, (Simo,
1988 Simo et al., 2000. In the case of viscoelasticity the internal variables evolution
is generally fully tensorial and thus can nat be reduced to a scdar equation. Besides
the dassof tensoria integrators, some authors developed spedfic dgorithms based
on exporential mapping (Weber et al., 1990. In (Reese et al., 1998 this method
is developed ona Zener model. By considering the evolution law in the principal
space ad wsing the logarithmic principal stretches, the integration is reduced to the
determination o a nortlinea system of three ejuations which is easily solved by
a locd newton scheme. This sheme is very robust and since the ealier paper of
(Reese et al., 1998, many authors have used this drategy (seefor examples (Nedjar,
2002; Nedjar, 2002h Fancdlo et al., 2008 Areias et al., 2008. In this paper, it is
propased to keep the flow diredion fixed during a step of integration and to lineaize
the diff erential system aroundthe previous lution oltained. The system obtained is
then easily integrated with an analyticd solution which takes the form of an infinite
Magnus sries.

This paper is organized as foll ows, the congtitutive equations of aZener model are
briefly recdled in afirst sedion. The variational formulation and the finite dement
implementation is described in the second sedion. In a third sedion, the numericd
integration scheme is detailed. Finally, the numerica performance of the proposed
schemeis discussed in the last sedion.

2. Congtitutive equations

Asaming that the Clausius-Duhem inequality can be written in the aulerian con-
figuration (if the thermal phenomena are negleded):

¢=0:D—J""po > 0 [1]

where g, D, J, po and Y are respedively the Cauchy stresstensor, the allerian rate
of deformation, the determinant of F (see Figure 1) the gradient of the considered
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Figure 1. Intermediate states and ceaompasition o the gradient tensor

transformation, the volumic massin the lagrangian configuration and the freespedfic
energy.

Then the gradient of the transformation is lit i nto an incompressble part (F =
J*%F) and into a compressble one (Fyo) leading to see as a function o F and J.
The free spedfic energy is then additively decompased into an isochoric part and a
volumetric one;

W(F,J) = 0(F) + ol (J) (2]

Now, using the concept of intermediate states (Sidoroff, 1973 Sidoroff, 1979
introducing a viscous intermediate state (seeFigure 1), F the incompressble gradient
isalso split i nto aviscous part and an elastic part:

F—Fe-Fu 3]

Some considerations of objedivity and isotropy leal to have P as a function o B
and Be, the left Cauchy Green tensors! associated to respedively F and Fe (Sidoroff,
1975 Sidoroff, 1976). It isthen chosen to see asthe sum :

B(B,Be) = Yv(Be) +Wn(B) [4]

Considering (B, Be, J) as an independent set of parameters, [4] and [2] give the varia-
tion of Y?

aLIﬂ'vol
0J

0y 0B - apy = .
9B 0B 0Be  © )

1.B=FF Be=FeFe

2. the operators : and - are defined in appendix.
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The time derivatives of B, Be and J are given by:

B=L.-B+B-LT (6]
J=31:L) [71
Be=L Bet Ber LT~ 2Ve D) Ve 2(1:D)Be (8]

with L = F-F~1 and V, being the pure aulerian strain tensor. [8] also introduced an
objedive anelastic rate of deformationﬁf,’

0 = [t = -1 =T = —= =T
DS:Re-(FV-FV ) ‘Re' =Re-Dy-Re [9]
sym

Here, it is suppased that all the rotation oltained from the decomposition o F is due
to the dastic transformationi.e.

At this dep, we can writeusing[6], [7] and [8] in [5]:
. B[N 0B _ allJv>D (al-pvol )
v (( oB aB> ) T “Pegm, g [11]

_ L|J _ =
- 2ve.a—§V.ve>.DS

e

Observing the relationship

ay, 0B — )\’
(%:%)e)o-(E%) © 12
and under the ssumption of anormal disspation orly depending onﬁf,), the behavior

and the complementary laws are obtained:

G = Oph+ Oy + Oyl

g awv—>D 3y
Po ( e 0B, e ODS
20031 (5. 24)°
Oh = 2P0 "B [13]
anV0|

Ovol = plwith p=po o1
Oy = 2p0\]71 (E . %)
v e ag

e

Equations [13] can be seen as a generdlizdion to large strain of the dasscd Zener
rheologicd model (Figure 2) in the incompressble case.

3. Ve isdefined by the polar decompositionFe = Ve - Re andin the sameway Fy =V, - Ry
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Figure 2. Zener model

3. Variational formulation and finite dement implementation

The quasi-incompressbilit y constraint can be gopli ed usinga perturbed lagrangian
method The solution (u; p) of the equili brium problem has to cancd the following
integral forms for al the trial functions év and dp chosen respedively in the same
spaces of u and p.

/ T VBVAQ — o V- fexdQ — 5 V- FexdS
Qo

/QO (—(J(u) _1)- %p) 5qdQ

where tisthefirst Piola-Kirchoff stresstensor, fex and Fey are respedively the volu-
mic external forcesandthe surfadc ones. The secondequationresults from theimpli cit
choiceof poYyo as:

[14]

PoYvol = IE((J - 1)2 [15]

System [14] is handled using a Newton-Raphson algorithm lealing to the cdcula
tion dof the tangent modui:

%y om
fﬁfa—FJPMTVJer [16]
and
0
h= % where Thyp = J(Oh+ Gyl ) - F ' 17
T, = ™ wherem, = Jo, - F-T

T oF
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For resson o simplicity, al the implementations are made in an oriented oljed
F.E. code (here aC** code) (Foerch et al., 1996. A visco-elastic behavior classis
creaed. It inherits from an existing hyperelastic C** behavior classin which the
cdculations of Ty, and Th, are dready caried ou (Lejeunes, 2006).

4. Visco-hyperelastic behaviour integration

4.1. Flowrule

Atthis gep, the patentialsentirely determinethe behavior law [13], they are chosen
such that (poWvol being already chosenin [15]):

poh(B) = Cio(11(B) — 3)+001In(|2(3§>)
pody(Be) = G(11(Be) — 3) [18]
o(B%) = 2By : DY)

where Cy0, Co1, G andn are 4 material parameters.
Equation[1§] leadsto, using[13] and [8] with T = 32

K _ _ _ _ 2 _
Be:L-Be—i—Be-L—TVe-BeD-Ve—:—%(l:L)Be [19]

Havingin mind that Ve Be - Ve=Be - Be, [19] comesto be known as:

Be:L-Be+Be-L—TBeD-Be—§(1:L)Be [20]

4.2. Numerical scheme and elastic prediction

In this ®dion, the evolution o [20] will be cmnsidered on the time interval
[tn,th+1], th being the last converged time increment of the Newton-Raphson algo-
rithm. So, all the variables are suppased to be known at this time. Moreover F is
suppased to have alinea temporal evolution (i.e. F is constant).

Att € [th,tnia], let’s define an elastic trial state &*:

-1

*

Fe :F-ﬁv‘n [21]
and thus the prediction o the left Cauchy-Greenrelated toFe” is:
Be =F-F, Be,-Fl, | F [22]

4. The subscript _|» Means the value of the variable & the timet,, _;, . at th;1 and withou
subscript it isconsidered at t.
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Thetrial deviatoric stresstensor is then:
_,D
o, =2J71GB." [23]

This all ows to define the normali sed deviatoric stresstensor®:

«P

o* Be

N* = = [24]
o~ 5.
By definitionwe have:
N*:N*=1,N*:1=0 [25]

This elagtic trial state corresponds exadly to the solution with T = 0. It is the
starting pdnt of the mapping exporential methods (Reeseet al., 1998 Nedjar, 2002h
Nedjar, 20023), where it is relaxed to satisfy the flow rule. Duringthis relaxation the
viscous variable is frozen in order to oktain an exporentia solution. In our study,
we rather draw our inspiration from the radial return mapping developed in plasticity
(Simo, 1988 leaing to suppcse that:

Be=b(t)N* +s(t)1 [26]

with the functionsb(t) and s(t) defined as:

ﬁe isexpressble &
Be = bN* -+ bN* + &1 (28]

Takinginto acourt [26] and [28], the projedions of [20] (using 1 and N* as pro-
jedors) give

$ =2(L:N")b—p?
: :(2(L:N*2 —%(1:L))b+2(L:N*)s [29
-1 ((N*2 : N*) b2+Sb)

The system [29] is a scdar nonlinea differential system (with nonconstant co-
efficients). It can be solved using a Runge-Kutta method a any other 8-scheme for
example. It is not our choice but in order to compare with the chosen procedure,
a Runge-Kutta-Fehlberg allowing to control the step size of the numericd iterative
schemeisimplemented (Fehlberg, 1969.

5. ||_|| is defined in appendix.
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4.3. First order expansion and exponential mapping

The proposed approach consists in a first order Taylor expanson o the system
[29] aroundthe last converged solution (b, = b(tn),sh = s(tn)):

b(t) =bn+3b S(t) = +3s [30]

Carrying forward these goproximationsin [29], it i s obtained:

{ g’-; }= [A(t)]{ oy }+{c<t>} 31

with theinitial condtion:

osta) | _[ O

obtn) [ | O
where [A(t)] and {C(t) } are respedively a2 x 2 matrix and a two componrents vedor
defined by:

A11=0 AlZZ%(LZN*)—Z—?’Tbn
Por=2(L :N*)—thy  Aga=2(L :N**)—2tby(N*": N¥)
~Ts—5(1:1) [32

Ci=(2(L :N*)—by) % C2:2<L:N*2) b+ (L : N*) s,
—Z(1:L)by—Th2

The solution o this differential systemiis:

6S(tn ) — e n+1—S
{ ) J= oo ictanes =3

th

where Q(t) isaMagnus sries expansion (Iserles. et al., 1999:

t t t

Qt) = A(s)ds+} [A(s), | A(sl)dsl]ds

th 2 Jt, tn [34]

1"t t {

+7 [ 1A, / A(sL), / A(s2)ds2]ds1]ds+ .

th tn th
The hypahesisof alinea evolution of F (seeparagraph 4.2) leadsto alinea temporal
evolution o [A(t)] and as a result Q(t) can be analyticdly determined (at the third
order in ou study).

Finally theintegral [33] is numericaly evaluated with athreeGausspoints ssheme
and at this gep Be(tnt1) isknown, and so oy and 15, using [18] and [13].
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4.4. Viscous tangent moduli

To entirely solvethe FE. problem, T defined in [17], must be evaluated. For this,
the neohookean form chosen for poyy all ows to writed:

_ age T D aF
Ty =2G | —=-0F" +Be - S [39]
The seacondterm of the previous expressonis easy to evaluate with
oF T T T
5F =-F 'oF [36]
For the first term "gg ,havingin mindthat B> = b(t)N*, it comesthat:
= D
0Be . _0db(t) ON*
oF =N@ oF +b(t) oF (37
The partial derivative of the system [31] with resped of Fj; leads to:
oFij \ _ oFij o{CH)} | dAWM)] [ 3s
oz (TAUN s 0 ToR T R %9
aFij OFij

We can see that the terms a{C( 3); 66 in[38] and also in[37] neal to be
cdculated to achieve the determi natlon o [35] Thiscan bedore dlowingfor:

dBe  oOF I
oF _aFD(F'n Bein FioFlos )

[39]
+ (Flns P " Ban P ) aaip
The derivative terms of F are defined by
S—E =3 31— %F@ FT)
E =330 1—}FT®F*T) “
oF 3

whereT isthe fourth order identity tensor.

The resolution o [38] is achieved with a simple forward Euler scheme in order to
obtain a fast and simple numericad procedure to evaluate the tangent operator. This
could have been redized using the same exporential i ntegration propaosed in the reso-
lution of [31] but with an increase of the computing cost.

6. All thetensoria products are defined in appendix.
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Figure 3. Shear test

5. Application

The given example of this dion is a dasscd shea test in plane strain. The
considered 2D domain is a square with sides of 30mm one side is blocked and the
oppasite one is aubjeded to a shea displacement y = 30sin(6.61t). It is discretized
using ten finite dements per side (quadratic in displacement and linea in presaire).
The material parameters are:

C10=097MPa Cp1=-0.42MPa G=0.77MPa n=0.10MPa.s k=1500MPa

The Figure 4(a) shows the influence of the time sub-steps on the solution ill us-
trating the convergence of the propased algorithm. The differences between the 320
steps and the 17 steps time discretizaions £ams to be reasonable and are known in
the same order in al it erative processes.

Concerningthe validity of the results, the shea stressobtained by adired solving
of the Equation[29] or by afirst order Taylor expansion it (i.e. the adopted method)
are plotted onthe Figure 4(b). The results are nealy the same. But in the Table 1, we
can seethat for a same number of time steps discretization, we have aCPU timetwice
longer for the Runge-Kutta-Feldberg method

Table 1. Comparison o the numerical costs
method CPUtime(s) number of sub-steps time per sub-step ()
radial return relaxation 859 320 0268
Runge KuttaFeldberg 1708 320 0533
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Figure 4. Results of the numerical shear test

6. Conclusion

It has been propaosed, in this paper, a new integration schemebased bah onthe de-
composition dof the tensorial internal variable in flow diredions and flow magnitudes
and onalineaization o the differential system obtained. This processis quite gen-
eral and can be gplied on dfferent evolution laws. For a Zener model, this grategy
has hown interesting results. the computing time reduction is important compared
to a standard iterative integrator, as a Runge-Kutta-Fehlberg scheme. However, fur-
ther investigations are required to compare this integration scheme to standard onesin
more complicaed cases. For instance, in the case of aviscodastic Poynting-Thomson
model, the evolution laws are more nontlinea and the propcsed numericd scheme
could failed for large time steps due to the lineaization process Furthermore, the
guestions of the rate of convergence and the numericd stability have not been investi-
gated in this paper. Thiswill be dorein afuture communication.
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Appendix
Here ae defined the tensorial operators used in this paper:

thefirst order contraded tensorial product

: the second ader contraded tensorial product

® | the dasdcd tensorial product

© | aseoond ader tensorial operator

(A ©BJ;jiq = AiBi)

O | atensoria product between afourth order tensor
and aseoond ader one([ADB}”-kI = Aok Boj)

[l | norm of asecond ader tensor

Al =VA:A




