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ABSTRACT. This paper presents an adaptive strategy dedicated to non-linear transient dynamic 
problems. The spatial mesh is optimized to ensure the accuracy of the solution. Beginning 
from a coarse mesh, an error indicator is used to estimate the discretization error and new 
elements are created where the prescribed accuracy is not reached. A localized multigrid 
solver is used and the strategy is applied recursively until the local mesh size ensures that the 
discretization error is less than the prescribed accuracy. The spatial mesh is recreated at 
each time step. 

RÉSUMÉ. Cet article présente une stratégie de résolution adaptative pour la dynamique 
transitoire non linéaire permettant l’optimisation du maillage spatial en fonction d’une 
précision requise du vecteur d’état. A partir d’un maillage grossier, un solveur multigrille 
localisé est utilisé. Un indicateur d’erreur est calculé afin de contrôler la précision de la 
solution sur le maillage courant et de nouveaux éléments sont crées de manière recursive et 
hiérarchique jusqu’à ce que la discrétisation de l’ensemble de la structure permette d’assurer 
la précision de la solution. Le maillage spatial est réévalué à chaque pas de temps. 
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1. Introduction

In design departments, engineers are interested in modeling problems which are
more andmore complex, accountingfor dynamical aspectsandnonlinear phenomena.
The most common numerical technique used to discretize the spacedomain is the
finite element method(FEM). A direct timeintegrationschemeisfrequently employed
to describe the evolution of the structure. Such simulations require alargenumber of
degreesof freedom (dof) in space andtime to ensure the accuracy of thesolution.

However, even if the computer capacity has increased dramatically over the last
decades, some non linear dynamical solutions cannot be attained without efficient
strategieswhich reduceCPU andmemory requirement. A key point to efficiency is to
use agoodsolver onan optimizedmesh in space andtimewhile assuringtheprecision.

For non linear problems, a large part of the computing time is spent in the res-
olution of the linearized equations. Direct and iterative solvers have shown their
dependency on the number of degrees of freedom N. Using a solver with a linear
convergencerate is a goodway to ensure the reduction of the computing time. The
multigrid methodis known to have a complexity in O(N) for many simple problem
(Brandt, 1977) and has soonshown its abilit y to solve nonlinear finite element prob-
lems (Kacouet al., 1993; Fish et al., 1995).

Variousapproacheshavebeen developed to assesstheprecision of thesolution. In
adaptiveprocedures, aposteriori error estimateshavebeenwidely used (seereferences
(Zhuet al., 1988; Babuska, 1978; Ladevezeet al., 2001)). However, the computation
timeof these error estimators is important. For specific applications, one can use error
indicatorswhich are cheaper in termsof CPU requirement even thoughthey might be
lessaccurate.

Adaptive procedures and space-time mesh optimization is an extensive field of
research. For example, spatial adaptivity for elastoplastic behaviour, based onamulti -
grid strategy, is treated in (Ekevid et al., 2004). A domain decomposition methodto
couple sub-domains with their own numerical schemes and time steps is proposed in
(Mahjoubi et al., 2009). A discontinuous Galerkin methodworking on unstructured
space-time meshes is proposed in (Abedi et al., 2006). Cavin et al. present a fully
automatic space-timerefinement method based onclassical androbust algorithms.

This paper extends the method proposed in (Cavin et al., 2005) and presents a
localized multigrid strategy dedicated to nonlinear behaviour in transient dynamics.
Its main specificity is that the refinement and the coarsening of the mesh between
time steps is fully automatic and does not require human intervention. The first sec-
tion introducesthereferenceproblem andthenumerical discretization. Thefollowing
section sets up the multigrid solver and the localization strategy. The numerical per-
formanceof thesolver ispresented in Section 4. Section 5concludesonthe efficiency
of thestrategy and gives someperspectives.
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2. Reference problem

We consider the motion of a deformable body, assumed homogeneous and
isotropic, occupyinga domain Ω (t) with boundary ∂Ω (t) in the time interval [0, T ].
Prescribed displacementsud (t) andtractionforcesper unit areaFd (t) are applied on
thesubsets∂Ωu and∂Ωf of theboundary. f (t) is a bodyforceper unit volume.

Figure 1. Reference continuousproblem

The material is elastoplastic. The problem consists in the calculation of the dis-
placement u, the internal variablesνi and thestresstensor σ under the assumption of
small perturbations. OnedenotesS the completestate vector.

In nonlinear dynamics, using the FEM for the spacediscretization and the New-
mark scheme for the time integration, the principle of virtual works leads to the dis-
cretized formulation presented Equation [1] at each timetm. LagrangemultipliersΛ

areused to impose theprescribed displacements.

MÜ
m + F

m
int = F

m
ext + L

T
Λ

m [1]

with: LU
m = Ud

U andÜ are the discretized displacement and acceleration vectors. M represents
themassmatrix. Fext andFint arethe external andinternal forcevectors. L is such that
U matches with the prescribed displacement on the boundary. The problem consists
of finding thestate vector satisfyingEquation[1] and the initial conditions:

U|t=0 = U0, U̇

∣

∣

∣

t=0
= U̇0 [2]

The Newmark scheme provides Equations [3-4] to calculate the velocity and the
displacement. The Newmark predictors p

U
m and p

U̇
m are defined using the kine-

matic fields on theprevioustime step (Belytschkoet al., 2005).

U
m+1 =p

U
m + β∆t2Üm+1 [3]

U̇
m+1 =p

U̇
m + γ∆tÜm+1 [4]

The constitutive law is integrated in each Gausspoint by a radial return mapping
(RRM) algorithm (Simo et al., 2000). The Cauchy stresstensor and the internal vari-
ablesareupdated and the completestate vector S is known ontm.
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3. Multigrid solver and localization strategy

3.1. Principle

The strategy is initialized at each time step with the calculation of the state vector
ontwo coarsehierarchical meshesM1 andM2. Then, an error indicator (seeSection
3.4) isused to comparethesolutionsS1 andS2 onthesemeshesand new elementsare
created where the requested accuracy is not reached to form the mesh M3. Figure 2
ill ustrates the refinement method.

Figure 2. Bi-dimensional hierarchical refinement. Shaded elements do not verify the
requested accuracy

Onegeneralizesthe explanation usingthesubscript n for the current mesh level. If
the new mesh Mn+1 does not cover the entire meshMn, one definesMn

+ andMn
∗

as the covered and uncovered part of Mn.

The restriction of the state vector Sn onMn
+ is interpolated in spaceon the mesh

Mn+1 as a first approximation. The calculation is performed onthisnew mesh using
a multigrid solver and appropriateboundary conditions (seeSection 3.2.4). Oncethe
state vector Sn+1 is known, the strategy is applied recursively and new meshes are
eventually created. The process stops when the finest mesh verifies the requested
accuracy oneach of its elements.

3.2. Notationsand multigrid tools

3.2.1. Concerningmultigrid

The basic ideaof multigrid methods is that iterative methods, such as conjugate
gradient solvers, efficiently reducethe error components with wavelengths compara-
ble to the grid size and only slowly reducethe large wavelength components. Using
coarser meshes to solve these smooth error components, the multigrid procedure im-
provesthe convergencespeed.
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Figure3 ill ustratesthemultigridstrategy in the caseof four grids. Theresolutionis
performedfollowingthe arrows. ν1 iterationsof thesolver areused to smooth the error
before coarsening. ν2 iterationsaremadeduringtheprolongation phaseto removethe
errors introduced in the interpolation. The gain in convergencespeed highly depends
on this two parameters. Using a Newton solver for the relaxation steps, experience
shows that ν1 = ν2 = 1 is the best choice. The problem is solved until convergence
on the coarser mesh throughν0 iterations.

Figure 3. Flow diagramof a V(ν1, ν2) cycle

All the meshes used in our multigrid strategy are hierarchical with a mesh size
ratio of two. This choice is quasi optimal as it ensure agoodcompromise between
thenumber of grids, local refinement flexibilit y and the error reduction in theV-cycle
(Venner et al., 2000).

3.2.2. Intergrid transfer

For theprolongation of nodal fields, oneuses the collocation proceduredefined in
(Dureisseix et al., 2006). Theprolongation operator I

n
n−1 between meshesMn−1 and

Mn isconstructed usingtheshapefunctionsonlevel (n−1) in thenatural coordinate
of thenodebelongingto level n.

If onedenotesX
n−1 thenodal field to transfer and(Xn−1

j ,Nn−1
j ) thedof andthe

shape function of the node j belonging to the mesh onlevel (n − 1), one obtains the
dof of the node i belongingto level n with coordinatesM

n
i :

X
n
i = X

n−1
j

T
N

n−1
j (Mn

i ) [5]

Oncethe prolongation operator is defined, the restriction operator I
n−1
n is built to

ensure the energy conservationand oneneeds to impose the followingrelation:

I
n−1
n =

(

I
n
n−1

)T
[6]

The internal variables and the stress tensor are interpolated between the meshes
using the shape functions of the elements. Then, a local least square method is used
to compute thevalues in the Gausspoints.

When onerestricts the entirestate vector (including both the nodal values and the
Gausspoint values) from level n to (n − 1), the restriction operator is denotedIn−1

n
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3.2.3. Iterativesolver

The time subscript m and the mesh level subscript n are omitted in this section.
Onebriefly presentstheNewtonsolver used to reducetheresidual defined byEquation
[7] oneach relaxationstep in themultigrid process.

R = Fext + L
T
Λ − Fint −MÜ

m = 0 [7]

Assuming that the Newton approximation and its associated residual on iteration
k are known, one linearizes Equation [7] using the order one Taylor expansion. This
equation, to besolved in termsof ∆U

(k+1), requires theJacobian matrix.

The Jacobian matrix is recalculated at each Newton step. The modified New-
ton methodconsiders the Jacobian matrix constant. Thus thenumber of iterations is
higher but the cost of each one is less. The simplest choice consists in replacing the
elastoplastic stiffnessby the elastic one and oneneeds to solve at each Newtonstep:

A∆U
(k+1) = R

(k) with A =
(

M + β∆t2K
)

/
(

β∆t2
)

[8]

U
(k+1) = U

(k) + ∆U
(k+1) [9]

Equation [9] is used to update the displacement vector. The completestate vector
is updated using Equations [3] and [4] for the kinematic quantities and the RRM
algorithm for the elastoplastic state.

3.2.4. Boundary conditions

When a localized mesh Mn is created, it inherits boundary conditions from the
closest coarser mesh. Displacementsand forcesareprescribed ontheparts∂Mn

u and
∂Mn

f of ∂Mn which intersect theboundaries∂Ωu and∂Ωf of the structure.

One defines ∂Mn
l as the complementary part on ∂Mn of the boundaries ∂Mn

u

and∂Mn
f . This boundary marks the link between the meshes on level n and (n − 1)

and an other boundary condition is needed onthis interface. The displacement of its
nodesareimposed bytheinterpolation of thedisplacement fieldU

n−1 usingLagrange
multipliers.

3.3. Multigrid solver

Wedescribed thelocalized nonlinear multigrid strategy onlevel Mn used to com-
pute the converged state vector Sn

c . On each time step, one wants to solve Equation
[1]. To simpli fy the explanation of thesolver, thisequationis summarized in Equation
[10]. 〈•〉 denotesthe dependency of A on thestate vector. Oneshould refer to Figure
3 for better understanding.

An 〈Sn〉 = b
n [10]
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One supposes that an initial solution Sn is known (interpolated from Mn−1
+ or

after a few multigrid cycles). After ν1 iterations, oneobtainsan approximationS̃n of
thesolution. This state vector is associated with an error vn anda residual Rn.

An 〈Sn
c 〉 = b

n ⇒ An
〈

S̃n + vn
〉

= An
〈

S̃n
〉

+ R
n [11]

During the coarsening phase, if Mn does not cover the entire mesh Mn−1, one
builds the state vector on level (n − 1) using the restriction of S̃n onMn−1

+ and the
restriction of theprevious statevectorSn−1 onMn−1

∗ . If onedenotesΠn−1
∗ andΠn−1

+

the restriction operatorson thesemeshes, the current state vector Ŝn−1 is defined by:

Ŝn−1 = Πn−1
∗ Sn−1 + Πn−1

+ In−1
n S̃n [12]

Wheretheoperator + denotesthe concatenation operator. The calculation onlevel
(n − 1) is performed to approximate the error vn on level (n − 1). Equation [13]
defines the equivalent problem on themeshMn−1:

An−1
〈

Ŝn−1 + vn−1
〉

= An−1
〈

Ŝn−1
〉

+ I
n+1
n R

n [13]

If themeshMn−1 containstoomany dofs, solving theproblem until convergence
could be expensive. That is why one uses recursive multigrid cycles to reduce the
number of dofs of the coarsest mesh and obtain a cheap problem to solve until con-
vergence. Whatever the calculation strategy onMn−1, a new approximate solution
S̃n−1 is obtained.

As plasticity is an irreversible phenomenon, the prolongation of the correction
is not as simple as the coarsening phase. Interpolating the entire state vector from
Mn−1 toMn may introduceirreversible errors. Then, duringtheprolongation phase
oneuses the system of Equation[14-17] to correct thesolution S̃n:

U
n = Ũ

n + I
n
n−1

(

Ũ
n−1 − Û

n−1
)

[14]

Ü
n =

(

1/β∆t2
)

· (Un −p
U

n) [15]

U̇
n = p

U̇ + γ∆tÜn [16]

(σn, νn
i ) = RRM

((

U
n − Ũ

n
)

, σ̃n, ν̃n
i

)

[17]

Once the correction is prolongated on the mesh Mn, a few iterations ν2 is per-
formed and new multigrid cyclesareperformed until convergence.

Figure4 ill ustrates theinterpolationandrestriction operationsbetween themeshes
in the multigrid cycle. The calculation begins on the coarser level as described in
Section 3.1. In transient dynamics, oneneeds to interpolate in time thestate vector to
computethepredictorsof theNewmark scheme andthepreviouselastoplastic stateof
the structure. When the calculation is performed for the first time on a mesh, the non
linear state is updated from the converged mesh ontheprevioustimestep.
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Figure 4. Interpolation and updating of thestate vector amongspaceandtime

3.4. Error indicator

To determine the area where a finer mesh is needed, one uses error indicators.
At each time tm, the solutions on two successive meshes are compared to evaluate
the discretization error. If the problem is regular, one obtains an estimation of the
accuracy of the solution.

Variousindicatorscan bedefined depending onthepart of thestatevector which is
used in the post-processing. We limit this section to the definition of the energy error
indicator used in Section 4.

Onedenotesen−1
j the element j onlevel (n−1) and

∑

en
i thematching hierarchi-

cal elements on level n. •|e denotes the restriction one. If E(tm) defines the energy
on the structure at time tm, including both the internal and the kinetic contribution,
onegets the error indicator on the element en−1

j onEquation [18] at each time tm.

ǫE |en−1

j
=

√

∣

∣

∣

(

En−1(tm)|en−1

j
− En(tm)|P en

i

)
∣

∣

∣

max[0;T ]

√

E1(t)
[18]

The use of the square root defines a norm. One divides by the maximum on the
coarsest level to obtain arelative error indicator. This indicator isdefined oneach ele-
ment of themeshMn−1

+ . The automatic refinement processisdriven bytherequested
accuracy andfiner levelsare created when the error exceedsthe criterion.

4. Results

The following examples were calculated using Castem 2000 (Verpeaux et al.,
1991). The material is assumed to be linear elastic plastic (positive isotropic hard-
ening) with a Youngmodulus equal to 210 · 109 Pa, a density of 7 800 kg.m−3, a
plastic stiffnessof 21 · 109 Pa anda yield stressof 300 · 106 Pa.
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As an example, we use a clamped beam under a traction force. Plasticity occurs
when thewave front arriveson the clamped end. Themean accelerationscheme(γ =
0.5, β = 0.25) is used.

(a) 1D example - Clamped beam (b) Loading force

Figure 5. One-dimensional problemof a beamunder a traction force

4.1. Convergencerate

In this section, nolocalizationisallowed andthemeshescover the entirestructure.
The multigrid cycle consists of 4 meshes. The coarser one has128elements and the
finest one1024.

Figure 6 shows the relative residual norm as a function of the relative number of
iterationsonthefinest mesh. Theuseof multigridstrategiesimprovesthe convergence
rateof themodified Newtonsolver (NRS).

Figure 6. Residual normas a function of thenumber of iteration onthefinest level

The choice of the restricted quantities during the coarsening phase changes the
convergence rate of the non linear multigrid solver. MG_T denotes the multigrid
strategy described on Section 3.3 with the complete state vector coarsening. MG
denotesamultigrid strategy wherethe elastoplastic stateis independent oneach mesh
(kinematic restriction only, thematerial state is updated using theRRM algorithm).

The convergence rate of MG exceeds that of MG_T . In fact, plasticity might
be to localized to be detected and computed on the coarser meshes. As a result, the
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plastic state is different oneach mesh if onedoesnot coarsen the completenonlinear
state vector and the efficiency of the multigrid strategy is reduced.

Moreover, in the case where the finest mesh Mn is localized, reducing the com-
plete state vector onMn−1

+ allows to update the state vector onMn−1
∗ as longas a

localized nonlinearity influences the entirestructure.

4.2. One-dimensional automatic refinement

Figure7 highlightsthebehaviour of the automatic refinement method. Space-time
diagramsareused, thehorizontal axisrepresentstimewhilethevertical onerepresents
space. The coarsest level has 16elementsand the time step isdt = 1.1µs. Thenodes
of the meshes are plotted every 8 time steps. The impact occurs on the upper part of
thebeam on time t = 0. The energy indicator defined byEquation[18] is used with a
requested accuracy of 1 · 10−2.

Figure 7. Space-time diagrams of the one-dimensional beam using anenergy error
indicator and arequested accuracyof 1 · 10−2

Using the localized multigrid strategy, spatial coarsening occurs without specific
techniques because the mesh is reassessed at each time step. The refinement follows
thewavepropagationin thebeam. Finer levelsare created when the calculation is not
accurate enoughand the refinement occurs in the maximum energy area at each time
step. Themesh remainsfineonthe clamped end of thebeam when plasticity occursto
describe thegradient in plastic strain andthe energy contribution dueto plastic strain.

As the indicator focuses on the energy error, the accuracy in plastic strain is not
ensured. If the plastic contribution in energy is small compared to the elastic one, the
refinement focuses on the elastic part. The use of a plastic work indicator ensures the
accuracy of the nonlinear fieldsbut neglects the elastic part.

4.3. Precision

The numerical examplepresented Section 4.2 is used with different requested ac-
curacies. A referencesolutionSr is calculated on 32768elementscorrespondingto a
uniform mesh sizeof level 12.
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The first two columns of Table 1 present the requested accuracy and the time av-
erage of the error maximum over the structure. To avoid the influence of the time
discretization, the error is defined as the differencebetween the increment in energy
on the reference and onthe converged mesh of the localized multigrid solver. This
table shows the correlation between the requested accuracy and the obtained error
in energy. It can be concluded from this table that the requested accuracy is indeed
obtained.

Table 1. Accuracy in energy and gain in elements for theone-dimensional problem

Requested Maximum Number Relativenumber
accuracy error of meshes of elements (%)

5 · 10−2 2.19 · 10−2 6 16.3
2 · 10−2 1.16 · 10−2 7 14.3
1 · 10−2 7.92 · 10−3 8 12.3

The maximum number of meshes used in the multigrid strategy over the time is
given in columnthree. Thelast columnshowsthegain in elementscomparingthetime
average number of elements in the multigrid strategy and the number on a uniform
mesh with the samemesh size as themaximum level reached.

5. Conclusion

Thispaper presentsan adaptivestrategy dedicated to nonlinear transient dynamic
simulations. Thestrategy uses a multigrid solver on each time step. Thestate vectors
on successive spacemeshes are compared and a relative error indicator is associated
with each element of the mesh. The automatic refinement process is driven by a
requested accuracy of this indicator. The spatial mesh is reassessed oneach time step
and the coarsening occurswithout specific techniques.

Thestrategy isill ustrated usingthe exampleof an elastoplastic beam with isotropic
hardening. Using an energy error indicator, one observes that the mesh refinement
follows the physical phenomena: the refinement occurs in thewavepropagationzone
and themesh remainsfine in theplastic zoneto describe theplastic contribution.

It was shown that the convergencerateof theiterativesolver increasesusingthe ap-
propriatestrategy for the coarsening phase. Moreover, using the localizationstrategy,
it is shown that the number of elements is reduced for a given accuracy of the state
vector. Then, the calculation of the state vector over the time interval is performed
within acceptable calculation time. This gain is expected to behigher for problemsin
higher dimensions.

Further work will i nvestigatethe influenceof the error indicatorson thebehaviour
of the refinement method, and the strategy should be extended to space-time refine-
ment.
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