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ABSTRACT. This paper presents an adaptive strategy dedicated to non-linear transient dynamic
problems. The spatial mesh is optimized to ensure the accuracy of the solution. Beginning
from a coarse mesh, an error indicator is used to estimate the discretization error and new
elements are created where the prescribed accuracy is not reached. A localized multigrid
solver is used and the strategy is applied recursively until the local mesh size ensures that the
discretization error is less than the prescribed accuracy. The spatial mesh is recreated at
each time step.

RESUME. Cet article présente une stratégie de résolution adaptative pour la dynamique
transitoire non linéaire permettant [’optimisation du maillage spatial en fonction d’une
précision requise du vecteur d’état. A partir d’un maillage grossier, un solveur multigrille
localisé est utilisé. Un indicateur d’erreur est calculé afin de contréler la précision de la
solution sur le maillage courant et de nouveaux éléments sont crées de maniére recursive et
hiérarchique jusqu’a ce que la discrétisation de I'ensemble de la structure permette d’assurer
la précision de la solution. Le maillage spatial est réévalué a chaque pas de temps.
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1. Introduction

In design departments, enginee's are interested in modeling problems which are
more and more complex, acourntingfor dynamicd aspedasand nonlinea phenomena.
The most common numericd technique used to discretize the spacedomain is the
finite dement method(FEM). A dired timeintegration schemeis frequently employed
to describe the evolution o the structure. Such simulations require alarge number of
degrees of freedom (dof) in space adtime to ensure the acawracy of the solution.

However, even if the computer capadty has increased dramaticdly over the last
decales, some non linea dynamicd solutions canna be atained withou efficient
strategies which reduce CPU and memory requirement. A key pant to efficiency isto
use agoodsolver onan optimized meshin space adtimewhile asaringthe predsion.

For nonlinea problems, a large part of the computing time is ent in the res-
olution o the lineaized equations. Dired and iterative solvers have shown their
dependency on the number of degrees of freedom N. Using a solver with a linea
convergencerate is a goodway to ensure the reduction of the omputingtime. The
multi grid methodis known to have a @mplexity in O(N) for many simple problem
(Brandt, 1977 and has soonshown its ability to solve nonlinea finite dement prob-
lems (Kaomouet al., 1993 Fish et al., 1995.

Various approaches have been developed to asessthe predson o the solution. In
adaptive procedures, apaosteriori error estimates have been widely used (seereferences
(Zhuet al., 1988 Babuska, 1978 Ladevezeet al., 2001). However, the computation
time of these aror estimatorsisimportant. For spedfic applicdions, one can use aror
indicatorswhich are chegoer in terms of CPU requirement even thoughthey might be
lessacarate.

Adaptive procedures and spacetime mesh optimization is an extensive field of
research. For example, spatial adaptivity for elastoplastic behaviour, based onamulti-
grid strategy, istreaed in (Ekevid et al., 2004). A domain decompaosition methodto
coupe sub-domains with their own numerica schemes and time stepsis proposed in
(Mahjouhi et al., 2009. A discontinuows Galerkin method working on urstructured
spacetime meshes is proposed in (Abedi et al., 2006. Cavin et al. present a fully
automatic spacetime refinement method kased onclasscd androbust algorithms.

This paper extends the method poposed in (Cavin et al., 2005 and presents a
locdized multigrid strategy dedicated to nonlinea behaviour in transient dynamics.
Its main spedficity is that the refinement and the marsening o the mesh between
time steps is fully automatic and daes not require human intervention. The first sec
tionintroducesthe referenceproblem and the numericd discretization. The foll owing
sedion sets up the multigrid solver and the locdi zaion strategy. The numericd per-
formanceof the solver is presented in Sedion 4. Sedion 5concludesonthe dficiency
of the strategy and gves some perspedives.
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2. Reference problem

We onsider the motion o a deformable body, assumed hamogeneous and
isotropic, occupying adomain 2 (¢) with bounary 9 (t) in the time interval [0, 7).
Prescribed displacementsu,, (¢) andtradionforces per unit areaF; () are goplied on
the subsets 02, and 02 ¢ of the boundry. f (¢) isabodyforce per unit volume.

0Q, an

Figure 1. Reference mntinuous problem

The material is elastoplastic. The problem consists in the cdculation o the dis-
placement u, the internal variables v; and the stresstensor  under the assumption of
small perturbations. One denotes S the complete state vedor.

In nonlinea dynamics, using the FEM for the spacediscretization and the New-
mark scheme for the time integration, the principle of virtual works leads to the dis-
cretized formulation presented Equation [1] at ead time¢™. Lagrange multipliers A
are used to impase the prescribed displacements.

MU™ + Fji = Foi + LTA™ [1]
with: LU™ =Uy

U and U are the discretized displacement and accéeration vedtors. M represents
the massmatrix. Fet and Fi arethe external andinternal forceveaors. L is such that
U matches with the prescribed displacement on the boundiry. The problem consists
of finding the state vedor satisfying Equation[1] andtheinitial condtions:

U\,=Uo,, Ul =71, [2]

The Newmark scheme provides Equations [3-4] to caculate the velocity and the
displacement. The Newmark predictors PU™ and PU™ are defined using the kine-
matic fields on the previoustime step (Belytschkoet al., 2005.

U’m—i—l —Pym + ﬁAt2ﬂ7n+1 [3]
Ut =P U™ AU [4]
The congtitutive law isintegrated in ead Gausspoint by a radial return mapping

(RRM) algorithm (Simo et al., 2000. The Cauchy stresstensor and the internal vari-
ables are updated and the complete state vedor S isknown ont,,,.
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3. Multigrid solver and localization strategy
3.1. Principle

The strategy is initiali zed at ead time step with the cdculation o the state vedor
ontwo coarse hierarchica meshes M! and M?2. Then, an error indicaor (seeSedion
3.4) isused to comparethe solutions S and S? onthese meshes and new elementsare
creaed where the requested acairagy is not readed to form the mesh M3. Figure 2
ill ustrates the refinement method

Mesh Size

w=n

=20

n=4n

=8N

Figure 2. Bi-dimensiond hierarchical refinement. Shackd elements do na verify the
requested accuracy

One generalizesthe explanation using the subscript » for the aurrent mesh level. If
the new mesh M™*! does not cover the entire mesh M", one defines M and M
as the mvered and urcovered part of M™.

The redtriction o the state vedor S™ on M} isinterpolated in spaceonthe mesh
M1 asafirst approximation. The cdculationis performed onthis new mesh using
amultigrid solver and appropriate boundiry condtions (see Sedion 32.4). Oncethe
state vedor St is known, the strategy is applied reaursively and new meshes are
eventualy creaed. The process $ops when the finest mesh verifies the requested
acarracy onead of its elements.

3.2. Notationsand multigrid todls

3.2.1. Concerning multigrid

The basic ideaof multigrid methods is that iterative methods, such as conjugate
gradient solvers, efficiently reducethe eror comporents with wavelengths compara-
ble to the grid size and orly slowly reduce the large wavelength comporents. Using
coarser meshes to solve these smooth error comporents, the multigrid procedure im-
provesthe mnvergencespedl.
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Figure 3ill ustrates the multi grid strategy in the case of four grids. Theresolutionis
performedfoll owingthe arows. v, iterationsof the solver are used to smocth the eror
before aarsening. v, iterations are made during the prolonggtion phese to removethe
errorsintroduced in the interpolation. The gain in convergencespeed highly depends
on this two parameters. Using a Newton solver for the relaxation steps, experience
showsthat v, = vy = 1 isthe best choice The problem is slved urtil convergence
onthe ooarser mesh throughv iterations.

Mesh size Level
B =h 4
R =2k 3
B =4h 2
h''=8h 1

Figure 3. Flow diagramof a V(4, v») cyde

All the meshes used in our multigrid strategy are hierarchicd with a mesh size
ratio of two. This choiceis quasi optimal as it ensure agood compromise between
the number of grids, locd refinement flexibility and the eror reductionin the VV-cycle
(Venner et al., 2000.

3.2.2. Intergrid transfer

For the prolongation of noddl fields, one uses the aoll ocation procedure defined in
(Dureissix et al., 2006). The prolonggtion operator I _, between meshes M™~! and
M™ isconstructed usingthe shapefunctionsonlevel (n — 1) inthe natural coordinate
of the node belongngto level n.

If one denotes X"~ the nodal field to transfer and (X’ ', N}~ ') the dof andthe
shape function o the node j belongngto the mesh onlevel (n — 1), one obtains the
dof of the node ¢ belongngto level n with coordinates M} :

Xp = X7 N (M) [5]

Oncethe prolongation operator is defined, the restriction operator I ! is built to
ensure the energy conservation and ore needs to impose the followingrelation:
n— n T
Hn ! = (]In—l) [6]
The interna variables and the stresstensor are interpolated between the meshes

using the shape functions of the dements. Then, alocd leat square methodis used
to compute the values in the Gausspoints.

When orerestricts the entire state vedor (including bah the nodal values and the
Gausspoint values) from level n to (n — 1), the restriction operator is denoted 71
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3.2.3. lterativesolver

The time subscript /m and the mesh level subscript n are omitted in this edion.
One briefly presentsthe Newton solver used to reducethe residual defined by Equation
[7] onead relaxation step in the multigrid process

R =Fe¢+L'A —Fiyy — MU™ =0 [7]

Asauming that the Newton approximation and its associated residual oniteration
k are known, one lineaizes Equation [ 7] using the order one Taylor expansion. This
equation, to be solved in terms of AU+ | requires the Jacobian matrix.

The Jacobian matrix is recdculated at ead Newton step. The modified New-
ton method considers the Jacmbian matrix constant. Thus the number of iterationsis
higher but the cost of ead oreisless The simplest choice mnsists in repladng the
elastoplastic stiffnessby the dastic one and ore nealsto solve & ead Newton step:

AAUFTD = R®  with A = (M + BAPK) / (BAL?) [8]
Ukt — gk L Aut+D [9]

Equation [9] is used to updite the displacanent vedor. The cmomplete state vedor
is updated using Equations [3] and [4] for the kinematic quartities and the RRM
algorithm for the dastoplastic state.

3.2.4. Bounday condtions

When a locdized mesh M™ is creded, it inherits boundry conditions from the
closest coarser mesh. Displacements and forces are prescribed onthe parts O.M; and
8Mf; of 9 M™ which intersed the boundiries 0€2,, and 92 ¢ of the structure.

One defines 9 M} as the complementary part on 9M™ of the boundries OM!
and 9 M. This boundary marks the link between the meshesonlevel n and (n — 1)
and an cther boundary condtionis neaded onthisinterface The displacement of its
nodesareimposed bytheinterpolation of the displacanent field U™~ usingLagrange
multipliers.

3.3. Multigrid solver

We described the locdi zed nonlinea multigrid strategy onlevel M™ used to com-
pute the converged state vedor S7'. On ead time step, one wants to solve Equation
[1]. To simplify the explanation o the solver, this equationis summarized in Equation
[10Q]. (e) denotesthe dependency of .A onthe state vedor. One shoud refer to Figure
3 for better understanding.

A" (S™) = Db [10]
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One suppases that an initia solution 8™ is known (interpdlated from M’} " or

after afew multigrid cycles). After v, iterations, one obtains an approximationS™ of
the solution. This date vedor is asciated with an error v™ and aresidual R".

AT(SH) =b" 5 A8 ) = A (") 4 R [11]

During the carsening phese, if M™ does not cover the entire mesh M™~ 1, one
buil ds the state vector onlevel (n — 1) using the restriction o S on M’ ! andthe
restriction o the previous datevedor S"~! onM?~L. If onedenotesII?~* andIl’} !
the restriction operators on these meshes, the aurrent state vedor S~ is defined by:

Sl =Tptst T 4 I S [12

Wherethe operator + denotesthe ancatenation operator. The cdculation onlevel
(n — 1) is performed to approximate the eror v™ onlevel (n — 1). Equation[13]
defines the equivalent problem on the mesh M™—1:

An—1 <Sn—1 n U7z—1> _ gt <$n—1> —|—HZ+1R" [13]

If the mesh M™~! containstoo many ddfs, solving the problem until convergence
could be expensive. That is why ore uses reaursive multigrid cycles to reduce the
number of dofs of the aoarsest mesh and oltain a chegp problem to solve until con
vergence. Whatever the cdculation strategy on M™~1, a new approximate solution
S"~! is obtained.

As plasticity is an irreversible phenomenon, the prolongation o the corredion
is not as smple & the marsening ptese. Interpolating the entire state vedor from
M"~1 to M™ may introduceirreversible erors. Then, during the prolongation phase
one uses the system of Equation[14-17] to corred the solution S™:

U= O, (070 (14
U = (1/pA8) - (U" P U [15]
U" = PU+4yALU" (16
(0", v7) = RRM ((U"-0") 6" 5) 7

Once the oorredion is prolongated on the mesh M™, a few iterations v, is per-
formed and new multigrid cycles are performed urtil convergence

Figure 4 ill ustrates the interpolationand restriction operations between the meshes
in the multigrid cycle. The cdculation begins on the marser level as described in
Sedion 3 1. In transient dynamics, one needsto interpolate in time the state vedor to
compute the predictors of the Newmark scheme and the previous elastoplastic state of
the structure. When the cdculationis performed for the first time on a mesh, the non
linea state is updated from the converged mesh onthe previous time step.
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O MG level
© MG level where the acouracy is reached

@ - --» Updatmng of the EP state
i @ Final multilevel mesh on a tune step

—=  Interpolation of kinematic fields
'
Mesh Size

T — o o
W=2n O ————————————————————— © OO
n=4n - O =()e: '”@ O O/ C{ ; O
n'=38h @/ \O/ \O/ O \i)/ Final mesh o1 t,

% t,.;:
Figure4. Interpolation and updéing o the state vetor amongspace andtime

3.4. Error indicator

To determine the aeawhere afiner mesh is needed, one uses error indicators.
At ead time ¢,,,, the solutions on two successve meshes are compared to evaluate
the discretizaion error. If the problem is regular, one obtains an estimation o the
acaragy of the solution.

Variousindicators can be defined depending onthe part of the state vedor whichis
used in the post-processng. We limit this sedion to the definition o the energy error
indicator used in Sedion 4.

Onedenotese” ' the dement j onlevel (n—1) and " e? the matching Herarchi-
cd elementsonlevel n. o, denotestherestriction one. If £(t,,) defines the energy
on the structure & time t,,,, including bah the internal and the kinetic contribution,
one getsthe aror indicaor onthe dement e?‘l onEquation[18] at eath timet,,

(el - el )|

et = [18]

i max(o, 7] /EL(t)

The use of the square root defines a norm. One divides by the maximum on the
coarsest level to oltain arelative aror indiceator. Thisindicator is defined onead ele-
ment of the mesh /\/l?;l. The automatic refinement processis driven by the requested
acaragy andfiner levels are aeaed when the aror excealsthe aiterion.

€e

4. Results

The following examples were cdculated using Castem 2000 (Verpeaux et al.,
1991). The materia is assumed to be linea elastic plastic (positive isotropic hard-
ening) with a Youngmoduus equal to 210 - 10° Pa, a density of 7 800 kg.m =3, a
plastic stiffnessof 21 - 10° Pa and ayield stressof 300 - 10° Pa.
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As an example, we use a damped bean under a tradion force Plasticity occurs
when the wave front arrives on the damped end. The mean accderation scheme (y =
0.5, 5 = 0.25) is used.

b
7
&

AN\
.
%)
l L2
Loading force (N)

0E+0
0,0E+0 50E5 10E4 1564 20E4

L Time (s)
(@) 1D example - Clamped bean (b) Loading force

Figure 5. One-dimensiond problem of a beamunder a tractionforce

4.1. Convergencerate

Inthis £dion, nolocdizaionis all owed and the meshes cover the entire structure.
The multigrid cycle consists of 4 meshes. The marser one has 128 elements and the
finest one 1024

Figure 6 shows the relative residual norm as a function o the relative number of
iterations onthe finest mesh. The use of multi grid strategiesimprovesthe convergence
rate of the modified Newton solver (IV R.S).

Residual norm

~ A =
0 01 02 03 04 05 06 07 08 09 1
Relaxation steps on the finest grid

Figure 6. Residud normas a function of the number of iteration onthe finest leve

The choice of the restricted quantities during the coarsening phese changes the
convergence rate of the nonlinea multigrid solver. MG_T denates the multigrid
strategy described on Sedion 3.3 with the complete state vedor coarsening. MG
denotes a multi grid strategy where the dastoplastic state isindependent on ead mesh
(kinematic restriction oy, the material state is updated usingthe RRM algorithm).

The mnvergencerate of MG exceals that of MG_T. In fad, plasticity might
be to locdized to be deteded and computed onthe aarser meshes. As aresult, the
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plastic state is diff erent on ead mesh if one does not coarsen the complete nonlinea
state vedor and the dficiency of the multigrid strategy is reduced.

Moreover, in the cae where the finest mesh M™ islocdized, reducing the com-
plete state vedor on M1‘1 alows to upcdhte the state vedor on M™ ! aslongas a
locdized nonlineaity influences the entire structure.

4.2. One-dimensional automatic refinement

Figure 7 highlightsthe behaviour of the automatic refinement method Spacetime
diagrams are used, the horizontal axisrepresentstime whilethe vertica onerepresents
space The marsest level has 16 elements andthetime step isdt = 1.1us. The nodes
of the meshes are plotted every 8 time steps. The impad occurs on the upper part of
thebean ontimet = 0. The energy indicator defined by Equation[18] is used with a
requested acaragy of 1 - 1072,

WWMMWWMWWWMWWWMW”WW
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | ...Hm Wilstilaiinbidilil

Figure 7. Space-time diagrams of the one-dimensiond beam using anenergy error
indicator and arequested accuracyof 1 - 102

t

Using the locdized multigrid strategy, spatial coarsening occurs without spedfic
techniques because the mesh is resssessed at ead time step. The refinement foll ows
the wave propagationin the beam. Finer levels are aeaed when the cdculationis not
acarate enoughand the refinement occursin the maximum energy area d ead time
step. The mesh remains fine onthe damped end o the beam when pgasticity occursto
describe the gradient in plastic strain and the energy contribution due to plastic strain.

As the indicaor focuses on the energy error, the acaracy in plastic strain is not
ensured. If the plastic contributionin energy is small compared to the dastic one, the
refinement focuses onthe dastic part. The use of a plastic work indicaor ensuresthe
acairagy of the nonlinea fields but negledsthe dastic part.

4.3. Predsion
The numericd example presented Sedion 4.2 is used with diff erent requested ac

curades. A referencesolution S is caculated on 32768 ements correspondngto a
uniform mesh sizeof level 12
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The first two columns of Table 1 present the requested acairagy and the time av-
erage of the aror maximum over the structure. To avoid the influence of the time
discretizaion, the aror is defined as the diff erence between the increment in energy
on the reference and onthe cnverged mesh of the locdized multigrid solver. This
table shows the correlation between the requested acaracy and the obtained error
in energy. It can be concluded from this table that the requested acairacy is indeed
obtained.

Table 1. Accuracyin energy and gan in elements for the one-dimensiond problem

Requested Maximum  Number  Relative number

acaragy error of meshes of elements (%)
5-1072 2.19-102 6 163
2-1072  1.16-1072 7 143
1-1072  7.92-1073 8 123

The maximum number of meshes used in the multigrid strategy over the time is
givenin columnthree Thelast column showsthe gainin elements comparingthetime
average number of elements in the multigrid strategy and the number on a uniform
mesh with the same mesh size a the maximum level readed.

5. Conclusion

This paper presents an adaptive strategy dedicaed to nonlinea transient dynamic
simulations. The strategy uses a multigrid solver on ead time step. The state vedors
on successve spacemeshes are cmpared and arelative aror indicator is associated
with ead element of the mesh. The automatic refinement processis driven by a
requested acairagy of thisindicator. The spatial mesh isreasssesed onead time step
and the aoarsening occurs withou spedfic techniques.

Thestrategy isill ustrated usingthe example of an elastoplastic beam with isotropic
hardening. Using an energy error indicaor, one observes that the mesh refinement
followsthe physicd phenomena: the refinement occurs in the wave propagation zone
and the mesh remains fine in the plastic zone to describe the plastic contribution.

It was hown that the convergencerate of theiterative solver increases usingthe go-
propriate strategy for the coarsening phase. Moreover, using the locdization strategy,
it is shown that the number of elements is reduced for a given acarracy of the state
vedor. Then, the cdculation o the state vedor over the time interval is performed
within acceptable cdculationtime. Thisgain is expeded to be higher for problemsin
higher dimensions.

Further work will i nvestigate the influence of the eror indicaors onthe behaviour
of the refinement method, and the strategy shoud be extended to spacetime refine-
ment.
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