Effect of micro-defects on structure failure

Coupling asymptotic analysis and strong discontinuity
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ABSTRACT. This work aims at taking into account the influence of geometrical defects on the
behavior till complete failure of structures. This is achieved without any fine description of
the exact geometry of the perturbations. The proposed strategy is based on two approaches:
asymptotic analysis of Navier equations and strong discontinuity approach.

RESUME. L objectif de ce travail est de prendre en compte ['influence de la présence de défauts
géométriques sur le comportement a rupture des structures et ce, sans description fine de la
géométrie particuliére des perturbations. L approche proposée s appuie sur deux outils : une
analyse asymptotique des équations de Navier et |'utilisation de modéles a discontinuité forte.

KEYWORDS: multi-scale asymptotic analysis, singular perturbation, strong discontinuity,
failure.

MOTS-CLES : analyse asymptotique, perturbation singuliére, discontinuité forte, rupture.

DOI:10.3166/EJCM.19.165-175 © 2010 Lavoisier, Paris

EJCM - 19/2010. Giens 2009, pages 165 to 175



166 EJCM —19201Q Giens 2009

1. Introduction

The evaluation o the limit load and behavior till rupture of a structure is highly
correlated to the presence of small defeds or heterogeneities. material defeds, geo-
metricd defeds or loading perturbations.

In this work we look more predsely at the prediction o the rupture of complex
structures auffering from (surfadc) "small" perturbations (inclusions or porosities).
We ae oconcerned with the choice of the most suitable Finite Element strategy to
cgpturethe structural behavior. The main feaure of our work isto propcse an approach
dedingwith bah singuar perturbationsandlocdi zationzones development, by using
a ooarse description o the geometry: neither the perturbation shape nor a fine re-
presentation o the whesive aad are considered. Our aim is to design a numericd
strategy deding with a coarse discretization o the unperturbed damain and able to
perform the analysis of the structural resporse from the dastic phase to complete
failure. To that purpose, we nsider two maaoscopic models dedicated to eadh of
the two pheses of the behavior:

— the asymptotic analysisis used to evaluate the influenceof the presenceof micro-
defeds onthe solution (Dambrine et al., 2005 Bonrailli e-Noél et al., 2009,

— the strong dscontinuity approach allows taking into acourt, at the structural
scde, the development of locdizaion zones or cohesive aads (Brancherie et al.,
2009.

In the first sedion, we give the keypoaints of the asymptotic analysis and the nu-
mericd strategy used for the evaluation o stress concentration die to the presence
of geometricd defeds. We present, in the second sedion, the gpproach developed
to coupe the ssymptotic analysis to the strong dscontinuity methodin order to per-
form the computation o the behavior of the structuretill completefailure. Finaly, the
third sedion is dedicated to some numerica results obtained considering structures
presenting several singuar perturbations.

2. Description of theinfluenceof singular perturbations:. multi-scale asymptotic
analysis

We evaluate the influenceof geometricd perturbationsby amulti-scae ssymptotic
analysis of Navier equations of linea elagticity.

We consider here adomain 2. pierced with a perturbation o size e centered on
theregular point 0 (seeFigure 1). In the following, we dencte &s €2 the unperturbed
domain and H,, the unboun@d damain oltained by a blow-up aroundthe point 0
bringingthe perturbationat scde1: H,, = 611_1)1(1) Q. /e.



Effed of micro-defeds on structure failure 167

Q 2 H,,

© 0 o

@ (b) ©

Figure 1. Unperturbed damain ¢ (@), perturbed domain 2. (b) and unboundd do-
main H, (¢)

The problem we focus onis written onthe perturbed domain as:

—pAu, — (A + p) grad divu, = f onQ.,
u. = u?onTly, [1]
o-n=gonly,

where "y and T'; denote the Dirichlet and Neumann boundry of the domain respec

tively, I'; includes the boundry of the perturbationand g is suppcsed to be zeoin a

neighbahood d the perturbation.

We can nate that two scades are naturally involved in Problem [1]: the scde of
the structure and the scde of the perturbatione. It has been proven in (Dambrine
et al., 2009 that the solution of problem [1] is approximated at first order by the
superpasition o the solution oltained onthe unperturbed domain 2, and a corredion
written in terms of the fast variable x/c. We have then:

X

X
us(x) ~ uo(x) 13 |:OélV1 (E) + O[QVQ (E):| y [2]
with uy the solution on the unperturbed domain, a1 = 011(up)(0) and ay =
o12(u0)(0). TheprofilesV et V, areobtained as lution o an hamogeneousNavier
eguation stated onthe unbouned damain H, with Neumann boundry condtionson
the boundxry of the normali zed perturbationo (Vy) -n = G, (with G, = (ny,0) and
G2 = (0,1n1), n; denatesthe first comporent of the outer normal to H..):

{ —pAV, — (A + p) grad divV, = 0in H,, a

O'(Vg) -n=GpondH...

When deding with several perturbations, the evaluation of the solution at first or-
der requiresto take into acmurt the potential i nteradion between perturbations. It has
been proven in (Bonrailli e-Noél et al., 2009 that if the distance between the centers
of two neighba perturbationsis written as® with 0 < o < 2, the perturbations can
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be mnsidered as far and nointeradion reeds to be taken into acourt at first order.
The solutionis then approximated by:

SN S [aivi (f) T abVi (i)] | 4

: i i
=1

3. Failure description

The description o the failure of a structure presenting geometricad perturbations
is decompaosed into two phases:

—in afirst step, the stress concentration die to the presence of micro-defedsis
evaluated with the help of asymtptotic analysis,

—in asemndstep, we describe the locdi zaion zones and cracks developing from
the stressconcentration zones througha strong dscontinuity model.

Numericdly, the two previous geps are performed consideringa coarse description of
the geometry: only a discretization of the unperturbed damain is considered.

For structures presenting several defeds, depending onthe loading and onthe
geometry, it can be necessary to ded simultaneously with asymptotic analysisin some
parts of the structure still i n the dastic regime and with damage development in some
other parts where aadks yet initiated. To that purpose, a dedicaed toal incorporating
both aspeds previously described is to be developed.

3.1. Kinematic enrichment for the asymptotic analysis

Taking into acourt the asymptotic fields in a numericd toal can be adieved by
the use of the partition of unity method(Melenk et al., 1996 leadingto the evaluation
of theinfluenceof perturbationswhil e usinga coarse discretization o the unperturbed
domain. The standard variational Finite Element spaceis enriched by the gpproxi-
mation V, of the profiles V,. The gproximations V, are computed on a truncated
domain Hg = H., N B(0, R) where R is chaosen as large & passble. We bring the
vanishing condtion at infinity onthe atificial boundry O0HpR \ 0H.

As the profiles deca at infinity, their influence is very locd and thus, only a
neighbahood d the perturbations needs to be enriched. The displacament field, as
suggested by [4], isthen given by:.

nb defeds 2
j i <7 X i X7 X
w0 = b3 30 30 W60 [agea Vi (X) +agea¥i (X)) 1
i=1 (=1jeT; ? i

where 7; denotes the indices of the nodes locaed in the erichment zone related to
perturbationi. N7 arethe standard shape functions associated to nocej and '’ , isa
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two-comporent vedor consisting o the degrees of freedom related to the enrichment
functionV ..

The computationis performed onthe discrete unperturbed damain. The presence
of the perturbations and their geometry are taken into acourt through a dedicated
numericd integration based onthe exad geometry.

Concerning the numerica computation o the o’ ,, as observed in the context
of XFEM (Chahine et al., 2007), if al thase enriched degrees of freedom are kept
freein the erichement aress, the problem to be solved is badly condtioned. In or-
der to circumvent this difficulty, we impose the foll owing equaliti es suggested by the
asymptotic analysis:

(a§e,1)1 = (O‘;'é,2>2 and (a§4,1)2 = <a2412)1' 10

Those equaliti es are ensured by appeding to a master/dave strategy lealing to the
resolution o an augmented problem:

Up fo
a| = |fa
A 0

where K, is the standard tiffness matrix computed on the unperturbed domain,
IT denotes the projedion operator over the equdity constraints [6], K¢, and K¢,
denate respedively the part of the total stiffnessassociated to the added degrees of
freedom andthe couped part. The vedor X isthe Lagrange multi pli er associated with
the constraints [6] and finally, fy and f,, denote the external | oading.

K’ © 0
Kou Koo TI7
0 Im o

; [7]

The two matrices K¢, , and K¢,,, are computed by wsing a dedicaed integration
strategy:

— a partitioning, typicdly obtained by meshing, of the dements affeded by the
perturbationis carried out in order to compute dl the quantiti esinvolving the profiles,

—in the vicinity of the perturbation, the order of integration is also increased in
order to cgpture the evolution o profiles.

3.2. Field transfer: coupling of asymptotic analysis and strong discontinuity
approach

The stressconcentrations generated by the presence of micro-defedsin hand, one
can continue the computation by wsing the strong dcortinuity approach (SDA) (see
(Simo et al., 1993 Oliver, 1995 Brancherieet al., 2009) in order to track the deve-
lopement of high damage zonesiniti ated onthe geometricd perturbations.

For that purpose, it is necessary to projed the field oktained from the asymptotic
analysis to the variational spaceused for strong dscontitnuity approach. Indeed the
kinematic enrichments of the variational spaces asociated to the asymptotic analy-
sis and the strong dscontinuity approach are not compatible. The strategy proposed
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hereinisto designafield transfer ensuring the transfer of the displacement field from
one variational spaceto the other one. Let’'sdenate Vsp 4 the variational space a-
ciated to the SDA, the displacament field used as initial value for the continuation o
the computationis obtained as the solution of a minimisation problem given as:

min J(u)=Eu-u") uc u=u?only, (8]
u€Vspa

where £(v) = %/ o(v) : g(v)dQ. The proposed strategy is then based onthe

construction of adis%lacenent fieldin Vsp 4 producingastrain energy being as close
as possble to the strain energy produced by the solution oltained on the perturbed
domain u”. The solution of such aminimisation problem under constraint is obtained
asthe solution of alinea set of equations.

This projeded displacement field u is then used to compute the correspondng
stressintroduced asan initia value for the continuation o the computationwith strong
discontinuity approach.

4. Numerical results

| 200 mm
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(a) Problem definition: geometry, loading and material
properties
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Figure 2. Problem definition: geometry, loadng, material properties and dscretiza-
tions
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We present here the results obtained considering a domain submitted to a tensile
load (Figure 2()). The domain is pierced by two perturbations. the first oneis cen-
tered at point O; = (105,0) andis of radius 2 mm and the second d radius 1.5 mm
iscentered at point O, = (135, 0).

In order to vali date the enrichment strategy adopted for thedescription o theinflu-
enceof small defeds, we compare the results obtained in terms of displacement and
stressfields for, a so cdled, reference mmputation carried ou on a fine discretiza
tion o the real geometry (Figure 2(b)) by standard Finite Element approach, and an
enriched computation performed ona coarse discretization (Figure 2(c)) of the unper-
turbed damain.

Figure 3 gives the obtained results in terms of the displacement field in the di-
redion o the tradion for both discretizetion and interpdations. The relative eror
between those two computations is lower than 0.25% allowing to conclude that the
proposed strategy gives satisfadory results regarding the one provided by the asymp-
totic analysis.

Figure 4 gives the stressfield o, obtained form the standard reference mmputa-
tion and the enriched ore. Figure 4(c) ill ustrates the relative eror computed in terms
of strain energy. For the considered case, the relative aror integrated over the whale
domain is lessthan 0.01%, it is very concentrated at the very small vicinity of the
perturbations on the boundxry of the domain where the strain energy is abou zero
(leadingto highrelative aror). Those results confirm that, for relatively close pertur-
bations, the profiles computed from the asymptotic analysisat first order are sufficient
to oltain agoodapproximation o the solution, nointeradions between the inclusions
need to be taken into acoun.

From the displacenent obtained throughthe enriched computation, the field trans-
fer presented in Sedion 32 is performed as on as the maximal principa stress
reades the limit value chosen for the initiation of cradcs. Figure 5(a) represents the
stressfield oltained from the rebuilt displacement after transfer. Thisfield is the one
introduced asinitial value for the continuation of the computationwith strong dscon-
tinuity approach. We can olserve that the stressconcentration due to the presence of
the perturbationsare well reproduced, cradk initiation takes place &theright location.
Figure 5(b) gives the orientation and opening o the introdwced discontinuities at the
end o the loading process

We can seethat the adad leading to complete fail ure of the domain initiated on
the bigger perturbation centered on pant O, . Inded, the development of thiscrad is
acompanied with elastic unloading o the rest of the domain preventing the develop-
ment of asecnd crad.
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(a) Reference mmputation onthe fine discretizaion
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(c) Relative aror

Figure 3. Displacement field u,, obtained by standard andenriched computation, re-
lative @ror map
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stresses g, (ref. computation)
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(a) Reference mmputation
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Figure 4. Sressfield o, obtained by standad andenriched computation, relative
strain energy error map
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G, (maximum principal stress)
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(a) Reaonstructed principal maximum stress
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(b) Discontinuiti es orientation and crad opening (mm)

Figure 5. Difference between the reconstructed displacement field after transfer and
the field oktained onthe unperturbed damain, reconstructed maximal principal stress

5. Conclusion

We have presented a strategy all owing to take into acourt the influence of micro-
defeds on the behavior till rupture of structures. The key point of the proposed ap-
proadh is that this description is achieved withou any fine description o the exad
geometry of the domain bu rather with a aarse description o the unperturbed do-
main, the perturbations being incorporated in the computation through a kinematic
enrichment of standard Finite Element method

This enrichment is provided by a multi-scde asymptotic andysis of Navier equa
tions for linea elagticity. The description o the initiation and developement of lo-
cdization zones leading to the goparition o cradksis ensured by the use of a strong
discontinuity approach. A field transfer operator has been designed in order to couge
those two approaches during all the loading process
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