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ABSTRACT. This work aims at taking into account the influence of geometrical defects on the 
behavior till complete failure of structures. This is achieved without any fine description of 
the exact geometry of the perturbations. The proposed strategy is based on two approaches: 
asymptotic analysis of Navier equations and strong discontinuity approach. 

RÉSUMÉ. L’objectif de ce travail est de prendre en compte l’influence de la présence de défauts 
géométriques sur le comportement à rupture des structures et ce, sans description fine de la 
géométrie particulière des perturbations. L’approche proposée s’appuie sur deux outils : une 
analyse asymptotique des équations de Navier et l’utilisation de modèles à discontinuité forte. 
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1. Introduction

The evaluation of the limit load and behavior till rupture of a structure is highly
correlated to the presenceof small defects or heterogeneities: material defects, geo-
metrical defectsor loading perturbations.

In this work we look more precisely at the prediction of the rupture of complex
structures suffering from (surfacic) "small " perturbations (inclusions or porosities).
We are concerned with the choice of the most suitable Finite Element strategy to
capturethestructural behavior. Themain featureof our work isto propose anapproach
dealingwith both singular perturbationsandlocalizationzonesdevelopment, by using
a coarse description of the geometry: neither the perturbation shape nor a fine re-
presentation of the cohesive crack are considered. Our aim is to design a numerical
strategy dealing with a coarse discretization of the unperturbed domain and able to
perform the analysis of the structural response from the elastic phase to complete
failure. To that purpose, we consider two macroscopic models dedicated to each of
the two phasesof thebehavior:

– the asymptotic analysisisused to evaluatetheinfluenceof thepresenceof micro-
defectson thesolution(Dambrineet al., 2005; Bonnailli e-Noël et al., 2009),

– the strong discontinuity approach allows taking into account, at the structural
scale, the development of localization zones or cohesive cracks (Brancherie et al.,
2009).

In the first section, we give the keypoints of the asymptotic analysis and the nu-
merical strategy used for the evaluation of stressconcentration due to the presence
of geometrical defects. We present, in the second section, the approach developed
to couple the asymptotic analysis to the strong discontinuity method in order to per-
form the computation of thebehavior of thestructuretill completefailure. Finally, the
third section is dedicated to some numerical results obtained considering structures
presentingseveral singular perturbations.

2. Description of the influenceof singular perturbations: multi-scaleasymptotic
analysis

We evaluatetheinfluenceof geometrical perturbationsby amulti -scale asymptotic
analysisof Navier equationsof linear elasticity.

We consider here adomain Ωε pierced with a perturbation of sizeε centered on
the regular point 0 (seeFigure 1). In the following, we denote asΩ0 the unperturbed
domain and H∞ the unbounded domain obtained by a blow-up aroundthe point 0
bringingtheperturbationat scale1: H∞ = lim

ε→0
Ωε/ε.
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Figure 1. Unperturbed domain Ω0 (a), perturbed domain Ωε (b) and unbounded do-
main H∞ (c)

Theproblem we focuson is written ontheperturbed domain as:






−µ∆uε − (λ + µ)grad divuε = f on Ωε,

uε = ud on Γd,
σ · n = g on Γt,

[1]

whereΓd and Γt denote the Dirichlet and Neumann boundary of the domain respec-
tively, Γt includes the boundary of the perturbationandg is supposed to be zero in a
neighborhood of theperturbation.

We can note that two scales are naturally involved in Problem [1]: the scale of
the structure and the scale of the perturbation ε. It has been proven in (Dambrine
et al., 2005) that the solution of problem [1] is approximated at first order by the
superposition of thesolution obtained ontheunperturbed domain Ω0 anda correction
written in terms of the fast variablex/ε. We have then:

uε(x) ≃ u0(x) − ε
[

α1V1

(x

ε

)

+ α2V2

(x

ε

)]

, [2]

with u0 the solution on the unperturbed domain, α1 = σ11(u0)(0) and α2 =
σ12(u0)(0). TheprofilesV1 et V2 areobtainedas solution of an homogeneousNavier
equationstated ontheunbounded domainH∞ with Neumann boundary conditionson
theboundary of thenormalized perturbationσ(Vℓ) ·n = Gℓ (with G1 = (n1, 0) and
G2 = (0,n1), n1 denotesthefirst component of theouter normal to ∂H∞):

{

−µ∆Vℓ − (λ + µ)grad div Vℓ = 0 in H∞,

σ(Vℓ) · n = Gℓ on∂H∞.
[3]

When dealing with several perturbations, the evaluation of the solution at first or-
der requiresto takeinto account thepotential interaction between perturbations. It has
been proven in (Bonnailli e-Noël et al., 2009) that if the distancebetween the centers
of two neighbor perturbations is written asεα with 0 < α < 2

3
, the perturbationscan
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be considered as far and nointeraction needs to be taken into account at first order.
Thesolution is then approximated by:

uε(x) ≃ u0(x) −

nb defects
∑

i=1

εi

[

α
i
1V

i
1

(

x

εi

)

+ α
i
2V

i
2

(

x

εi

)]

. [4]

3. Failure description

The description of the failure of a structure presenting geometrical perturbations
is decomposed into two phases:

– in a first step, the stressconcentration due to the presenceof micro-defects is
evaluated with thehelp of asymtptotic analysis,

– in a secondstep, we describe the localizationzonesandcracksdevelopingfrom
thestressconcentrationzones througha strong discontinuity model.

Numerically, thetwo previous stepsareperformed consideringa coarsedescription of
thegeometry: only a discretization of theunperturbed domain is considered.

For structures presenting several defects, depending on the loading and on the
geometry, it can benecessary to deal simultaneously with asymptotic analysis in some
partsof thestructurestill i n the elastic regime andwith damagedevelopment in some
other parts where cracks yet initiated. To that purpose, a dedicated tool incorporating
both aspects previously described is to be developed.

3.1. Kinematic enrichment for the asymptotic analysis

Taking into account the asymptotic fields in a numerical tool can be achieved by
theuseof thepartition of unity method(Melenket al., 1996) leadingto the evaluation
of theinfluenceof perturbationswhileusinga coarsediscretization of theunperturbed
domain. The standard variational Finite Element spaceis enriched by the approxi-
mation Ṽℓ of the profiles Vℓ. The approximations Ṽℓ are computed ona truncated
domain HR = H∞ ∩ B(0, R) whereR is chosen as large as possible. We bring the
vanishingconditionat infinity on the artificial boundary ∂HR \ ∂H∞.

As the profiles decay at infinity, their influence is very local and thus, only a
neighborhood of the perturbations needs to be enriched. The displacement field, as
suggested by [4], is then given by:

uh
ε (x) = uh

0 (x)−

nb defects
∑

i=1

εi

2
∑

ℓ=1

∑

j∈Ji

N j(x)

[

α
i
jℓ,1Ṽ

i
ℓ,1

(

x

εi

)

+ α
i
jℓ,2Ṽ

i
ℓ,2

(

x

εi

)]

, [5]

whereJi denotes the indices of the nodes located in the enrichment zone related to
perturbationi. N j arethestandard shapefunctionsassociated to nodej andα

i
jℓ,k isa
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two-component vector consisting of the degreesof freedom related to the enrichment
functionṼi

ℓ,k.

The computation is performed onthe discrete unperturbed domain. The presence
of the perturbations and their geometry are taken into account througha dedicated
numerical integration based onthe exact geometry.

Concerning the numerical computation of the α
i
jℓ,k, as observed in the context

of XFEM (Chahine et al., 2007), if all those enriched degrees of freedom are kept
freein the enrichement areas, the problem to be solved is badly conditioned. In or-
der to circumvent this difficulty, we impose the followingequaliti es suggested by the
asymptotic analysis:

(

αi
jℓ,1

)

1
=

(

αi
jℓ,2

)

2
and

(

αi
jℓ,1

)

2
=

(

αi
jℓ,2

)

1
. [6]

Those equaliti es are ensured by appealing to a master/slave strategy leading to the
resolution of an augmented problem:





K0
uu

0 0

Kε
αu

Kε
αα

ΠT

0 Π 0









u0

α

λ



 =





f0
fα
0



 , [7]

where K0
uu

is the standard stiffness matrix computed on the unperturbed domain,
Π denotes the projection operator over the equality constraints [6], Kε

αα
and Kε

αu

denote respectively the part of the total stiffnessassociated to the added degrees of
freedom andthe coupled part. Thevector λ is theLagrangemultiplier associated with
the constraints [6] andfinally, f0 and fα denote the external loading.

The two matrices Kε
αα

and Kε
αu

are computed by using a dedicated integration
strategy:

– a partitioning, typically obtained by meshing, of the elements affected by the
perturbationiscarried out in order to compute all thequantities involvingtheprofiles,

– in the vicinity of the perturbation, the order of integration is also increased in
order to capture the evolution of profiles.

3.2. Field transfer: coupling of asymptotic analysis and strong discontinuity
approach

Thestressconcentrationsgenerated by thepresenceof micro-defects in hand, one
can continue the computation by using the strong dicontinuity approach (SDA) (see
(Simo et al., 1993; Oliver, 1995; Brancherieet al., 2009)) in order to track the deve-
lopement of high damage zones initiated onthe geometrical perturbations.

For that purpose, it is necessary to project the field obtained from the asymptotic
analysis to the variational spaceused for strong discontitnuity approach. Indeed the
kinematic enrichments of the variational spaces associated to the asymptotic analy-
sis and the strong discontinuity approach are not compatible. The strategy proposed
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herein is to designa field transfer ensuring the transfer of the displacement field from
one variational spaceto the other one. Let’s denoteVSDA the variational space asso-
ciated to the SDA, the displacement field used as initial value for the continuation of
the computation is obtained as thesolution of a minimisation problem given as:

min
u∈VSDA

J(u) = E(u − uh
ε ) u.c. u = ud on Γd, [8]

where E(v) =
1

2

∫

Ωε

σ(v) : ε(v)dΩ. The proposed strategy is then based on the

construction of adisplacement field inVSDA producingastrain energy beingasclose
as possible to the strain energy produced by the solution obtained on the perturbed
domainuh

ε . Thesolution of such aminimisation problem under constraint isobtained
as thesolution of a linear set of equations.

This projected displacement field u is then used to compute the corresponding
stressintroducedasan initial valuefor the continuation of the computationwith strong
discontinuity approach.

4. Numerical results
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(a) Problem definition: geometry, loading and material
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Figure 2. Problem definition: geometry, loading, material properties and discretiza-
tions
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We present here the results obtained considering a domain submitted to a tensile
load (Figure 2(a)). The domain is pierced by two perturbations: the first one is cen-
tered at point O1 = (105, 0) and is of radius2 mm and the second of radius1.5 mm
is centered at point O2 = (135, 0).

In order to validatethe enrichment strategy adopted for thedescription of theinflu-
enceof small defects, we compare the results obtained in terms of displacement and
stressfields for, a so called, reference computation carried out on a fine discretiza-
tion of the real geometry (Figure 2(b)) by standard Finite Element approach, and an
enriched computation performed ona coarsediscretization(Figure2(c)) of theunper-
turbed domain.

Figure 3 gives the obtained results in terms of the displacement field in the di-
rection of the traction for both discretization and interpolations. The relative error
between those two computations is lower than 0.25% allowing to conclude that the
proposed strategy gives satisfactory results regarding the oneprovided by the asymp-
totic analysis.

Figure 4 gives the stressfield σxx obtained form the standard reference computa-
tion and the enriched one. Figure 4(c) ill ustrates the relative error computed in terms
of strain energy. For the considered case, the relative error integrated over the whole
domain is less than 0.01%, it is very concentrated at the very small vicinity of the
perturbations on the boundary of the domain where the strain energy is about zero
(leading to high relative error). Those results confirm that, for relatively close pertur-
bations, theprofilescomputed from the asymptotic analysisat first order aresufficient
to obtain agoodapproximation of thesolution, no interactionsbetween the inclusions
need to be taken into account.

From thedisplacement obtained throughthe enriched computation, thefield trans-
fer presented in Section 3.2 is performed as soon as the maximal principal stress
reaches the limit value chosen for the initiation of cracks. Figure 5(a) represents the
stressfield obtained from the rebuilt displacement after transfer. This field is the one
introduced as initial value for the continuation of the computationwith strong discon-
tinuity approach. We can observe that the stressconcentration due to the presenceof
theperturbationsarewell reproduced, crack initiationtakesplace at theright location.
Figure 5(b) gives the orientation and opening of the introduced discontinuities at the
end of the loading process.

We can seethat the crack leading to complete failure of the domain initiated on
thebigger perturbationcentered on point O1. Indeed, thedevelopment of thiscrack is
accompanied with elastic unloading of the rest of the domain preventingthedevelop-
ment of asecondcrack.
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(a) Reference computation onthe fine discretization

(b) Computation with kinematic enrichment on the coarse
discretization

(c) Relative error

Figure 3. Displacement field ux obtained by standard andenriched computation, re-
lative error map
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(b) Computation with kinematic enrichment
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(c) Relative error (strain energy)

Figure 4. Stressfield σxx obtained by standard andenriched computation, relative
strain energy error map



174 EJCM – 19/2010. Giens 2009

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

σ
1
 (maximum principal stress)

 

 

195

200

205

210

(a) Reconstructed principal maximum stress
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(b) Discontinuities orientationand crack opening (mm)

Figure 5. Differencebetween the reconstructed displacement field after transfer and
thefield obtained ontheunperturbed domain, reconstructedmaximal principal stress

5. Conclusion

We havepresented a strategy allowing to take into account the influenceof micro-
defects on the behavior till rupture of structures. The key point of the proposed ap-
proach is that this description is achieved without any fine description of the exact
geometry of the domain but rather with a coarse description of the unperturbed do-
main, the perturbations being incorporated in the computation througha kinematic
enrichment of standard Finite Element method.

This enrichment is provided by a multi -scale asymptotic analysis of Navier equa-
tions for linear elasticity. The description of the initiation and developement of lo-
calization zones leading to the apparition of cracks is ensured by the use of a strong
discontinuity approach. A field transfer operator hasbeen designed in order to couple
those two approachesduringall the loading process.
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