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ABSTRACT. We are interested in XFEM strain calculations of a cracked elastic body. It is 
already known that with XFEM, the approximation quality is distorted by the layer of 
elements lying between the singular enrichment area and the rest of the mesh. In the following 
work, we replace this transition layer by a "mortar" type integral bonding condition at the 
interface between the two areas. We prove how the proposed approach enhance significantly 
the approximation. 

RÉSUMÉ. On s’intéresse au calcul des déformations d’un corps élastique fissuré par la 
méthode des éléments finis étendue. On sait que la qualité de l’approximation est perturbée 
par la couche des éléments finis de transition entre la zone d’enrichissement autour du fond 
de fissure et le reste du maillage. On propose de remplacer la couche de transition par une 
condition intégrale, de type « raccord mortar », à l’interface entre ces deux zones. Nous 
montrons comment cette variante de XFEM permet d’améliorer sensiblement la précision. 
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1. Introduction

In this work, we are interested in numerical simulations of a cracked elastic iso-

tropic linear body using a mesh of the non-cracked domain (independent of the crack

path). The definition of the XFEM method on this mesh is done by "enriching" the

classical finite element basis by functions that takes into account the a priori know-

ledge we have on the solution (Moës et al., 1999). For instance, the knowledge of the

asymptotic expansion of the displacement field at the crack tip provides the "singular"

enrichment that we apply to the nodes lying in an area surrounding the crack tip.

It is known that the approximation quality is distorted at the transition layer which

is the layer of elements partially enriched, lying between the singular enrichment area

and the rest of the domain (see (Chessa et al., 2003) in another context and (Laborde

et al., 2005)). Moreover, in order to reduce the computational cost by reducing the

number of additional degrees of freedom and to improve the conditioning, it is inter-

esting to use a cut-off function that "globalizes" the enrichment over given surface

(Chahine et al., 2005). Meanwhile, the transition between the singular enrichment

and the classical elements remains a drawback. Therefore, the idea of this work is to

have an XFEM variant that allows to bypass this difficulty by removing the transition

layer. A more detailed presentation and analysis of this can be found in the PhD thesis

(Chahine, 2008).

2. A non-conformal approximation method

Let us consider the planar cracked domain Ω, ΓC denotes the crack. To simplify,

Ω is assumed to be polygonal and ΓC a straight line. Les us denote by Ω1 and Ω2 a

partition of the non-cracked domain Ω such that the cracks tip x∗ belongs to Ω2 and

the boundary ∂Ω2 of Ω2, is polygonal (Figure 1).

Let Th be a triangulation of the non-cracked domain Ω such that the interface ∂Ω2

between Ω1 and Ω2 coincides with sides of elements of Th, where h denotes the mesh

parameter. The finite element mesh is then independent of the crack path. We define

on Th a P1 finite element method whose scalar basis functions are denoted {ϕi}i∈I .

The shape function ϕi corresponds to the node xi. Let IH be the set of node indices

"enriched" by the Heaviside type function:

H(x) =

{

+1 if (x− x∗) ·n ≥ 0

−1 elsewhere,
[1]

where n is the normal vector to ΓC. In other words, IH is the set of nodes whose

corresponding shape functions have their support entirely cut by the crack (see (Moës

et al., 1999)). Let also I(Ωk) (resp. IH(Ωk)) be the subset of indices i ∈ I (resp. i ∈ IH )

such that xi ∈ Ωk, k ∈ {1,2}.
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Figure 1. Partitioning of the cracked domain

Let V h
1 be the space of the P1 vector finite elements functions associated to the

induced triangulation on Ω1 and enriched by the jump function H:

V h
1 =

{

vh
1 : vh

1 = ∑
i∈I(Ω1)

aiϕi + ∑
i∈IH (Ω1)

biHϕi; ai,bi ∈ R
2

}

. [2]

Moreover, the space V h
2 is the space of the vector finite element functions on Ω2

enriched, not only by the jump function H, but also by the "singular" functions at the

crack tip:

V h
2 =

{

vh
2 : vh

2 = ∑
i∈I(Ω2)

aiϕi + ∑
i∈IH (Ω2)

biHϕi +
4

∑
j=1

c jFj; ai,bi,c j ∈ R
2

}

, [3]

where the enrichment functions Fj are give by polar coordinates by (see (Moës et

al., 1999)):

{Fj(x)}1≤ j≤4 =
{√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sinθ,

√
r cos

θ

2
sinθ

}

. [4]

The discrete displacement field defined in the cracked domain will belong to V h,

the space of functions vh defined on Ω such that (k ∈ {1,2}):

vh = vh
k in Ωk, where vh

k ∈ V h
k . [5]

The global approximation space V h can be identified to the product space V h
1 ×V h

2 .

The subdomain Ω2 will be the enrichment surface where the singular crack tip

functions will be applied. Let us note that the introduced singular functions in (see the

definition of V h
2 ) are "globalized" over Ω2 and so, they add only 8 degrees of freedom

to the whole finite element method

Naturally, this approximation method defined from the discrete displacement fields

is a non-conformal one, the global displacement field in V h is not continuous through
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the interface between Ω1 and Ω2. In the following section, we define a bonding condi-

tion in order to retrieve a continuity property to the solution through the interface.

3. An integral matching condition

The jump of the displacement field u at the interface can be written:

[u] = (u2 −u1)|Γ [6]

where Γ = ∂Ω2 ∩Ω denotes the interface "cut" by the crack and uk the restriction of u

on Ωk. Let then

b(u,µ) = −
∫

Γ
µ · [u] dΓ [7]

for all the multipliers µ.

In order to have a continuity condition at the interface Γ in the discontinuous ap-

proximation space V h, we define the following discrete multipliers. The triangulation

Th introduced in Section 2 defines a subdivision Sh of the "non-cut" interface Γ = ∂Ω2

into elementary segments. The space W h of discrete multipliers can be written

W h =
{

µh ∈C0(Γ)2 : µh
i |S ∈ P1, ∀S ∈ Sh, i ∈ {1,2}

}

. [8]

Let un note that the latter definition does not take into account the discontinuity

through the crack sides.

We consider the following hybrid formulation that correspond to a discrete form

of the linear elasticity problem over the cracked domain Ω (see (Brezzi et al., 1991)).

Find uh ∈ V h = V h
1 ×V h

2 , λh ∈ W h such that

a(uh,vh)+b(vh,λh) = L(vh) for all vh ∈ V h, [9a]

b(uh,µh) = 0 for all µh ∈ W h. [9b]

the bilinear form a is defined by:

a(u,v) =
2

∑
k=1

ak(uk,vk) =
2

∑
k=1

∫

Ωk

Dε(uk) : ε(vk) dx, [10]

where D is the material stiffness operator. Moreover,

L(v) =
2

∑
k=1

∫

Ωk

g · vk dx+
∫

ΓN

f · v1 dΓ, [11]
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where f and g denotes respectively the given loads applied respectively on the part ΓF

of the boundary and inside the body Ω. To simplify, we do not take into account the

contact of the crack sides during the deformation.

The approximation space V h cannot be identified to a subspace of the elasticity

classical Sobolev space H1(Ω)2. In the introduced non-conformal method, the conti-

nuity of the discrete displacement field in V h through the interface Γ is defined only

in a weak discrete sense; this is the integral matching condition [9b]. The pointwise

matching condition:

[uh] = 0 on every node of Γ, [12]

provides another type of approximation of the continuity condition at the transition.

4. Convergence rate

4.1. Problem position

The aim of this section is to obtain the convergence error that satisfies the solution

of the discrete problem [9] when the mesh parameter h tends to zero. In what follows,

the variational formulation of the continuous problem is given.

Let V the space of the discontinuous displacements across the interface between

Ω1 and Ω2:

V =
{

v ∈ L2(Ω))2 : vk = v|Ωk
∈ H1(Ωk)

2, v1 = 0 on ΓD

}

. [13]

The space V can be identified to the space V1×V2 equipped with the canonical norm

‖.‖V of the product space H1(Ω1)
2 ×H1(Ω2)

2.

The continuity condition [u] = 0 across Γ of the displacement field u can be written

in an integral form as follows

b(u,µ) = 0 for all µ in W , [14]

where the multiplier space W is the dual space
(

H1/2(Γ)2
)′

= H
−1/2

00 (Γ)2 equipped

with its canonical norm denoted ‖.‖−1/2,Γ.

Then, the continuous linear elasticity problem over the cracked diomain can be

written

Find u ∈ V = V1 ×V2, λ ∈ W such that

a(u,v)+b(v,λ) = L(v) for all v ∈ V , [15a]

b(u,µ) = 0 for all µ ∈ W . [15b]

The following studies the convergence error ‖u−uh‖V between the solution to the

latter problem and the one of the discrete problem [9] when h tends to zero.
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4.2. An error estimate

The convergence rate of the proposed approximation method goes through seve-

ral steps. The detailed proofs can be found in (Chahine et al., To appear in Applied

Numerical Mathematics).

First, one should prove that that the discrete spaces V h and W h of the discrete

displacements and multipliers resp. satisfy a uniform compatibility condition:

inf
µh∈W h

sup
vh∈V h

b(vh,µh)

‖vh‖V ‖µh‖−1/2,Γ
≥ β, [16]

where β > 0 is a constant independent of h.

Another difficulty exists because of the non-conformity character of the approxi-

mation method: the coerciveness of the "broken" bilinear form a is not satisfied in the

discrete displacements space V h. Meanwhile, one can prove a coerciveness property

in the subspace

V0 =
{

w ∈ V :

∫

Γ
µi ·w dΓ = 0, i ∈ {1,2,3}

}

, [17]

where

µ1(x) = (1,0), µ2(x) = (0,1), µ3(x) = (α1,x1 +α2), ∀x ∈ Γ, [18]

with

α1 = γ1/γ, α2 = γ2/γ, [19]

and

γ =
∫

Γ
1 dΓ, γ1 =

∫

Γ
x1 dΓ, γ2 =

∫

Γ
x2 dΓ, γ3 =

∫

Γ
(x2

1 + x2
2) dΓ. [20]

Thanks to this latter coerciveness property together with the inf-sup condition [16],

the following abstract error estimate can be obtained between the solutions u and uh

to Problems [15] and [9] resp.:

‖u−uh‖2
V

+‖λ−λh‖2
−1/2,Γ ≤C

{

inf
vh∈V h

‖u− vh‖2
V

+ inf
µh∈W h

‖λ−µh‖2
−1/2,Γ

}

,

[21]

where C denotes a constant independent of h.

Then, let us point out another essential point of the mathematical analysis of the

integral matching method, which is the approximation of a multiplier µ defined on the
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Figure 2. Finite element mesh of the non-cracked domain and singular enrichment

area

"cracked" interface Γ by the discrete multipliers µh. If µ ∈ H1/2(Γ)2, one can prove

that

inf
µh∈W h

‖µ−µh‖−1/2,Γ ≤Ch‖µ‖1/2,Γ, [22]

where ‖.‖1/2,Γ denotes the H1/2(Γ)2-norm. Note that the mathematical study of the

approximation of a displacement field in V by displacements in the finite element

space V h is based on an elementary analysis achieved in (Chahine et al., 2005).

We assume that the solution (u,λ) to problem [9] is sufficiently regular. More pre-

cisely, the exact displacement u can be written u = ur +us where us is the asymptotic

displacement at the crack tip defined using the stress intensity factors. Moreover, the

regular part ur satisfies

ur = u−us ∈ H2+ε(Ω,R2), [23]

for all ε > 0 and that the exact multiplier λ ∈ H1/2(Γ)2.

Then the solution (uh,λh) to Problem [9] satisfies

‖u−uh‖V +‖λ−λh‖−1/2,Γ ≤Ch, [24]

where C is a constant independent of h.

In other words, the approximation error is optimal: it has the same order of a

classical conformal finite element method defined on a non-cracked domain.
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Figure 3. Von Mises stress for a mode I problem using P1 elements with the integral

matching XFEM

5. Numerical simulations

The following simulations where performed on the crackd domain:

Ω =]−0.5;0.5[×]−0.5;0.5[\ΓC,

where ΓC denotes the crack given by:

ΓC = [−0.5;0]×{0}.

The boundary conditions non-homogeneous Dirichlet ones given by the exact ope-

ning mode uI (see (Lemaitre et al., 1994)).

A P1 finite element method is defined on a structured mesh of the non-cracked

domain Ω (see Figure 2). The singular enrichment area (Section 2) is chosen as the set

of elements contained in the ball B(x∗,0.2), where x∗ denotes the crack tip. The XFEM

method was implemented using GETFEM++, a C++ object oriented finite element

library developed in our team (see (Renard et al., http://home.gna.org/getfem)).
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Figure 3 show the level-set lines of the Von Mises stress over the deformed struc-

ture. Around the crack tip and at the transition layer neighboring the boundary of the

singular enrichment area, one observes that the filed remains very regular comparing

to the conformal XFEM method (see (Laborde et al., 2005)).

Figure 4 compare the error convergence curves, when the mesh parameter h goes to

zero, obtained for an XFEM conformal method with surface enrichment (see (Béchet

et al., 2005), (Laborde et al., 2005)), for the cut-off XFEM (see (Chahine et al., 2005))

and for the integral matching XFEM approach introduced in this paper. These errors

are computed with the energy norm and drawn as function of the number N = 1/h of

the elements in each direction.

Other simulations showed that the numerical results are similar when dealing with

a non-structured mesh or with a mixed mode fracturing problem.

Finally, Figure 5 illustrates the values of the first stress intensity factor KI . They

are computed using the integral J method (see (Moës et al., 1999) for the contour

integral computation). The defined exact solution is a linear combination between the

two modes uI and uII and a given regular solution on the non-cracked domain: P(x)+
3uI +5uII . The error convergence curves of the classical finite element method (FEM),

the cut-off XFEM and the surface enrichment XFEM are smooth, but overestimate the

exact value of the SIF KI . The integral matching XFEM oscillate around this value but

gets closer to it than the other approaches. For further numerical results, see (Chahine

et al., To appear in Applied Numerical Mathematics).

To conclude, we showed how the integral matching XFEM increases the numerical

precision by improving the approximation quality around the crack tip and at the tran-

sition layer between the singular enrichment area and the rest of the domain. This is

validated in the mathematical study as well as in the illustrated numerical simulations.
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