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ABSTRACT. An X-FEM formulation is proposed for the case of large sliding frictional
interfaces. A continuous augmented lagrangian framework is adopted for contact and
friction. We provide an algorithm for the selection of an appropriate discrete space for the
lagrange multipliers, accounting for the transition between contact and free zones, and also
between sliding and adherent zones. A 3D numerical test is realized with Code_Aster free
software for the compression of a cylinder cut along a radial section and shows the ability of
the model to capture such transitions.

RESUME. Une formulation d’X-FEM est proposée pour le cas d’une interface frottante avec
grands glissements. Une formulation continue avec lagrangien augmenté décrit le contact et
le frottement. Nous détaillons un algorithme qui permet de sélectionner un bon espace des
multiplicateurs de lagrange, en tenant compte de la tramsition entre le contact et le
décollement, et de celle entre le glissement et ['adhérence. Un cas numérique 3D de
compression d’un cylindre découpé radialement est réalisé avec le logiciel libre Code Aster
et montre [’aptitude de la méthode a capturer de telles transitions.
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1. Introduction

Building 3D meshes for complex industrial structuresis difficult, espedally when
the mesh has to conform complex geometries of discontinuity surfaces. In this work
we ae interested in the eXtended Finite Element Method (X-FEM) witch represents
a discontinuity thanks to an enrichment of the nodal degrees of freedom (d.o.f.) and
thus fadlit ates the model design (Moéset al., 1999. We focus on the case of afric-
tional interface

Several approaches have been proposed to take into acmurt contad andfrictionin
asmall diding context, with penalty (Dolbow et al., 2001, Khoei et al., 2006 Liu et
al., 2008 or with Lagrangian regularization techniques (Géniaut et al., 2007, Béchet
et al., 2009. The extensionto large diding was developed in (Nistor et al., 2009, by
considering that ead integration of a contad contribution is asociated to a spedal
contad element based ona master slave gpproach. The differencewith FEM contad
elementsis that slave and master elements are no more constituted by elements dis-
cretizing the interfacebut are built with enriched buk elements. It isthen possble to
update the master-dlave asciation with dliding evolution, within afixed pant algo-
rithm.

In this paper we present the extension o Nistor’s approach to the frictional case.
The mixed displacanent-presaure formulation used is based on a variational formu-
lation from (Ben Dhia et al., 2002 which is based on an augmented lagrangian and
solved by a Generalized Newton algorithm as proposed by (Alart et al., 1991). Asit
was discussd in (Babuska, 1973, for mixed methods, particular attention shoud be
paid to the choiceof the discrete spaceof dual unknovnswith resped to the displace
ment space Thelatter shoud typicaly not belessthan the former, if one wantsto sat-
isfy the LBB condtion (Brezz et al., 1991 which ensures the existence and urique-
nessof the solution. A way to recover this condtionisto enrich the displacement, for
examplewith bubbeinterpolatingfunctions, as shown in (Mourad et al., 2007) for the
case of Dirichlet condtionsimposed onan interface However, because the dasscd
bubHe functions are vanishing onelement edges, this grategy shows limited stabi-
lization o the spurious modes when the interfaceis nealy conform to the dements.
We follow here an aternative choiceto reducethe dual space inspired from (Moés et
al., 2009.

In (Géniaut et al., 2007), the contad and friction unknaevns are stored at a node
or at the middle of an element edge, to be in association with the intersedion o the
discontinuity and the mesh topdogy. The correspondng interpalation functions are
thus defined along segments which discretizethe interface To satisfy the LBB cond-
tion, an algorithm was proposed which seleds vital and nonvital edges and imposes
equality or linea relations onthe contad multiplier of non \ital edges with resped to
those of the vital edges. Numericd validations, in the sense of (Chapelleet al., 1993,
weregivenin 2D and 3D. It was shown in (Nistor et al., 2009 that this property was
still valid for large dliding because the dual unknowns are only stored on the dave
part.
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In the present paper, the same dgorithm is used, but the mntad unknowvns are
interpolated like the displacements, that is with resped to noddl values onthe volume
element. The satisfadion o the LBB condtion with this construction of the mntad
and friction lagrangian spacewas demonstrated in (Bédhet et al., 2009 for a mesh
composed of triangles.

The oontent of this paper is as follows. In the first sedion, the continuows mixed
formulation of contad and friction is presented. The seacond sedion provides a de-
scription o the X-FEM spatial discretization, emphasizing onthe dual spacedefini-
tion. For the case of a mesh composed of tetrahedral in 3D and trianglesin 2D, an
additional rule is provided to seled the vital edges at the transition between contad
and free Dnes, or between sliding and adherent ones. It helps lving the passble
conflict between equality or linea relations linking the multi pliers on non vtal edges
and the aorrespondng contad or friction status. The cae of hexaedrain 3D and
quedrilateral in 2D, isaso discussed.

The third sedion provides a numericad example to ill ustrate the robustnessof the
method, redized with Code_Aster freesoftware ® (http: //www.code-aster. org).
A cylinder cut by africtional interface dongaradia sedionis submitted to a com-
pressonleadingto aradial transitionfrom an adherent regionin the centre, toadiding
regionandfinaly to anon-contading ouer zone.

2. Mixed continuous for mulation of contact and friction
2.1. Variational forms

The displacament can belarge, espedally alongthe discontinuity interface but we
kegp asmall strains and stresses hypathesis, considering el astic materials.

Let us denate €2 the domain of interest which boundiries are composed of a part
'y, I'y andT'. where condtions are imposed onthe displacement u, on the presaire
distribution and onthe frictional contad, respedively. In this paper, we asaume I,
to represent an interface i.e. a discontinuity that cuts entirely the domain into €
and Q-, with interfadal boundariesT'.; and T2, respedively. Consideringtheinward
normal n to Qs, we can separate the contad frictionforcer that Q, appliesto 2, into
itsnormal part A anditstangential part r, asfollows:

r = An+r, (1]

Considering arbitrarily I'.; as areferencesurface clied "dave", and T, asits corre-
spondng"master" surface we introducethe normal distance between aslave paint x!
andits projedionx! onT .:

d, = (x'—-x'-n. [2]
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The Signarini contad condtionreads:
A <0,d, <0,\d, =0. [3]
The augmented lagrangian regularizationis achieved with the augmented multiplier:
In = A= pady, (4]

where ) isthe usua Lagrange multiplier for contad and p,, is apositive scdar homo-
geneousto a presaire over a displacament.

We dso introduce x, the IR~ indicator functionto obtain from equation[3]:

A=X(gn)gn = 0. [5]

We then introducethe tangential relative velocity as:

0 (u(xl) — u()‘(l))

vi = I-n®n)- 5 ,

(6]

where the left second ader tensor isthe operator of projedion onthe plane tangent to
', at x'. Using i the friction coefficient, we define the amhesionlessCoulomb’s law
as;

Al =0 if d, <0,
r, = pMA with IIA|l €]0,1] if d, =0and|v,| =0, [7]
A== if do=0and|v.|>0.

As for contad, an augmented regularizaion is used with the augmented semi-
multi pli er:

gr = A + prvr, [8]

with A the usual semi-multi plier vecor for frictionand p,. apositive scdar.

We dso introduceP g (o, 1) the projedion operator on the unit ball:

x if ||x]| <1,

P0.1)(x) { 2 x| > 1 ]

[

to simplify the friction condtion[7] into:

A—x(9.)PBo1(g) = 0 [10]
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Algorithm 1 Iterative dgorithm
- Fixed pant on dave-master asociation and contad basis
- Fixed pant on contad status
- Loop onNewton-Raphsoniterations (constitutive or geometric nonlineaities)

Taking into acourt the augmented lagrangian al ows to control the condtioning o
the system (Alart et al., 1991). The mntad andtangential readions being represented
by X (9n)gn ad 11X (91)9nP B(0,1) (&), respedively, the variational form of the egui-
librium, for any variation of displacenent u* reals:

fsz a(e(u)): €(u*)dQ — f[‘c X(gn)gnn - [[U*ﬂdr
- fr‘u ﬂX(gn)gnPB(O,l) (gT) . (]I —ng 1’1) . HU*HdF = Lmeca(U*)7 [11]

where [u] = u(x!) — u(x?!). Thefirst term is the contribution from internal work,
denoted asthe doule product between the Cauchy stresstensor o andthe virtual strain
€. Theterm L., represents the possble contribution from body force and applied
presaure on I'; which are not of interest in this paper. A differencewith (Ben Dhia et
al., 2002 can be noted in the disgpative frictional part of equation[11], ¢,, repladng
A because we have chosen to removethefixed pant algorithm onthefrictionthreshold
(see2.2).

Foll owing the mixed formulation o (Ben Dhiaet al., 2002, we dso consider the
variational forms for the mntad [5] and friction[10] condtions, for al variations \*
andA™ as.

/ _i (/\ - X(gn)gn) Adll = 0 []_2]
Jr. Pn
/r pi (A= x(92)Pp(0,1)(8r)) -A"dl = 0. [13]

2.2. Iterative algorithm for non linearities

The iterative dgorithm to take into acourt nonlineaitiesis shown in Algorithm
1. The external loopis a fixed pant on the change of dave-mader contad associa-
tion duinglarge diding. Note that the unit normal vedor n which caries the normal
contad readionis fixed duing an iteration o this loop. The secondinner loopis a
fixed pdnt on the mntad status, i.e. x(g»), ain (Dumont, 2001). Finaly, the non
lineaities coming from the friction law are solved by lineaizing the terms of equa-
tions[11],[12] and[13] in the tangent operators of the Newton-Raphsonloop. Let us
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consider aNewtoniteration, with [u, A, A] theinitial given fields. Noting [du, 6\, 0A]
the incremental variations, we obtain:
Jo€@u): 5 €(u*)dQ — [ xOA[w],dl + [ xpa[du]a[u*]adl
— Jr, xuoAP5(g,) - [u*]dl + [ xppn[dulnPs(g,) - [u*]-dl
= Jr. x1gn K (g7)0A[0*]-dT — [1. xpgnp-K(g-)[0u], [u*]-dT
== Joo(€(u)): €u*)dQ + Licea(u”)
+ Jr, Xgn[0*]ndl + [1 X192 P5(8r) - [0*]7dl, [14]

— I 1;—n><5AA*dF — Jo, X[FulnA*dl = [ L(X = xgn)\dT,

[15]
+ Jr, 5 (M= xK(gr))0A - A"dT — [, xK (g-)[du], - A"dl
[ LA \Pp(g) AT, (16
with:
K Iif ||x]| <1, .
X = { LX) if ] > 1, o
[Xln=mn-[x] and [x],=(M—-n®n)-[x]. [18]

3. X-FEM discretization and L BB condition
3.1. Spatial discretization

Becausethe contad method o (Ben Dhiaet al., 2002 isa continuowsformulation,
its adaptation to X-FEM is fadlitated. Likewise aFEM approad, the dave mntad
surfaceprovides a discretizaion for the numericd quadrature of contad and friction
integralsin equations [14], [15] and [16]. The main differenceis that the dave sur-
face ontaining the integration pants and also the master one ae no more defined
by element boundxries, but are interpolated from the intersedion pdnts between the
interface ad the mesh as proposed in (Nistor et al., 2009. For sake of simplicity,
we restrict our discusson to the case where the surfaces are discretized with linea
segment in 2D, trianglesin 3D.
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For eadh integration pant, its projedion onthe master surface[2] is used to build
a ontad element composed of the lave dement nodes and the master ones. During
the pairing, the reference mordinates of theintegration pdnt in the bulk slave dement
and the reference @ordinates of its projedionin the bulk master element are needed.
Using the aorrespondng buk shape functions ¢™ and ¢° in these two elements, re-
spedively, the dave and master displacanentsu® and u™ read:

u® =37, 65 (uf — af) andu™ = 370 O (uf + af), [19]

where a denotesthe additional nodal variablesrepresentingthe interfacediscontinuity.
Note that the diff erence of sign precaling a in the master and dave part corresponds
to the use of ageneralized Heaviside functionto describe the discontinuity.

Considering equation[19] andintroducingtheinitial spatial coordinate X, we can
discretise [2] and [6] for a given numericd time step At as.

d, = (Z?il $3(X5 +u5 — af) — Ypm O (XP 4+ ul + ajm)) ‘n,

v = Bopon) (S0 GRA(u§ —af) — S5 oA +af)) . [20]
The contad unknavns are only defined onthe dave part and we choose to interpo-
late the contad and friction forces from the nodes of the bulk element. The mntad
lagrangian and friction semi-lagrangian at the integration pdnt then read:

A= 27;1 ¢§>‘j andA = 2?21 d’;Aj- [21]

Using equations [20] and [2]], the lineaized formulation [14],[15] and [16] can be
expressed inamatrix form asfoll ows, omittingtheiterationindexesfor sake of clarity:

Ko+A,+B, A B su L, +L} +Lj
D CcC o Sx | = L2 . [22]
E 0 F SA L2

where the first, secondand third rows comes from the discretizetion o equations[14],
[15] and [16], respedively. K., A, and B, are the medanicd, the augmented con-
tad and the augmented friction stiff ness matrices, respedively. The matrices A, B
and the second members L}, L} come from the contad and friction forces, respec
tively. Note that the matrix B,, is not symmetric and matrices D and E are not the
transposes of A and B, respedively, due to the lineaizaion o the friction terms,
while afixed pant method onthe threshold was used in (Ben Dhiaet al., 2002. De-
spite the fad that the global matrix looses symmetry when we consider friction, this
enables to synchronize the changes for the friction augmented semi-mulltiplier with
resped to the contad one, asin (Alart et al., 19917), thus optimizing the global conver-
gence and limiting the occurrence of oscill ation pathologies on the friction status. In
other words, a Newtoniteration state dways gays inside the Coulomb’s cone[7].
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3.2. Lagrangian space reduction

3.2.1. Introduction dof vital edges

With X-FEM, a naive linea P1-P1 interpolation choicefor the displacement and
contad friction spaces, respedively (i.e. with a contad d.o.f locaed at a aut edge)
is not stable and imply oscill ations (Géniaut et al., 2005 that we can seeon Figure
3 presented heredter. Our chosen spaceis a more gpropriate one based on the
agorithm presented in (Moés et al., 2006. The basic ideaof this algorithm is to
define the score of eat noce & the number of its conneded cut edges, while the
score of a aut edge is given by the minimum score of its contributing nodes. Then
we seled cut edges with the highest scores that do na have nodes in common: in
case of amultiple choicewe seled randomly one of the possble edges. At ead step,
we re-compute the node scores without the previously seleded edges. The dgorithm
stop when all the remaining cut edges have ascore equal to ore. If the minimum
score is readed on ore elge, this edgeis vital. If the minimum score is readied on
several edges, their multi pliers are imposed to be equal, and orly one of these edges
is chaosen to be vital. Finally, one group d edges with equal multipliers at the end
of the dgorithm is conneded by a linea relation to another group d edges sharing
another multiplier if both groups were conreded initialy by a coommon edge. The
d.o.f of the nonvital edges are thus linked to the d.o.f of the vital ones with linea
or equality relations. To provide abetter approximation o the presaure space this
agorithm was improved in (Géniaut et al., 2007) to maximize the number of linea
relations with resped to equality ones. However in 3D this leals to convergence
difficulties auch asflip-flop. The problemisill ustrated in Figure 1, where two dliding
nodes 1 and 2are linked linealy to athird ore. In that case, node 3 cannat be sliding
becaise ||Az|| < 1. To avoid this problem the linea relation must link the norms of
the friction semi-multi pli ers (Ieft picture), but the relation becomes nonlinea for its
comporents.

In (Géniaut et al., 2007), only a numericd validation for the LBB condtion as
in (Chapelle et al., 1993 was presented. For that reason, we changed the dgorithm
for the more recent one of (Bédhet et al., 2009 for which an analyticd prodf of the
LBB condition satisfadion was given for 2D trianguar meshes. In the first approach,
the montad presaures were interpolated from unknowns locaed at cut edges. In the
second approach their interpolation is redized with resped to the nodal values [21]
and for eath vital edge, an equdity relation is linking the mntad d.o.f of the two
vital nodes compaosingit. Non vital nodes have then to be linked to the neighbouing
vital ones by a dchasen linea relation. Moreover due to the difficulty of imposing
nontlinea relations on the semi-multi plier comporentsof A in 3D correspondngto a
linea relation onits norm, we dedded to link it to only one of itsvital conneded noce
by an equality relation thus lowering the order of the interpdation which satisfies
implicitly the LBB condition.
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Figure 1. Linear relationfor A, set onthe norm(a) or onthe componrent (b)

3.2.2. Integration scheme for contact andfriction laws

Because we use linea (for tetrahedra) or bili nea (for hexaedra) interpolation for
the displacement, we have chosen anodal quadrature scheme to integrate the contacdt
frictionforcesin equation[14]. However dueto the dgorithm reducingthe Lagrangian
space we can lower the numericd quadraturein the contad andfrictionlaws by keep-
ing orly integration pdnts at vital edges. This modified integration scheme bewmes
mandatory in case of transition between free and contad zones, or adherent and dlid-
ing ores. Indeed, in the 2D example of Figure 2, asauime edge 1 and 3are vital while
edge2isnot:

Al=2XAz and A3 =)y, [23

and consider points 1 and 2are not in contad:

()\1 +)\2)/2 =0 and ()\2+)\3)/2=0. [24]
A, A,
o 2 s
A, A,

Figure 2. Satusandreduced space point 3isin contact while 1 and 2 ae free

This implies that the contadt normal readion at point 3 is equal to zero and triggers
compensation in the neighbouing locaions with excessve normal contad readion.
The modified integration scheme we propase involves no contribution in the contad
equation[15] from point 2, which isnot onavital edge, and thus lvesthis conflict.
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Figure 3 shows the results for asimple 2d test with frictional horizontal |arge slid-
ing o ablock overlaid by a top Hock on which we impose averticd compresson.
The mesh is composed of triangles. In that case, the left part of the interfacebetween
thetwo blocksisfreewhil etheright oneisunder contad. On the left picture, we com-
pare aFEM case (circles) with a naive X-FEM case (triangles) and an X-FEM case
satisfying the LBB condition (diamonds). The naive gproad is marked by strong
oscill ations along the whole contading zone. These oscill ations are solved with the
agorithm reducing the lagrangian space However, nea the limit between contad and
free ones, significant oscill ations can still be noticed, because of the typicd pathal-
ogy previously described. On the right picture, we compare the FEM case (circles)
with the X-FEM case satisfying the LBB (diamonds) and the X-FEM case satisfying
the LBB with the modified integration scheme (squares). The latter eliminates the
oscill ations reported above.

oo R S e——
\ v b/
| v
\ V&& v ! -1E4
o3
Y/ v
1 %y y
WA

-3E4

Normal contact reaction (Pa)

0,0 1,0 2,0 3,0 4,0 0,0 1,0 2,0 3,0 4,0
X-coordinate (m) X-coordinate (m)

Figure 3. Normal contact reaction vs pasition dongthe interface The response for
FEM, naive X-FEM, X-FEM with reduced lagrangan space, and X-FEM with modi-
fied integration rule are represented by circles, trianges, diamonds and squares, re-
spedivey

The same demonstration can be goplied to the case of adherent/diding transition. In-
dedd, consider in Figure 2 pants 1 and 2to be diding (seethethird equation of [ 7]):

(Al + A2} /2 =1 and (Al + [[As])) /2 =1, (29

With the help of equation [23] where ) is replacal by A, one can ndtice that
point 3isnat alowed to be adherent. We thus propaose the same modified integration
scheme to solve this problem and do nd assmble contributionson non vital edgesin
the friction equation orly [16]. The impad onthe globa sysem [22] of the modified
integration scheme is very different for contad and friction. For contad, only matrix
C is changed and the global system is gill symmetric, while for friction matrices E
and F are modified leading to ancther lossof symmetry of the global system.
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Table 1. Vital edge aiteriain a goup d conneded edges

integration pdnts gatus onthe cmnreded edges | the \vital edge must resped:
al pointsare free no condtion
thereis at least one point in contact it must contain
al the pointsin contac are diding a montading pant
thereis at least one point in contact it must contain an
thereis at least one adherent point adherent contading pdnt

3.2.3. Additiond criteria to seled a vital edge

When meshes are aut by interfaces, we can oktain groups of conneded edges
among which we have the choiceto seled the vital one. This comes frequently for
triangle and tetraedra meshes.

Figure 4. A group d conreded edges, edges 1 an 5 ae vtal, onein [2, 3, 4] is
randamly \vital

For example in Figure 4, edges 1 and 5 are vital, but the LBB condtion agorithm
seleds randomly a vital edge between 2, 3 or 4. If the integration pdnts on the se-
leded vital edge aenat in contad, we can oltain the same kind d conflict asthe one
describedin 3.2.2. In fad, we must avoid anoncontadingintegration pdnt to impose
a zao presaure to the other integration pants normally in contad. The same demon-
stration appliesto friction: we must avoid adlidingintegration pant to impose anorm
one va ue on the semi-lagrangian multi pli ers of other adherent integration pants. Ta-
ble 1 summarizes the aiteria avital edge in a group must satisfy. Since the contadt
status can change & ead contad iteration and since the friction status can change &
eat Newton-Raphsoniteration, we propase to switch from Algorithm 1 to Algorithm
2 which providesthe posshility to change vital edges duringthe computation.

3.2.4. Particularities of a hexaedra mesh

For the case of meshes with quedrilateral or hexaedra aut by an interface it is
possble to have anode not conneded to a ait edge inside an element cut by the
interface For example in Figure 5, node 3 is not conreded to the other ones. In
order to usethe nodal interpalation o the presaure onthe aad interface the lagrange
multi plier unknavnsonthisnodewill be expressed in terms of the multi pliersof nodes
belongngto edges cut by the interface For sake of simplicity, we choose to link this
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Algorithm 2 Iterative dgorithm with NVE and VE denating, for ea group o con-
neded edges, anon-vital edge andthe vital edge
- Fixed pant on dave-master asociation and contad basis
- Fixed pant on contad status
- Loop onNewton-Raphsoniterations
- Compute friction status (dliding o adherent)
- Loop ower eat group d conneded edges
- If VEis didingandaNVE is adherent = NVE replaces VE
- Compute contad and friction contributions to the system
- Compute contad status (contad or free
- Loop ower eat group d conreded edges
-If VEisfree amdaNVE isin contad = NVE replaces VE

nock to its dired neighbous on urcut edges with a linea relation, expressed in this
example &

A3 = (Ot Ao)/2. [26]

As mentioned in 3.2, the extension o this relation to the semi-multiplier of friction
shoud be dore onits norm which leals to anonlinea relation onits comporentsin
3D. An dternative is to eliminate the lagrange multi pli ers of nodes with uncut edges
andto modify the contad friction shape function for the other onesin order to assess
partition of unity onthe dement. We propase the foll owing dstribution by nding Ny
and N>, the groups of nodes belongngto edgesthat are aut or nat, respedively:

Is i Is s Z:7' 2 (bj
A=Yien, SN With o5y, = 67 + T [27]

where card (N, ) isthe total number of elementsin N;.

Figure5. A cut quadande, in that case node 3 is not conneded to a cut edge
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4. Numerical example of a 3D cut cylinder under compression

L et usconsider the compresson o alinea elastic cylinder with elasticity moduus
and Poison's ratio set to 80 GPa and 0.2, respedively. Thiscylinder is cut donga
radial sedion, and is resting ona quasi-rigid substratum (Figure 6). Constant pres-
sures P, of 150 MPa and P; of 50 Mpa ae impased onthe lateral and top surfaces,
respedively while the lower part is fixed. The friction coefficient is st to 1.0 onthe
interface

e
I{MMN%HMWA\\

Figure 6. Geometry and bounday conditions are shown onthe left with L = 0.04m.
Ontheright, the deformed configurationis shown for thetetrahedra case with aradial
andvertical amplifications st to 200 and 2000respedivdy

Two meshes are aonsidered in the X-FEM cases, with 26880tetrahedra and 6240 fex-
adlra, respedively. The deformed configurationfor the first mesh is shown in Figure
6. The normal contad readion at the interface ad alonga radial profile is given in
Figure 7 onthe left and right, for the case of the first mesh and the second mesh, re-
spedively. In bath cases, we compare the result with resped to that of a FEM model
built with 8160 hkexaedra and conformingto the interface
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Radius coordinate (m) Radius coordinate (m)
a b

Figure 7. The normal contact reactionvs radius. Diamonds represent the FEM. Field
squares represent the X-FEM for tetrahedra (a) and rexaedra (b)
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We first note the ability of the methodto capture the transition between the adher-
ent region at the cantre, charaderized by an ailmost uniform presaure and the diding
domain where \ increases to read a zeo value when no contad is deteded. The
discrepancy with the FEM result remains amall for the X-FEM hexaedra cese. It in-
creases for the X-FEM tetrahedra case, becaise of the reduction o the Lagrangian
space &described in 3.2 in order to satisfy the LBB condition.

5. Conclusion

An X-FEM formulation for frictional interfaces with possble large sliding hes
been proposed. Contad and friction are described following the augmented La-
grangian approach of (Ben Dhiaet al., 2002, but we replaced afixed pant onfriction
threshold by the correspondngli neaized termsin the tangent operator. Thisimproves
therobustnessand convergenceof the global iterative dgorithm, as suggestediin (Alart
etal., 1991). The X-FEM spatia discretizaionisinspired from (Bédhet et al., 2009
with the displacement interpolation used for the contad andfriction unknavns, but ex-
tended to 3D meshes composed of tetrahedraor hexaedra. Large didingis acournted
for like in (Nistor et al., 2009, with a contad element built as a mixed slave and and
master enriched buk element.

As propcsed by (Bédhet et al., 2009, to ensure the satisfadion o the LBB corn-
dition, the spaceof contad and friction unknavns is reduced thanks to an algorithm
that seledsvital edgeswhich unknavnsarelinealy asciated to the ones of non vital
edges. The montad status of this vital edge is preeminent over the contad statuses of
non \ital edges asociated to it, and priority rules were establi shed in case of multiple
choicefor the vital edge: : the vital edge must suppat a cntad point. This enables
to solve aror in the normal contad readion coming from the transition between con-
tading and noncontading regions. The same choice can be gplied to the transition
between adherent and dli ding regions, where we favour the vital edge to be adherent.
A numericd example of the compresson o a 3D cylinder cut longa radial sedion
ill ustrates the robustnessof the method

6. References

Alart P, Curnier A., A mixed formulation for frictional contadt problems prone to Newtonlike
solution methods , Comp. Meth. Appl. Meth. Engng, vol. 92, p. 353-375, 1991

Babuskal., The finite dement methodwith Lagrangian multi pliers , Numerische Mathematik,
vol. 20, n° 3, p. 179192, 1973

Ben Dhia H., Zarroug M., Hybrid frictional contad particles-in elements , Rewe Europénne
des ééments Finis, val. 11, p. 417-430, 2002

Breza F., Fortin M., Mixed and ybrid finite dement methods, Springer - Verlag, 1991

Bédet E., Moés N., Wohimuth B., A stable lagrange multipli er spacefor stiff interface ond-

tions within the extended finite dement method, Int. J. Numer. Meth. Engng, vol. 78, n° 8,
p. 931954, 2009



X-FEM large diding contad andfriction 203

Chapelle D., Bathe K., Theinf-sup test , Computers & Structures, vol. 47, n° 4/5, p. 537-545,
1993

Dolbow J., Moés N., Belytschko T., An extended finite dement method for modeling crack
growth with frictional contad , Computer Methods in Applied Medcharics and Engineeing,
vol. 190, p. 68256846 2001

Dumont G., Algorithme des contraintes adives et contad unilatéral sans frottement , Rewe
Européenne des Eléments Finis, vol. 4, n° 1, p. 55-73, 2001

Géniaut S., Massn P, Moés N., FisarationavecX-FEM et cortad , Actesdu 7eme Colloque
Nationd en Calcul des Sructures, Giens, 17-20 may, 2005

Géniaut S., Massn P, Moés N., A stable 3D contad formulation for cracks using XFEM
Rewe Européenne de Mécanique Numérique, vol. 16, n° 2, p. 259275 2007.

Khoe A., Nikbakht M., Contad friction modeling with the edtended finite dement method
(X-FEM) , Journd of Materials Processng Techndogy, vol. 177, p. 58-62, 2006

LiuF, BorjaR., A Contad algorithm for frictional cradk propagation with the extended finite
element method, Int. J. Numer. Meth. Engng, vol. 76, p. 14831512 2008

MoésN., Bédhet E., Tourbier M., Impasing Dirichlet boundxry condtionsin the extended finite
element method, Int. J. Numer. Meth. Engng, vol. 67, n° 12, p. 16411669 2006

MoésN., Dolbow J., Belytschko T., A finite dement methodfor cradk growth without remesh-
ing, Int. J. Numer. Meth. Engng, vol. 46, p. 131-150, 1999

Mourad H., Dolbow J., Harari |., A bubHe-stabili zed finite dement method for Dirichlet con
straints on embedded interfaces , Int. J. Numer. Meth. Engng, vol. 69, n° 4, p. 772793,
2007.

Nistor 1., Guiton M., Masdn P, Moés N., Géniaut S., An X-FEM approach for large siding
contad along dscontinuities , Int. J. Numer. Meth. Engng, vol. 78, n° 12, p. 14071435
2009






