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ABSTRACT. An X-FEM formulation is proposed for the case of large sliding frictional 
interfaces. A continuous augmented lagrangian framework is adopted for contact and 
friction. We provide an algorithm for the selection of an appropriate discrete space for the 
lagrange multipliers, accounting for the transition between contact and free zones, and also 
between sliding and adherent zones. A 3D numerical test is realized with Code_Aster free 
software for the compression of a cylinder cut along a radial section and shows the ability of 
the model to capture such transitions. 

RÉSUMÉ. Une formulation d’X-FEM est proposée pour le cas d’une interface frottante avec 
grands glissements. Une formulation continue avec lagrangien augmenté décrit le contact et 
le frottement. Nous détaillons un algorithme qui permet de sélectionner un bon espace des 
multiplicateurs de lagrange, en tenant compte de la transition entre le contact et le 
décollement, et de celle entre le glissement et l’adhérence. Un cas numérique 3D de 
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1. Introduction

Building 3D meshes for complex industrial structures isdifficult, especially when
the mesh has to conform complex geometries of discontinuity surfaces. In this work
we are interested in the eXtended Finite Element Method(X-FEM) witch represents
a discontinuity thanks to an enrichment of the nodal degreesof freedom (d.o.f.) and
thus facilit ates the model design (Moëset al., 1999). We focus on the case of a fric-
tional interface.

Several approacheshavebeen proposed to takeinto account contact andfrictionin
a small sliding context, with penalty (Dolbow et al., 2001; Khoei et al., 2006; Liu et
al., 2008) or with Lagrangian regularization techniques (Géniaut et al., 2007; Béchet
et al., 2009). The extension to largeslidingwasdeveloped in (Nistor et al., 2009), by
considering that each integration of a contact contribution is associated to a special
contact element based ona master slave approach. The differencewith FEM contact
elements is that slave and master elements are no more constituted by elements dis-
cretizing the interfacebut are built with enriched bulk elements. It is then possible to
update the master-slave association with sliding evolution, within a fixed point algo-
rithm.

In this paper we present the extension of Nistor’s approach to the frictional case.
The mixed displacement-pressure formulation used is based on a variational formu-
lation from (Ben Dhia et al., 2002) which is based on an augmented lagrangian and
solved by a Generalized Newton algorithm as proposed by (Alart et al., 1991). As it
was discussed in (Babũska, 1973), for mixed methods, particular attention should be
paid to the choiceof thediscretespaceof dual unknownswith respect to thedisplace-
ment space. Thelatter should typically not belessthan theformer, if onewantsto sat-
isfy the LBB condition (Brezzi et al., 1991) which ensures the existence and unique-
nessof thesolution. A way to recover thiscondition is to enrich thedisplacement, for
examplewith bubbleinterpolatingfunctions, as shown in (Mourad et al., 2007) for the
case of Dirichlet conditions imposed onan interface. However, because the classical
bubble functions are vanishing onelement edges, this strategy shows limited stabi-
lization of the spurious modes when the interfaceis nearly conform to the elements.
We follow here an alternative choiceto reducethedual space, inspired from (Moëset
al., 2006).

In (Géniaut et al., 2007), the contact and friction unknowns are stored at a node
or at the middle of an element edge, to be in association with the intersection of the
discontinuity and the mesh topology. The corresponding interpolation functions are
thusdefined alongsegmentswhich discretizethe interface. To satisfy theLBB condi-
tion, an algorithm was proposed which selects vital and non-vital edges and imposes
equality or linear relationson the contact multiplier of non vital edgeswith respect to
thoseof thevital edges. Numerical validations, in thesenseof (Chapelleet al., 1993),
were given in 2D and 3D. It was shown in (Nistor et al., 2009) that this property was
still valid for large sliding because the dual unknowns are only stored on the slave
part.
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In the present paper, the same algorithm is used, but the contact unknowns are
interpolated like thedisplacements, that iswith respect to nodal valueson thevolume
element. The satisfaction of the LBB condition with this construction of the contact
and friction lagrangian spacewas demonstrated in (Béchet et al., 2009) for a mesh
composed of triangles.

The content of this paper is as follows. In the first section, the continuousmixed
formulation of contact and friction is presented. The second section provides a de-
scription of the X-FEM spatial discretization, emphasizing onthe dual spacedefini-
tion. For the case of a mesh composed of tetrahedral in 3D and triangles in 2D, an
additional rule is provided to select the vital edges at the transition between contact
and free zones, or between sliding and adherent ones. It helps solving the possible
conflict between equality or linear relations linking the multiplierson non vital edges
and the corresponding contact or friction status. The case of hexaedra in 3D and
quadrilateral in 2D, isalso discussed.

The third section providesa numerical example to ill ustrate the robustnessof the
method, realized with Code_Aster freesoftware R©(http://www.ode-aster.org).
A cylinder cut by a frictional interface alonga radial section is submitted to a com-
pressionleadingto aradial transitionfrom an adherent regionin the centre, to asliding
regionandfinally to anon-contacting outer zone.

2. Mixed continuous formulation of contact and friction

2.1. Variational forms

Thedisplacement can belarge, especially alongthediscontinuity interface, but we
keep asmall strainsandstresseshypothesis, consideringelastic materials.

Let us denote Ω the domain of interest which boundaries are composed of a part
Γu, Γt and Γc where conditions are imposed onthe displacement u, on the pressure
distribution and onthe frictional contact, respectively. In this paper, we assume Γc

to represent an interface, i.e. a discontinuity that cuts entirely the domain into Ω1

andΩ2, with interfacial boundariesΓc1 andΓc2, respectively. Consideringthe inward
normal n to Ω2, we can separatethe contact frictionforcer that Ω2 applies to Ω1 into
itsnormal part λ and its tangential part rτ as follows:

r = λn + rτ [1]

Consideringarbitrarily Γc1 as a referencesurface called "slave", and Γc2 as its corre-
sponding"master" surface, we introducethenormal distancebetween aslavepoint x1

and itsprojection x̄1 onΓc2:

dn = (x1 − x̄1) · n. [2]
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TheSignorini contact condition reads:

λ ≤ 0, dn ≤ 0, λdn = 0. [3]

The augmented lagrangian regularization isachieved with the augmented multiplier:

gn = λ − ρndn, [4]

whereλ is theusual Lagrangemultiplier for contact andρn is apositivescalar homo-
geneousto a pressureover a displacement.

We also introduceχ, the IR− indicator functionto obtain from equation [3]:

λ − χ (gn) gn = 0. [5]

We then introducethe tangential relativevelocity as:

vτ = (II − n⊗ n) ·
∂

(

u(x1) − u(x̄1)
)

∂t
, [6]

where the left second order tensor is theoperator of projection ontheplanetangent to
Γc2 at x̄1. Usingµ the frictioncoefficient, we define the cohesionlessCoulomb’s law
as:

rτ = µλΛΛΛ with















‖ΛΛΛ‖ = 0 if dn < 0,

‖ΛΛΛ‖ ∈]0, 1[ if dn = 0 and‖vτ‖ = 0,

ΛΛΛ = vτ

‖vτ‖
if dn = 0 and‖vτ‖ > 0.

[7]

As for contact, an augmented regularization is used with the augmented semi-
multiplier:

gτ = ΛΛΛ + ρτvτ , [8]

with ΛΛΛ the usual semi-multiplier vector for frictionandρτ a positivescalar.

We also introducePB(0,1) theprojection operator on theunit ball:

PB(0,1)(x) =

{

x if ‖x‖ < 1,

x
‖x‖

if ‖x‖ ≥ 1,
[9]

to simpli fy the frictioncondition [7] into:

ΛΛΛ − χ (gn)PB(0,1)(gτ ) = 0 [10]
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Algorithm 1 Iterative algorithm
- Fixed point onslave-master associationandcontact basis
- Fixed point oncontact status
- Loop onNewton-Raphsoniterations (constitutiveor geometric nonlinearities)

Taking into account the augmented lagrangian allows to control the conditioning of
thesystem (Alart et al., 1991). The contact and tangential reactionsbeingrepresented
by χ(gn)gn andµχ(gn)gnPB(0,1)(gτ ), respectively, thevariational form of the equi-
librium, for any variation of displacement u∗ reads:

∫

Ω
σσσ(ǫǫǫ(u)) : ǫǫǫ(u∗)dΩ −

∫

Γc
χ(gn)gnn · [[u∗]]dΓ

−
∫

Γc
µχ(gn)gnPB(0,1)(gτ ) · (II − n⊗ n) · [[u∗]]dΓ = Lmeca(u∗), [11]

where [[u]] = u(x1) − u(x̄1). The first term is the contribution from internal work,
denotedasthedoubleproduct between theCauchystresstensor σσσ andthevirtual strain
ǫǫǫ. The term Lmeca represents the possible contribution from bodyforce and applied
pressure on Γt which are not of interest in this paper. A differencewith (Ben Dhia et
al., 2002) can benoted in the dissipative frictional part of equation [11], gn replacing
λ becausewehave chosen to removethefixed point algorithmonthefrictionthreshold
(see2.2).

Following the mixed formulation of (Ben Dhiaet al., 2002), we also consider the
variational forms for the contact [5] and friction [10] conditions, for all variationsλ∗

andΛΛΛ∗ as:

∫

Γc

−
1

ρn

(λ − χ(gn)gn)λ∗dΓ = 0 [12]

∫

Γc

1

ρτ

(

ΛΛΛ − χ(gn)PB(0,1)(gτ )
)

·ΛΛΛ∗dΓ = 0. [13]

2.2. Iterative algorithm for non linearities

The iterative algorithm to take into account nonlinearities is shown in Algorithm
1. The external loop is a fixed point on the change of slave-master contact associa-
tion during largesliding. Note that the unit normal vector n which carries thenormal
contact reaction is fixed during an iteration of this loop. The second inner loop is a
fixed point on the contact status, i.e. χ(gn), as in (Dumont, 2001). Finally, the non
linearities coming from the friction law are solved by linearizing the terms of equa-
tions [11],[12] and [13] in the tangent operatorsof the Newton-Raphson loop. Let us
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consider a Newton iteration, with [u, λ,ΛΛΛ] the initial given fields. Noting [δu, δλ, δΛΛΛ]
the incremental variations, weobtain:

∫

Ω
ǫǫǫ(δu) : ∂σσσ

∂ǫǫǫ : ǫǫǫ(u∗)dΩ −
∫

Γc
χδλ[u∗]ndΓ +

∫

Γc
χρn[δu]n[u∗]ndΓ

−
∫

Γc
χµδλPB(gτ ) · [u∗]τdΓ +

∫

Γc
χµρn[δu]nPB(gτ ) · [u∗]τdΓ

−
∫

Γc
χµgnK(gτ )δΛΛΛ[u∗]τdΓ −

∫

Γc
χµgnρτK(gτ )[δu]τ [u∗]τdΓ

= −
∫

Ω
σσσ(ǫǫǫ(u)) : ǫǫǫ(u∗)dΩ + Lmeca(u∗)

+
∫

Γc
χgn[u∗]ndΓ +

∫

Γc
χµgnPB(gτ ) · [u∗]τdΓ, [14]

−
∫

Γc

1−χ
ρn

δλλ∗dΓ −
∫

Γc
χ[δu]nλ∗dΓ =

∫

Γc

1
ρn

(λ − χgn)λ∗dΓ,

[15]

+
∫

Γc

1
ρτ

(II − χK(gτ))δΛΛΛ ·ΛΛΛ∗dΓ −
∫

Γc
χK(gτ)[δu]τ ·ΛΛΛ∗dΓ

= −
∫

Γc

1
ρτ

(ΛΛΛ − χPB(gτ )) ·ΛΛΛ∗dΓ, [16]

with:

K(x) =

{

II if ‖x‖ < 1,

1
‖x‖ (II − x⊗x

‖x‖2 ) if ‖x‖ ≥ 1,
[17]

[x]n = n · [[x]] and [x]τ = (II − n ⊗ n) · [[x]]. [18]

3. X-FEM discretization and LBB condition

3.1. Spatial discretization

Becausethe contact method of (Ben Dhiaet al., 2002) isa continuousformulation,
its adaptation to X-FEM is facilit ated. Likewise aFEM approach, the slave contact
surfaceprovides a discretization for the numerical quadrature of contact and friction
integrals in equations [14], [15] and [16]. The main differenceis that the slave sur-
face containing the integration points and also the master one are no more defined
by element boundaries, but are interpolated from the intersection points between the
interface and the mesh as proposed in (Nistor et al., 2009). For sake of simplicity,
we restrict our discussion to the case where the surfaces are discretized with linear
segment in 2D, triangles in 3D.
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For each integration point, its projection onthe master surface[2] is used to build
a contact element composed of the slave element nodes and themaster ones. During
thepairing, thereference coordinatesof theintegration point in thebulk slave element
and the reference coordinatesof its projection in the bulk master element are needed.
Using the corresponding bulk shape functionsφm and φs in these two elements, re-
spectively, the slave andmaster displacementsus andum read:

us =
∑ns

j=1 φs
j (u

s
j − as

j ) andum =
∑nm

j=1 φm
j (um

j + am
j ), [19]

wherea denotesthe additional nodal variablesrepresentingtheinterfacediscontinuity.
Note that the differenceof sign precedinga in the master and slave part corresponds
to the useof ageneralized Heaviside functionto describe thediscontinuity.

Consideringequation[19] and introducingthe initial spatial coordinateX, we can
discretise [2] and [6] for agiven numerical timestep ∆t as:

dn =
(

∑ns

j=1 φs
j(X

s
j + us

j − as
j ) −

∑nm

j=1 φm
j (Xm

j + um
j + am

j )
)

· n,

vτ = (II−n⊗n)
∆t

·
(

∑ns

j=1 φs
j∆(us

j − as
j ) −

∑nm

j=1 φm
j ∆(um

j + am
j )

)

. [20]

The contact unknowns are only defined on the slave part and we choose to interpo-
late the contact and friction forces from the nodes of the bulk element. The contact
lagrangian and frictionsemi-lagrangian at the integration point then read:

λ =
∑ns

j=1 φs
jλj andΛΛΛ =

∑ns

j=1 φs
jΛΛΛj . [21]

Using equations [20] and [21], the linearized formulation [14],[15] and [16] can be
expressed in amatrix formasfollows, omittingtheiterationindexesfor sakeof clarity:









Ku + Au + Bu A B

D C 0

E 0 F

















δu

δλ

δΛΛΛ









=









Lu + L1
λ + L1

Λ

L2
λ

L2
Λ









, [22]

wherethefirst, secondandthird rowscomesfrom thediscretization of equations[14],
[15] and [16], respectively. Ku, Au andBu are the mechanical, the augmented con-
tact and the augmented friction stiffnessmatrices, respectively. The matrices A, B

and the secondmembers L1
λ, L1

Λ come from the contact and friction forces, respec-
tively. Note that the matrix Bu is not symmetric and matrices D and E are not the
transposes of A and B, respectively, due to the linearization of the friction terms,
while afixed point method onthe threshold was used in (Ben Dhia et al., 2002). De-
spite the fact that the global matrix looses symmetry when we consider friction, this
enables to synchronize the changes for the friction augmented semi-multiplier with
respect to the contact one, as in (Alart et al., 1991), thusoptimizingtheglobal conver-
gence and limiting the occurrenceof oscill ation pathologieson the friction status. In
other words, a Newton iterationstate always stays inside theCoulomb’scone [7].
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3.2. Lagrangian space reduction

3.2.1. Introduction of vital edges

With X-FEM, a naive linear P1-P1 interpolation choicefor the displacement and
contact friction spaces, respectively (i.e. with a contact d.o.f located at a cut edge)
is not stable and imply oscill ations (Géniaut et al., 2005) that we can seeon Figure
3 presented hereafter. Our chosen space is a more appropriate one based on the
algorithm presented in (Moës et al., 2006). The basic idea of this algorithm is to
define the score of each node as the number of its connected cut edges, while the
score of a cut edge is given by the minimum score of its contributing nodes. Then
we select cut edges with the highest scores that do not have nodes in common: in
case of a multiple choicewe select randomly oneof the possible edges. At each step,
we re-compute the node scores without the previously selected edges. The algorithm
stop when all the remaining cut edges have ascore equal to one. If the minimum
score is reached on one edge, this edge is vital. If the minimum score is reached on
several edges, their multipliers are imposed to be equal, and only one of these edges
is chosen to be vital. Finally, one group of edges with equal multipliers at the end
of the algorithm is connected by a linear relation to another group of edges sharing
another multiplier if both groups were connected initially by a common edge. The
d.o.f of the non-vital edges are thus linked to the d.o.f of the vital ones with linear
or equality relations. To provide abetter approximation of the pressure space, this
algorithm was improved in (Géniaut et al., 2007) to maximize the number of linear
relations with respect to equality ones. However in 3D this leads to convergence
difficulties such asflip-flop. Theproblem is ill ustrated in Figure1, where two sliding
nodes1 and 2are linked linearly to a third one. In that case, node3 cannot be sliding
because ‖ΛΛΛ3‖ < 1. To avoid this problem the linear relation must link the norms of
the friction semi-multipliers (left picture), but the relation becomes non-linear for its
components.

In (Géniaut et al., 2007), only a numerical validation for the LBB condition as
in (Chapelle et al., 1993) was presented. For that reason, we changed the algorithm
for the more recent one of (Béchet et al., 2009) for which an analytical proof of the
LBB conditionsatisfactionwas given for 2D triangular meshes. In the first approach,
the contact pressures were interpolated from unknowns located at cut edges. In the
second approach their interpolation is realized with respect to the nodal values [21]
and for each vital edge, an equality relation is linking the contact d.o.f of the two
vital nodescomposing it. Non vital nodeshave then to be linked to the neighbouring
vital ones by a chosen linear relation. Moreover due to the difficulty of imposing
non-linear relationson the semi-multiplier componentsof ΛΛΛ in 3D correspondingto a
linear relation onitsnorm, wedecided to link it to only oneof itsvital connected node
by an equality relation thus lowering the order of the interpolation which satisfies
implicitly theLBB condition.
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a b

Figure 1. Linear relation for ΛΛΛ, set on the norm(a) or on the component (b)

3.2.2. Integrationschemefor contact andfriction laws

Because we use linear (for tetrahedra) or bili near (for hexaedra) interpolation for
the displacement, we have chosen a nodal quadraturescheme to integrate the contact
frictionforcesin equation[14]. However dueto the algorithmreducingtheLagrangian
space, we can lower thenumerical quadraturein the contact andfrictionlawsby keep-
ing only integration points at vital edges. This modified integrationscheme becomes
mandatory in case of transition between free and contact zones, or adherent and slid-
ing ones. Indeed, in the 2D exampleof Figure2, assume edge 1 and 3are vital while
edge2 isnot:

λ1 = λ2 and λ3 = λ4, [23]

andconsider points1 and 2arenot in contact:

(λ1 + λ2)/2 = 0 and (λ2 + λ3)/2 = 0. [24]

Figure 2. Statusandreduced space: point 3 is in contact while1 and 2 are free

This implies that the contact normal reaction at point 3 is equal to zero and triggers
compensation in the neighbouring locations with excessive normal contact reaction.
The modified integration scheme we propose involves no contribution in the contact
equation [15] from point 2, which isnot onavital edge, and thus solves this conflict.
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Figure3 showstheresults for asimple2d test with frictional horizontal largeslid-
ing of a block overlaid by a top block on which we impose avertical compression.
Themesh is composed of triangles. In that case, the left part of the interfacebetween
thetwo blocksisfreewhiletheright oneisunder contact. On theleft picture, we com-
pare aFEM case (circles) with a naive X-FEM case (triangles) and an X-FEM case
satisfying the LBB condition (diamonds). The naive approach is marked by strong
oscill ations along the whole contacting zone. These oscillations are solved with the
algorithm reducingthelagrangian space. However, near thelimit between contact and
free zones, significant oscill ations can still be noticed, because of the typical pathol-
ogy previously described. On the right picture, we compare the FEM case (circles)
with the X-FEM case satisfying the LBB (diamonds) and the X-FEM case satisfying
the LBB with the modified integration scheme (squares). The latter eliminates the
oscill ations reported above.

Figure 3. Normal contact reaction vs position alongthe interface. The response for
FEM, naiveX-FEM, X-FEM with reduced lagrangianspace, andX-FEM with modi-
fied integration rule are represented by circles, triangles, diamonds andsquares, re-
spectively

The same demonstrationcan be applied to the case of adherent/sliding transition. In-
deed, consider in Figure2 points1 and 2to besliding (seethethird equation of [7]):

(‖ΛΛΛ1‖ + ‖ΛΛΛ2‖) /2 = 1 and (‖ΛΛΛ2‖ + ‖ΛΛΛ3‖) /2 = 1, [25]

With the help of equation [23] where λ is replaced by ΛΛΛ, one can notice that
point 3 is not allowed to be adherent. We thuspropose the samemodified integration
schemeto solve thisproblem and do not assemble contributionson non vital edges in
the friction equation only [16]. The impact on the global system [22] of the modified
integrationscheme is very different for contact and friction. For contact, only matrix
C is changed and the global system is still symmetric, while for friction matrices E
andF aremodified leading to another lossof symmetry of the global system.



X-FEM large slidingcontact and friction 199

Table 1. Vital edge criteria in a group of connected edges
integration points statuson the connected edges the vital edgemust respect:

all pointsare free nocondition
there isat least onepoint in contact it must contain
all thepoints in contact aresliding a contacting point
there isat least onepoint in contact it must contain an
there isat least one adherent point adherent contacting point

3.2.3. Additional criteria to select a vital edge

When meshes are cut by interfaces, we can obtain groups of connected edges
among which we have the choice to select the vital one. This comes frequently for
triangle and tetraedrameshes.

Figure 4. A group of connected edges, edges 1 an 5 are vital, one in [2, 3, 4] is
randomly vital

For example in Figure 4, edges 1 and 5 are vital, but the LBB condition algorithm
selects randomly a vital edge between 2, 3 or 4. If the integration points on the se-
lected vital edge arenot in contact, we can obtain thesamekind of conflict as theone
described in 3.2.2. In fact, wemust avoid anoncontactingintegration point to impose
a zero pressure to the other integration points normally in contact. The same demon-
strationappliesto friction: wemust avoid asliding integration point to impose anorm
onevalueon the semi-lagrangian multipliersof other adherent integration points. Ta-
ble 1 summarizes the criteria avital edge in a groupmust satisfy. Since the contact
status can change at each contact iteration and sincethe friction status can change at
each Newton-Raphsoniteration, weproposeto switch from Algorithm 1 to Algorithm
2 which providesthe possibilit y to changevital edgesduringthe computation.

3.2.4. Particularitiesof a hexaedra mesh

For the case of meshes with quadrilateral or hexaedra cut by an interface, it is
possible to have a node not connected to a cut edge inside an element cut by the
interface. For example in Figure 5, node 3 is not connected to the other ones. In
order to usethenodal interpolation of thepressureonthe crack interface, the lagrange
multiplier unknownsonthisnodewill be expressed in termsof themultipliersof nodes
belonging to edgescut by the interface. For sake of simplicity, we choose to link this
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Algorithm 2 Iterative algorithm with NVE and VE denoting, for each group of con-
nected edges, a non-vital edge andthevital edge
- Fixed point onslave-master associationandcontact basis
- Fixed point oncontact status
- Loop onNewton-Raphsoniterations
- Compute frictionstatus (sliding or adherent)
- Loop over each group of connected edges
- If VE is slidinganda NVE is adherent ⇒ NVE replacesVE

- Compute contact and frictioncontributionsto thesystem
- Compute contact status (contact or free)
- Loop over each group of connected edges
- If VE is free anda NVE is in contact ⇒ NVE replacesVE

node to its direct neighbours on uncut edges with a linear relation, expressed in this
example as:

λ3 = (λ4 + λ2)/2. [26]

As mentioned in 3.2, the extension of this relation to the semi-multiplier of fr iction
should be done on its norm which leads to a nonlinear relation onits components in
3D. An alternative is to eliminate the lagrange multipliers of nodes with uncut edges
and to modify the contact frictionshape function for the other ones in order to assess
partition of unity on the element. We proposethe following distribution by notingN1

andN2 the groupsof nodesbelongingto edges that are cut or not, respectively:

λ =
∑

i∈N1
φ̃s

i λi with φ̃s
i∈N1

= φs
i +

P

j∈N2
φs

j

card(N1)
, [27]

where card(N1) is the total number of elements in N1.

Figure 5. A cut quadrangle, in that casenode3 isnot connected to acut edge
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4. Numerical example of a 3D cut cylinder under compression

Let usconsider the compression of a linear elastic cylinder with elasticity modulus
and Poisson’s ratio set to 80 GPa and 0.2, respectively. This cylinder is cut along a
radial section, and is resting ona quasi-rigid substratum (Figure 6). Constant pres-
sures Pl of 150MPa and Pt of 50 Mpa are imposed on the lateral and top surfaces,
respectively while the lower part is fixed. The friction coefficient is set to 1.0 onthe
interface.

Figure 6. Geometry and boundary conditionsare shown onthe left withL = 0.04m.
On theright, thedeformed configurationis shown for thetetrahedracasewith aradial
andvertical amplifications set to 200 and 2000, respectively

Two meshesare considered in theX-FEM cases, with 26880tetrahedra and 6240 hex-
aedra, respectively. The deformed configuration for the first mesh is shown in Figure
6. The normal contact reaction at the interface and alonga radial profile is given in
Figure 7 onthe left and right, for the case of the first mesh and the secondmesh, re-
spectively. In both cases, we compare the result with respect to that of a FEM model
built with 8160 hexaedra andconformingto the interface.

a b

Figure 7. Thenormal contact reactionvs radius. Diamonds represent theFEM. Field
squares represent theX-FEM for tetrahedra (a) and hexaedra(b)
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We first note the abilit y of themethodto capture the transition between the adher-
ent region at the centre, characterized by an almost uniform pressure and the sliding
domain where λ increases to reach a zero value when no contact is detected. The
discrepancy with the FEM result remains small for the X-FEM hexaedra case. It in-
creases for the X-FEM tetrahedra case, because of the reduction of the Lagrangian
space asdescribed in 3.2 in order to satisfy theLBB condition.

5. Conclusion

An X-FEM formulation for frictional interfaces with possible large sliding has
been proposed. Contact and friction are described following the augmented La-
grangian approach of (Ben Dhiaet al., 2002), but wereplaced afixed point onfriction
threshold bythe correspondinglinearized termsin thetangent operator. Thisimproves
therobustnessandconvergenceof theglobal iterative algorithm, as suggested in (Alart
et al., 1991). The X-FEM spatial discretization is inspired from (Béchet et al., 2009)
with thedisplacement interpolation used for the contact andfriction unknowns, but ex-
tended to 3D meshescomposed of tetrahedraor hexaedra. Largesliding is accounted
for like in (Nistor et al., 2009), with a contact element built as a mixed slave and and
master enriched bulk element.

As proposed by (Béchet et al., 2009), to ensure the satisfaction of the LBB con-
dition, the spaceof contact and friction unknowns is reduced thanks to an algorithm
that selectsvital edgeswhich unknownsarelinearly associated to theonesof non vital
edges. The contact status of this vital edge is preeminent over the contact statuses of
non vital edgesassociated to it, and priority ruleswere established in caseof multiple
choicefor the vital edge: : the vital edge must support a contact point. This enables
to solve error in thenormal contact reactioncoming from the transition between con-
tacting and noncontacting regions. The same choice can be applied to the transition
between adherent and sliding regions, where we favour the vital edge to be adherent.
A numerical example of the compression of a 3D cylinder cut alonga radial section
ill ustrates the robustnessof the method.
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