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ABSTRACT. A new 3D solid shell element is developed in SAMCEF™ code. The purpose of this 
element is to make the meshing easier starting from a 3D definition of the structure, it is not 
necessary to extract the mean surface of the shell. Here, we are not concerned by the 
meshing; we only are concerned by the element formulation. In order to improve the quality 
of the results, we add internal degrees of freedom as suggested by Simo and co-authors. We 
use the Enhanced Assumed Strain method. A special handling of the transverse shear is 
performed in order to pass successfully the plate patch test (constant bending) and to avoid 
shear locking. The formulation is based on the work of Bathe and Dvorkin for classical shell. 
The element has been developed in linear and non-linear analysis; it can be a mono or multi-
layer element. 

RÉSUMÉ. Un nouvel élément de coque 3D a été développé dans SAMCEF™. Le but initial est 
de simplifier le maillage en partant directement d’une géométrie 3D sans passer par la case 
« extraction de la surface moyenne ». Mais au-delà, il faut aussi assurer une formulation 
robuste basée sur des aspects théoriques et sur une étape de validation. L’élément est donc de 
forme hexaédrique à 8 nœuds. Pour améliorer la qualité des résultats, nous ajoutons des 
degrés de libertés (ddl) internes proposés par Simo. Nous utilisons la méthode Enhanced 
Assumed Strain. Un traitement particulier des termes de cisaillement permet de passer avec 
succès le patch test. La formulation est basée sur les travaux de Bathe et Dvorkin pour les 
coques classiques. L’élément est développé pour les analyses linéaires et non linéaires. Il 
peut être utilisé en configuration mono ou multicouche. 
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1. Introduction 

In this paper, we describe a 3D solid shell element. By 3D solid shell element, it 

means that the topology of the element is a brick. The element has been developed for 

meshing purpose. The element is based on EAS (Enhanced Assumed Strain) 

formulation (Simo et al., 1993) and special treatment is used for the transverse shear 

(Dvorkin et al., 1984). We present different versions of the element, starting from the 

simple one and showing the limitations of the first versions. We detail how is 

performed the integration through the thickness in order to keep good performance 

when the element is used for composite structure with several layers on the thickness. 

A quadrangular and a triangular version of the element have been developed. 

They are first order element. They are introduced in Samcef™ software. 

2. EAS formulation 

In this section, we recall the principle of the EAS formulation (Simo et al., 1993). 

The starting point is a three-field variational principle. The three fields are the 

deformed position (x), the displacement gradient ( F
~

) and the PK1 stresses P
~

 : 

� � � � � �> @ extdVFxgradPFWPFx 3��� 3 ³
~~~~

,
~

,  [1] 

The last term is linked to the external forces. The displacement gradient is 

splitted in a part which depends on the displacements and an enhanced part: 

enhenhcom FxgradFFF � � 
~

  [2] 

We assumed P
~

constant over the element volume and Fenh such as ³  0dVFenh  
(orthogonality condition). The potential becomes equal to: 

� � � �> @ extdVFWPFx 3� 3 ³
~~

,
~

,  [3] 

Now, we have to define what is taken for Fenh. We use: 

� �
0

00 ,,'
   

  
GK[

GK[ comenh FFFFF   [4] 

� � � �00
1

000 det,,''' JjJFJjjF   �GK[  

F’’ is defined in the isoparametric space, J0 is the jacobian matrix at the centre of 

the element. If the integral of F’’ over the element volume is equal to 0, the 

orthogonality condition will be fulfilled. F’’ is chosen in such a way to have a 

uniform polynomial definition for F
~

. With the first nine terms of ., volumetric 

locking is removed. With the last terms, shear locking is removed. We use: 

          [5] 
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3. Shell element, version 1 

In the first version of the element, we do not introduce any shell assumption. The 

element is identical to a volume one with EAS formulation. The advantage is that 

three dimensional constitutive laws can be used. A Gaussian quadrature with 2*2*2 

points is used. 

As example, we study a simply supported square plate subjected to a transversal 

pressure. The length is taken equal to 400 mm, the thickness to 2 mm, the Young 

modulus to 210000 MPa and the Poisson coefficient to 0.3. We perform a 

convergence study using the standard volume element and the volume with EAS 

formulation. Only a quarter of the plate is modelized. Table 1 gives the ratio 

between the numerical displacement at the centre of the plate and the theoretical 

one. As can be seen from the results, thanks to the enhanced strains ( zH is linear 

over the thickness of the element), we converge towards the correct solution, even 

with a Poisson coefficient which is not equal to 0. This is not the case with the 

standard volume. We also see that the enhanced strains remove the shear locking. 

Table 1. Square plate under pressure, convergence study 

n Standard volume EAS Volume 

2  0.989 

8 0.035 1.000 

32 0.372 1.001 

 

We see that EAS formulation improves the convergence of the element. For n=8, 

we change the thickness of the element. Table 2 gives results for the EAS element in 

function of the ratio length over thickness. 

Table 2. Square plate under pressure, influence of ratio length/thickness, version 1 

L/t EAS Volume 

200 1.000 

2000 1.000 

20000 * 

 

When the ratio length over thickness becomes too high, numerical problems 

arise. For this reason, we introduce version 2 of the element. 

4. Shell element, version 2 

In order to understand what happens when the ratio length over thickness 

increases, we look at a 2D case and we compute the order of magnitude of the 
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stiffness matrix linked to one node. We start from the energy, define the strain in 

function of the displacement of the first element node. 

 

 

 

  [6] 

          

 

We see that some terms are proportional to 2D and will become very large when 

the thickness decreases. K22 is linked to the transversal direction. The solution we 

adopt is to use plane stress assumption in the shell element and to modify the 

transverse Young modulus, it is divided by max(1, 2D ). This modification has no 

influence on the results as the stress in the transverse direction is, at least, one order 

of magnitude smaller than the in-plane stress. Neglecting the stress in the 3
rd

 

direction is a classical shell assumption. We also assume than the shear strains 

linked to transverse shear and transverse strain are constant over the shell thickness. 

The number of EAS terms is reduced to 12: 

 

  [7] 

 

We keep the same number of integration points (2*2*2 points) as in version 1. 

We analyse the square plate with this element. We use 8*8 element meshes. 

Different ratios – length over thickness – are used. Table 3 gives the ration between 

numerical and theoretical maximum displacement.  

Table 3. Square plate under pressure, influence of ratio length/thickness, version 2 

L/t Shell version 2 

i 1
Classical 4 node shell element 

200 1.000 1.000 

2000 1.000 1.000 

20000 1.000 1.000 

200000 1.000 1.000 

2000000 * 1.000 

 

The shell can be 100 times thinner than with version 1. 

We now perform a patch test analysis. The mesh we used is shown on Figure 1. 
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Figure 1. Patch test analysis 

For a membrane loading, there is no problem, the state of stress is constant over 

the plate. For a bending loading, the state of stress is no more constant. For this 

reason, we introduce version 3 of the element. It means that a distorted element does 

not give good results in flexion, this is also true with the first version of the element. 

So even if the shell is thick, we do not think that the first version of the element 

should be used for a distorted mesh. 

5. Shell element, version 3 

The problem with the bending patch test comes from the transverse shear 

behaviour. In order to improve the element, we use the following procedure 

(Dvorkin et al., 1984): 

– in the covariant bases, the 2 first axes are parallel to the intrinsic coordinates, 

the 3
rd

 one is parallel to the normal 

– we compute transverse shear strain 33 K[ JJ  at the middle of the edges, parallel to 

the edge 

– we perform a surface interpolation of these shear strains 

– we transform the strain from the covariant bases to the Cartesian one parallel to 

the shell surface 

With respect to version 2, only the transverse shear strains are modified. Now, 

the bending patch test can be passed without any problem. 

We build a triangular element with the same principle (Hughes 1987): 

– we compute the transverse shear at the middle of the edges, parallel to the edge 

– at the corners, we compute transverse shears in the Cartesian bases, from the 

strain coming from the 2 edges going to the corners 

– we take a mean value from the 3 nodes. 

There are no EAS modes in the triangular element.  
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The number of integration points is 2*2*2 for the quadrangular element and 3*2 

for the triangular element. 

6. Numerical integration over the thickness 

The easiest solution is to put several integration points along the thickness. In 

this case, for a multilayer element, the CPU cost in order to compute the stiffness 

matrix is proportional to the number of layers and can be large. When we look at the 

strain and displacement definition, we see that the strain is linear over the thickness 

(at least for a plate). We put two integration points along the thickness, we compute 

the strains in these two points. From theses strains, we compute shell axial strain, 

curvature, shear strain. To make it simple, we show the relation in the 2D case: 

 

          [8] 

 

 

From the shell strains, we can compute normal forces, bending moments, shear 

forces. For instance, for a shell with a linear isotropic material, we have: 

 

         [9] 

 

With . = L/t. 

In other cases, we perform a numerical integration over the thickness in order to 

compute the shell stresses. Once we have the shell stresses, we compute the stresses 

conjugated to the local strains at the two integration points along the thickness: 

 

                     [10] 

Similar formulas are used for the local Hooke matrix. With such a procedure, the 

CPU cost for the stiffness matrix does not depend on the number of layers. The large 

matrix products are performed with only two integration points over the thickness, 

even for multilayered element. 

As the constitutive equation is written between shell strains and stresses, it is 

easy to introduce a shear correction factor in the constitutive law as in a classical 

shell element. For instance, for a monolayer element, we do not used Gt in the 

constitutive equation, we use Gt65 . Similar correction can be used for 

multilayered element. 
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7. Numerical applications 

The element has been introduced in Samcef™ software. All the applications are 

run with the 3
rd

 version of the element. 

7.1. Square plate under pressure 

The plate is simply supported, only a quarter is modelized. The length is taken 

equal to 400 mm, the thickness 2 mm, Young modulus 2.1x10
6
 MPa, Poisson ratio 0.3, 

pressure 0.014794 MPa. The theoretical displacement (Kirchhoff theory) at the centre 

of the plate is equal to 1mm. Table 4 gives the displacement obtained with the 

quadrangular and triangular elements in function of the number of elements (along one 

edge). A good and quick convergence is observed, also for the triangular element. 

Table 4. Square plate, convergence study 

n Quadrangular élément Triangular 

2 0.989 0.883 

4 0.998 0.978 

8 1.000 0.993 

16 1.001 0.999 

32 1.002 1.001 

7.2. Hemispherical shell under concentrated loads 

The problem is described in Figure 2. It is a classical shell problem (Mac Neal et 
al., 1985), which is sensitive to membrane locking. The reference solution is taken 

equal to 0.094, it is not a analytical solution. Table 5 gives the numerical 

displacement (*10000) for different meshes. 

Table 5. Hemispherical shell, convergence study 

n Quadrangular Triangular 

4 979 466 

8 944 850 

16 935 913 

32 935 927 

 

 



212     EJCM – 19/2010. Giens 2009 

 

 

 

 

 

 

 

Figure 2. Hemispherical shell under concentrated load. R=10, E=6.825x107, �=0.3, 
F=1, thickness = 0.04 

7.3. Pinched cylinder with end diaphragms 

The problem is described in Figure 3. It is a classical shell problem (Batoz et al., 
1990). The reference displacement is taken equal to 0.18248x10

-4
. We compare our 

results to published one with similar elements (Alves de Souza et al., 2003, Abed-

Meraim et al., 2007). Table 6 gives the ration between the numerical displacement 

and the reference one for different regular meshes (N = number of elements on one 

edge). Symmetry conditions are used. 

 

 

 

 

 

 

 

Figure 3. Pinched cylinder with end diaphragms, R = 300, L = 600, E = 3x106, 
� = 0.3, P = 1, thickness = 3 
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Table 6. Pinched cylinder, convergence study 

N Quadrangular Triangular 

T i l

Alves de Souza Abed-Meraim 

4 0,357 0.168 0,104 0,387 

8 0,744 0.545 0,494 0,754 

16 0,934 0.843 0,912 0,940 

32 0,991 0.958 0,995 0,997 

7.4. Pinched cylinder with end diaphragms, non linear analysis 

This is the same problem as the previous one but a non-linear analysis is 

performed. Large displacements are taken into account. The Young modulus is 

taken equal to 3000. The material is a plastic one, the initial Yield stress is equal to 

24.3 and the plastic modulus to 300 (Korelc et al., 1996). A 20*20 element mesh is 

used, taking into account the symmetry of the problem. Figure 4 shows the isovalues 

of the equivalent plastic deformation at the end of the analysis and figure 5 shows 

the applied force in function of the displacement. The results are closed to the 

reference one (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Isovalues of equivalent plastic strain 
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Figure 5. Curve load – displacement 

7.5. Post buckling analysis of a stiffened panel  

The last problem is the post buckling analysis of a stiffened panel. There is 

contact between the skin and the stringers. First, there is local buckling between the 

stringers, with a stable post-buckling behaviour. Then, there is buckling of the 

stringers. Figure 6 shows the isovalues of the transversal displacement,  

 

 

 

 

 

 

 

Figure 6. Isovalue of transversal displacement 

8. Conclusion 

The quadrangular and triangular elements give good results on the examples. 

Their behaviour is good in linear and non-linear analysis. Special care has been 

taken on the CPU cost for multi-layer case. 
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