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Abstract

The purpose of this paper is the modelling in large displacement of systems
composed of a rigid platform suspended by flexible cables, as can be observed
in lifting systems of a construction crane or in cable-driven parallel robots
(CDPRs). A recent approach has been proposed in the literature to model the
nonlinear behavior of a cable element based on three dimensional catenary
elastic modelling and the general displacement control method (GDCM) as
solver. In this paper, two modifications of this method are proposed to take
into account the geometric constraints coupling the large displacements of
the cable extremities. The first approach is to consider these constraints using
penalty functions thus modifying the tangent stiffness matrix and the second
method by adding external explicit elastic forces. These two methods are
tested and compared by using numerical examples. The first method is numer-
ically safer because it is not dependent on the poor numerical conditioning of
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the cable’stiffness matrix encountered when internal cable’s tension cannot
balance the external forces.

Keywords: Cables, nonlinear modelling, general displacement control
method, geometric constraints, elastic catenary, penalty method.

1 Introduction

The emergence of cable-driven parallel robots (CDPRs) in various fields of
industry has generated renewed interest in the study of cables. Indeed, these
manipulators have a great advantage of lightness compared to conventional
rigid robots. This has allowed the design of long-range robots, in particular
for the precise guidance of mobile cameras in stadiums, but also opened up
other perspectives such as the use of these manipulators in Large Capacity
Airships (LCA) [1, 2]. The first studies of CDPRs adopted the strong hypoth-
esis of the undeformability of cables neglecting their masses at the same
time. It turned out that this reducing hypothesis, although very useful for
minimizing computations, comes up against an undeniable reality regarding
the extension, bending and sagging of cables. This is particularly highlighted
if these robots are used to handle heavy loads. These simplifying assumptions
in these cases generate more or less significant errors in the location of the
end-effector, which affects the accuracy of these robots and limits their field
of application. It is therefore essential to carry out a larger study of the cables
forming the robot in order to take into account the weight and elastic behavior
of the latter and thus improve the precision of the robot. Recent studies have
looked at this aspect, we can cite works [3–7] where the emphasis has been
placed on taking into account the effect of the weight and the deformability
of cables. It is in this context that our present study is situated, where the
objective is to develop a cable modelling methodology that is of a high level
of generality while optimizing the precision/computation time ratio.

Historically, three types of analytical cable models have been proposed
to model a cable under the effect of its own weight: parabolic models, the
associate catenary and the elastic catenary [8]. The parabolic model is consid-
ered by assuming that the load is uniformly distributed along the rope chord.
The associated catenary model assumes a uniformly distributed load along the
deformed shape of the cable, considered as a chain. In this case, the forces
are obtained nodes to node starting from the boundary conditions. The third
elastic catenary model considers a flexible arch subjected to its own weight.
In reality, the behavior of cable structure is geometrically nonlinear, due to
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the flexible characteristics of the cable. A basic nonlinear cable analysis was
introduced, since 1981, by Jayarman and Knudson [9] in which a small strain
elastic catenary element was analyzed for cable structures. They perform
derivation by using a flexibility iteration method to compute a cable element
and the corresponding stiffness. They used the Newton-Raphson method to
solve the nonlinear equilibrium equations. Later, Thai and Kim [10] also
considered a catenary cable element for a nonlinear analysis of cable struc-
tures subjected to both static and dynamic loads. An incremental and iterative
solution was adopted to solve the nonlinear equilibrium equation; it is based
on the Newton-Raphson method. A computer program was developed and
was verified through validation of several numerical examples.

In a similar manner, Coarita and Flores [11] proposed a mixed algo-
rithm to simulate the interaction between a cable and a truss. The nonlinear
stiffness matrices from elements cable and truss were determined through
Lagrangian formulations. Then, an iterative incremental method, using the
secant method with a small load increase, was implemented to solve the
equilibrium equations. Furthermore, a recent nonlinear analysis of a spatial
cable of a long-span cable-stayed bridge was considered by Wu and Wei [12].
A two-node spatial catenary cable element with arbitrary rigid arms was
developed to determine the cable sag effect and solve the rigid connection
problem at the cable ends. The explicit expression of the tangent stiffness
matrix of the element with arbitrary rigid arms was derived based on the
catenary equations. Two numerical examples were provided to verify the
validity of the new element. It was shown that the catenary cable element
with arbitrary rigid arms can be applied to model the geometric nonlinear
mechanical behavior of the cables. Moreover, Yang and Tsay [13] studied
an approached elastic catenary cable element, which may exhibit large sags.
They took into account the flexibility of the cable-supported structures by
considering geometric nonlinear effect. An incremental-iterative analysis was
performed using a generalized displacement control method.

To simulate a CDPR, it is necessary to control the relative positions of
the cable extremities attached to the moving platform. Indeed, the distances
between theses extremities must remain constant which induces additive
geometric constraints in the modelling of the cable structure.

Many approaches to solve geometric constraint problems have been
reported in the literature. The most popular approach to handle geomet-
ric constraints is to use penalty functions. In this paper, we analyze the
penalty-based method combined with GDCM. The penalty function method
transforms a constrained extremum problem into a single unconstrained
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optimization problem by inserting into the objective function, quadratic
terms, which control the violation of the constraints thanks to adapted penalty
parameters [14].

The objective of this paper is to develop a three-dimensional two-node
elastic catenary element, considering the geometric nonlinearity. Several
numerical methods were used to study the geometric nonlinearity behavior
of cables such as Newton Raphson’s method [11, 12]. In this work we
chose to use the most robust numerical procedure, the general displacement
control method [15, 16]. This method is described in detail in the first part
of the article. In the second part, two methods were used to apply nonlinear
geometric constraints to the nonlinear cable model. In the last section of this
paper, several examples are presented and described with their results.

2 Notations

{Fint}: vector of internal nodal forces applied to the structure.
{Fext}: vector of external nodal forces applied to the structure.
{F̂ext}: vector of the total external force.
{R}: residual or unbalanced forces vector.
{U}: nodal displacement vector.
{∆F}: increment of the external force vector.
{∆R}: increment of the residual forces vector.
{∆U}: increment of the nodal displacement vector.
[Kt({U})] = [∂{Fint}

∂U ]: global tangent stiffness matrix.
i: referring to the current increment step.
j: referring to the current iteration of the Newton Raphson procedure.
λji : load incremental parameter.

{dÛ}ji : tangential displacement vector at ith increment and jth iteration.

{dU}ji : residual displacement vector at ith increment and jth iteration.
T: the cable’s tension in Lagrangian coordinates.
s: the Lagrangian coordinates in the undeformed profile (the cable’s
length from the origin till point Q in the unstrained profile).
p: the Lagrangian coordinates in the deformed profile (the cable’s length
from the origin till point Q in the strained profile).
w: the self-weight of the cable per unit length.
F1, F2 and F3: the components of the reaction forces of the support to
the cable at the extremity I which is also the internal forces at the node I
and so the components of the cable tension.
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F4, F5 and F6: the components of the reaction forces of the support to
the cable at the extremity J which is also the internal forces at the node
J and so the components of the cable tension.
L0: the undeformed/initial cable’s length.
E: the elasticity module of the cable.
A: the constant cross section of the cable.
TI and TJ : the cable’s reaction forces consequently at node I and J.

3 Algorithm for Nonlinear Equilibrium Equations

Due to the nonlinear nature of the cable behavior (large displacements), an
incremental-iterative numerical technique must be used to trace the load-
deflection. In this section, we describe in detail this numerical technic in order
to have a better understanding of the modifications that will be made in the
next chapter.

By considering the total unbalanced nodal forces, also named residual
nodal forces, as follows:

{R({U}} = {Fext} − {Fint} (1)

The equilibrium principle is satisfied when:

{R{U})} = {0} (2)

To solve (2), it is necessary to proceed to an incremental method [20] to
control step by step the residual forces as follows:

{Fext}i = {Fext}i−1 + {∆F}i with {Fext}i ≤ {F̂ext} (3)

{R({U})}i = {R({U})}i−1 + {∆F}i − ({Fint}i − {Fint}i−1) (4)

Now solving (2) consists to solve the following equation at each step:

{R({U})}i = {0} ⇔ {R({U})}i−1 + {∆F}i − {∆Fint}i = {0} (5)

If for each increment {∆F}i, we consider the increment {∆Fint}i
as linear relative to the displacement, then we have:

{∆Fint}i = [Kt({U})]i−1{∆U}i with {U}i = {U}i−1 + {∆U}i (6)

Then Equation (6) becomes:

[Kt({U})]i−1{∆U}i = {∆F}i + {R({U})}i−1 (7)
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In order to avoid this numerical drift-off error, it is necessary to consider
{R({U})}i−1 as being not close to zero and {∆Fint}i as being nonlinear
during an increment step. This nonlinearity is solved numerically from the
well-known Newton Rapson method as follows:

Inside the ith increment step, the iteration process is:{
{Fint}ji = {Fint}j−1

i + [Kt({U})]
j−1
i · {dU}ji

{U}ji = {U}j−1
i + {dU}ji

(8)

with {Fint}0i = {Fint}i−1; {U}0i = {U}i−1, [Kt({U})]0i = [Kt({U})]i−1

and then we have also: {∆F int}ji = {∆F int}j−1
i + [Kt({U})]

j−1
i · {dU}ji

with {∆F int}0i = {0}.
Finally, from (8), we have to solve the following equation:

[Kt({U})]
j−1
i {dU}ji = {R({U})}j−1

i (9)

with {R({U})int}
j−1
i = {∆F}

i
− {∆F int}j−1

i + {R({U})}i−1 ⇔
{R({U})}j−1

i = {Fext}i−{Fint}j−1
i .

The numerical convergence is obtained at each load step when
{R({U})}j−1

i tends to zero which also means {dU}ji tends to zero. By this
nonlinear incremental method, we can control the residual force at each load
step by satisfying the following criteria:

‖{R({U})}j−1
i ‖

‖{∆F}i‖
< εmax (10)

In the modified Newton Raphson, the tangent stiffness matrix is kept
constant during all the increment steps, so Equation (9) can be modified as
follows:

[Kt({U})]i−1{dU}
j
i = {R({U})}j−1

i (11)

Even so the converging process needs more iterations, generally the time
consuming process of the modified Newton Raphson method is less than the
full Newton Raphson method.

If the internal cable’s tensions can balance the external forces, then
the cable structure is stable, which means the load/deflection function is
monotonic between two limit points. If the internal cable’s tension cannot
balance the external forces, the cable structure is unstable and the function is
non monotonic and even presents snap-backs points which means there are
several different external forces for the same displacement. So the numerical
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solution cannot be controlled by an increment method based on external force
steps [15].

In fact, an ideal incremental method must possess the following charac-
teristics:

• A control of the unbalanced forces,
• A mixed control of the external forces and the displacements,
• A good numerical stability.

One iterative incremental method that satisfies these conditions is the
generalized displacement control method (GDCM). This method, was first
attributed to the researcher Yang [16], which was used to model the geometric
nonlinearity behavior of a two dimension (2D) elastic catenary element [13].

The key idea is to introduce a control loop of the external forces inside
the control loop of the displacement already defined by the Newton Raphson
method as follows:

{Fext}ji = {Fext}j−1
i + λji{∆F} (12)

Where {∆F} is the reference load which is a function of the
total external load, the scalar λji is the load incremental parameter and
{Fext}0i = {Fext}i−1.

Consequently, the Equation (8) turns into:

[Kt({U})]
j−1
i {dU}ji = {F}ji − {Fint}j−1

i ⇔ [Kt({U})]
j−1
i {dU}ji

= λji{∆F}+ {R}j−1
i (13)

with {R}j−1
i = {F}j−1

i − {Fint}j−1
i and {F}0i = {F}i−1.

If λ1
i = 1 for the first iteration and λji = 0 for the rest of the iterations

then we come back to the case of the nonlinear incremental method using
Newton Raphson.

Because we solve a linear system at each iteration of Newton Raphson,
it is possible to decompose the displacement solution {δU}ji as a linear

combination of two elementary solutions {dÛ}ji and {dU}ji as follows:

{dU}ji = λji{dÛ}
j

i + {dU}ji (14){
{∆F} = [Kt({U})]

j−1
i {dÛ}ji

{R({U})}j−1
i = [Kt({U})]

j−1
i {dU}ji

(15)
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After each iteration i, the displacement and the internal forces are updates
as defined in Equation (8). From now, λji can be also regarded as a parameter
to control the displacement. At each increment step i and at the first iteration

j = 1, {R({U})}0i ≈ {0}, then, {dU}1i ≈ {0} and {dU}1i ≈ λ1
i {dÛ}

1

i .
Thus, the displacement increases or decreases in the same way as the incre-
ment at the first iteration of each increment step. Consequently the scalar

product {dÛ1
i−1}

T {dÛ1
i } is an indicator of the change in the direction of

the loading. If it is positive, then the loading is increasing otherwise it’s
decreasing. Thus the Generalized Stiffness Parameter (GSP) is defined as
follows:

GSP i =
{dÛ1

1 }
T {dÛ1

1 }

{dÛ1
i−1}

T {dÛ1
i }

(16)

which starts with GSP1 = 1. The GSP is negative only for the first increment
after the limit points.

From this consideration, it can be shown that the optimized load parame-
ter is calculated as follows [15, 16]:

• for the first iterative step at each increment step,

λ1
i = λ1

1

√
|GSP i| ∗ sign(GSP i) (17)

• for the remaining iterative step,

λji = −
{dÛ1

i−1}
T {dU j

i}

{dÛ1
i−1}

T {dÛ j
i }

for j > 1 (18)

The general stiffness parameter (GSP) represents also the structure stiff-
ness’s degradation. λ1

1 is the initial value of the load parameter (0 < λ1
1 < 1)

set to 0.8 in the numerical results found later in this paper.
Iterations are performed until the convergence criteria (9) is satisfied

and incremental steps are performed until the total external load {F̂ext},
previously defined in Equation (3), is applied.

The numerical convergence, at each increment step i, is obtained
when {R({U})}j−1

i ≈ {0} which is equivalent to {dU}ji ≈ {0} (see
Equation (14)). So it is possible to define another convergence criteria in place
of (9) as follows:

‖{dU}ji‖
‖{dÛ}1i ‖

< εmax (19)
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4 Elastic Catenary Cable

The static sagging cable model, also known as the elastic catenary model,
takes into account the elasticity and the effect of the self-weight. It is based
on the explicit solution of the differential equations, derived from the static
equilibrium condition and boundary conditions applied to the two extremities
of the cable. This model has been studied and used in the civil engineering
field since the 1930s [8]. This model requires a fewer number of degrees of
freedom versus other one, such as a cable represented by a series of linear
truss elements. Moreover, the sag of geometry shape is exactly taken into
account. These last two features are important to obtain an efficient modelling
in the case of cable-driven parallel robots.

All the details of the cable modelling presented in this paragraph can be
found in the paper [10]. In the following, we detail only what is necessary for
the best understanding of the algorithm and the numerical results presented
later.

The Figure 1 shows a cable of initial length L0 suspended between two
fixed points I and J which have respectively the Cartesian coordinates (0, 0,
0) and (lx, ly, lz).

In the Lagrangian approach, ds and dp respectively denote the length
of an infinitesimal segment of the cable in the initial and the deformed
configuration (see Figure 1-b). ~T = T~n is the tension of the cable and
represents the only mechanical action through the cross-sectional area of the
cable because it is considered as perfectly flexible.

~n = (dxdp ,
dy
dp ,

dz
dp) is the unit normal vector of the cross-sectional area of

the cable according to the orientation from I to J.

 

(a) 

 

 

(b) 

Figure 1 Three-dimensional elastic catenary cable element.
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From the above considerations, if we apply the equilibrium conditions to
the part (I,Q) of the cable, we obtain the following equations:

T

(
dx

dp

)
= −F1 (20a)

T

(
dy

dp

)
= −F2 (20b)

T

(
dz

dp

)
= −F3 + ws (20c)

From these equations, we can deduce directly:

T (s) =

√
F 2

1 + F 2
2 + (F3 + ws)2 (21)

Furthermore, after applying Hooke’s law, we have the following equation:

T (s) = EAε = EA

(
dp− ds
ds

)
= EA

(
dp

ds
− 1

)
(22)

By integrating the Equations (20) by using dp
ds defined in Equation (22),

it is established in [15] analytical expressions of lx, ly, lz (defined on the
Figure 1) as follows:

lx = f1(F1, F2, F3); ly = f2(F1, F2, F3); lz = f3(F1, F2, F3) (23)

Note that lx, ly and lz are written in function of the applied forces to the
node I: F1, F2 and F3.

By applying differential calculus technics, we obtain the following linear
equations:

{dl} = [W ]{dF} ⇔

dlxdly
dlz

 = [F ]

dF1

dF2

dF3

 =

f11 f12 f13

f21 f22 f23

f31 f32 f33

dF1

dF2

dF3

,
fij =

∂fi
∂Fj

(24)

[W ] represents the flexibility matrix, analytical expressions of his compo-
nents fij can be found in [15].
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We can define now the stiffness matrix [K] = [W ]−1 as the inverse of the
flexibility matrix and then we have:

{dF} = [K]{dl} ⇔


dF1

dF2

dF3

 = [K]


duJx − duIx
duJy − duIy
duJz − duIz

⇔

dF1

dF2

dF3


= −[K]


duIx

duIy

duIz

+ [K]


duJx

duJy

duJz


Moreover from the equilibrium condition of the part (I,J) of the cable,

we deduce than: 
F4 = −F1 ⇒ dF 4 = −dF 1

F5 = −F2 ⇒ dF 5 = −dF 2

F6 = −F 3 + wL0 ⇒ dF 6 = −dF 3

(25)

Then we can build the tangent stiffness matrix of the cable element.

{dF int} = [Kt]{dU} (26)

With [Kt] =

[
−[K] [K]
[K] −[K]

]
, {dF int}T = 〈dF 1; dF 2; dF 3; dF 4; dF 5; dF 6〉,

{dU}T = 〈duIx; duIy; duIz; duJx; duJy; duJz〉.
The tangent stiffness matrix of the cable element is a function of the inter-

nal force vector {Fint} which depends on the relative positions lx, ly, lz , of
the extremities I and J, on the self-weight and, of course, on the unconstrained
length L0. Based on the well-known catenary expressions, the initial values
of the internal forces can be calculated [9] as follows:

F1 = −wlx
2λ0

(27)

F2 = −wly
2λ0

(28)

F3 = −w
2

(
−lz

coshλ0

sinhλ0
+ L0

)
(29)
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In which

λ0 =


106 if (l2x + l2y) = 0

0.2 if L2
0 ≤ l2x + l2y + l2z√

3

(
L2

0 − l2z
l2x + l2y

− 1

)
if L2

0 > l2x + l2y + l2z

(30)

But lx, ly, lz have to satisfy also the Equations (23), which means that
the final values of the internal forces can be evaluated only by an iterative
procedure based on the Newton Raphson method as explicitly defined in
the paper [10]. The correction of the end forces vector {∆F} is calculated
from the misclosure lengths vector {∆l} by the following relation {∆F} =
[K]{∆l}. The flow-chart in Figure 2 represents this iterative process.

 

Figure 2 Flowchart of calculation the stiffness matrix of a cable element.



Nonlinear Analysis of Cable Structures with Geometric Constraints 445

5 Geometric Constraints

A CDPR is a specific type of robot where several cables are connecting a
moving platform to fixed points Ai, Aj, . . . Am. The attachment points of the
cables on the platform are denoted Bi, Bj, . . . Bm.

It is necessary, to conserve a constant distance between two end-points
among Bi, Bj, . . . Bm, to take into account geometric constraints in the
CDPR’s modeling, as follows:

{R({U})} = {Fext} − {Fint}+ {FΦ} (31)

{Φ} = {0} (32)

where {FΦ} is the generalized nodal constraint forces associated to
the geometric constraints represented by the algebraic Equations (32).
The constraints vector {Φ} is defined as follows:

{Φ}T =
{

(d2
ij − l2ij) . . . (d2

jm − l2jm)
}T

(33)

d2
ij = {

−−−→
BiBj}

T
· {
−−−→
BiBj} (34)

Where lij , . . . , ljm are all the necessary lengths that must be kept constant
because of the rigid motion of the platform.

Based on the formulation of the virtual work δW , we have the following
relation:

δW = {δU}T · {FΦ} = {δΦ}T · {λ} ⇒ {FΦ} = [C]T {λ} (35)

Figure 3 A general m-cable CDPR.
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With [C] = [ ∂Φ
∂U ] is the Jacobean matrix of the geometric constraints and

{λ} is the Lagrangian multipliers vector in which each component represents
the closure force associated to one geometric constraint.

From these previous considerations, the equations of the CDPR’s mod-
elling becomes:

{R̃({U})} = {Fext} − {Fint}+ [C]T {λ} (36)

{Φ} = {0} (37)

To eliminate the Lagrangian multipliers, one way is to consider each
closure force as proportional to the violation of the corresponding geometric
constraint, as follows:

{λ} = −k{Φ} (38)

Physically, it is like adding virtual springs between the cables and the
moving platform at the attachment points. Fundamentally these forces are not
explicit because they depend on the unknown nodal displacements. So they
have to be considered as internal forces added to the others due to the cable
stiffness.

{F̃int} = {Fint}+ [C]Tk{Φ}; {R̃({U})} = {Fext} − {F̂int} (39)

[K̃t({U})] = [Kt({U})] + k[C]T [C] (40)

This approach is the well-known penalty method in which the com-
ponents of {Φ} are called the penalty functions and k the penalty factor.
From now on, It is easy to apply straightforward the generalized displacement
control method (GDCM).

First we solve at each iteration the following algebraic system:{
{∆F} = [K̃t({U})]

j−1

i {dÛ}ji
{R̃({U})}j−1

i = [K̃t({U})]
j−1

i {dU}ji
(41)

Then, after having defined the right λji , we calculate:

{dU}ji = λji{dÛ}
j

i + {dU}ji (42)

And finally we update the quantities:{
{F̃int}

j

i = {F̃int}
j−1

i + [K̃t({U})]
j−1

i · {dU}ji
{U}ji = {U}j−1

i + {dU}ji
(43)
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The larger the stiffness parameter k, the lower the numerical errors of the
geometric constraints (32):

{dΦ} = [C]{dU}ji

= [C](([Kt({U})] + k[C]T [C])
−1

(λji{∆F}+ {R̃({U})}j−1

i ))
(44)

lim
k→∞

({d}) = [C]

(
1

k
([C]T [C])

−1
(λji {∆F}+ {R̃({U})}j−1

i )

)
= {0}

(45)

Because the augmented tangent stiffness [K̃t({U})] has to be updated at
each iteration, we propose another approach that we call stiffness method.
We consider now the closure forces as external forces which means that must
be calculated explicitly, so we propose the following increment form:

{F̃ext}i = {F̃ext}i−1 + ∆{F} (46)

with {F̃ext} = {Fext} − [C]Tk{Φ} and consequently {R̃({U})} =
{F̃ext} − {Fint}

k is called now the stiffness parameter.
From now on, it is easy to apply GDCM as follows:
First we solve at each iteration the following algebraic system: {∆F} = Kt({U})]j−1

i {dÛ}ji
{R̃({U})}j−1

i = [Kt({U})]
j−1
i {dU}ji

(47)

Then, after having defined the right λji , we calculate:

{dU}ji = λji {dÛ}
j

i + {dU}ji (48)

And finally we update the quantities:{
{Fint}ji = {Fint}j−1

i + [Kt({U})]
j−1
i · {dU}ji

{U}ji = {U}j−1
i + {dU}ji

(49)

As we can see the closure forces are considered in this approach like
feedback external forces to control the violation of the geometric constraints
which can induce numerical instabilities if these forces become too strong



448 P. Joli et al.

relative to the internal forces of the cables which occur when k is too large.
We have an oscillator defined by the following equation directly deduced
from (44):

{dΦ}+ [C]([Kt({U})])
−1[C]Tk{Φ}

= [C](([Kt({U})])
−1(λji{∆F}+ {Fext}i−1 + {Fint}j−1

i )) (50)

As we can see this oscillator is strongly dependent on the inverse of the
stiffness matrix and could be unstable around limit points and between snap-
backs points. This method should be used only between limit points, when
the load/deflection function is monotonic.

Another problem is encountered at the first increment force. Indeed, as
there is not yet violation of the constraint, so there are no feedback forces.
It is necessary to reduce {∆F} at the first increment in order to limit the
violation geometric constraints at the next increment. Another possibility,
safer, it is to use the penalty method at the first increment.

6 Numerical Examples

The geometric nonlinear analysis program, created for cable-supported struc-
tures, employing the 3D elastic catenary cable element, will be tested on the
two first examples in order to examine its performance and also the robustness
of the GDCM solver. The findings will be compared to those published in the
literature.

Example 1: sagging cable

A cable is suspended between two supports 1 and 3, with a 304.8 m distance
at the same level, sagging 30.48 meters. This example has been previously
investigated by several researchers [9–13, 18, 19] and is taken as a validation
reference for modeling nonlinear cables through different methods. The ini-
tial configuration and data for this structure is shown in Figures 4 and 1.
The primary goal is to figure out the displacement at the node 2 due to
the cable’s self-weight and the applied load. The tangent stiffness matrix in
this case is built by connection of the two tangent stiffness matrices, one is
associated to the part (1,2) of the cable and the other to the part (2,3) of the
cable.

The load is applied incrementally until convergence, with the increment
load vector ∆F equal to total applied forces devised by the load increment
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Figure 4 Example 1: two cables in 2D.

Table 1 Initial properties of each cable under concentrated load
Cross-sectional area 5.484 cm2

Elastic modulus 13100 kN/cm2

Cable self-weight 46.12 N/m
Sag under self-weight at load point 2 29.276 m
Unstressed cable length [1, 2] 125.88 m
Unstressed cable length [2, 3] 186.85 m

Table 2 Displacement of node 2
Displacement of Node 2

Horizontal (m) Vertical (m)
Reference [5] −0.860 −5.627
Reference [4] −0.859 −5.626
Reference [12] −0.859 −5.626
Current results without the cable’s weight (p = 104) −0.861 −5.641
Current results taking into account the cable’s weight −0.886 −5.860
(p = 104)

parameter p (∆F = Fext tôt
p ). As we can see in Figure 5, p has an great

influence on the solution. The greater p is, the better the solution is, with
means the importance of having in the solver an increment procedure to
sample the total applied forces.

The computed displacements for the node 2 under the concentrated load
are compared to the existing values in Table 2. The latter shows that the
current findings correspond well with those found in the literature.

Figure 5 presents the applied load Fext in function of the displacement of
node 2 with p = 104 taking into account the cable’s weight.
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Figure 5 Vertical displacement of node 2 in function of the load increment parameter.

Figure 6 12 cables in 3D.

Example 2: cable net

Figure 6 shows a twelve-node cable net using a non-dimensional unit. At first,
the cable network is in the horizontal plane (x, y). The cable net’s attributes
are expressed in consistent units as the following: the cross-sectional area A
is 1 unit, the elastic modulus E is 29.105 units, the initial length of each cable
is L0 = 40 units and the self-weight w is 1 unit. At node 8, a load of 1000
units is applied in the opposite direction of z.

Table 3 shows the displacements of internal nodes and the comparison
of the results found to references [13] and [17]. The acquired findings are
extremely similar to those supplied by the references.
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Table 3 Displacement of cable net’s internal nodes
Current Results (p = 104) [17] [13]

Node ux uy uz ux uy uz ux uy uz

4 −0,01424 −0,02967 −1,63223 −0,01420 −0,02959 −1,63049 −0,014 −0,03 −1,631

5 0,00392 0,00392 −1,35867 0,00393 0,00393 −1,35768 0,004 0,004 −1,359

8 −0,06283 −0,06283 −3,1761 −0,06269 −0,06269 −3,17212 −0,063 −0,063 −3,175

9 −0,02966 −0,0142 −1,63223 −0,02959 −0,0142 −1,63049 −0,03 −0,014 −1,632

Table 4 Example2: Error percentage compared to references for node 4
ux uy uz

Error percentage compared to 0,2817 % 0,27% 0,107%
Damir Seldar et al. [17] for node 4
Error percentage compared to 1,71% 1,1% 0,0754 %
Y.B. Yang et al. [13] for node 4

To verify each method’s feasibility, multiple tests were concluded.
The main focus for the next two examples is to verify the results found in
example 2 by considering geometric constraints. The value of p chosen is
104 for the following examples.

Example 3: Cable net with linear geometric constraints

In the example 2, all the degrees of freedom of the nodes 1, 2, 3, 6, 7, 10,
11, 12 are set to zero and so are eliminated in the modelling of the cable
net. In this example the node 1 is now considered to be attached to the fixed
support. Its three degrees of freedom in translation are not eliminated but
constrained by three forces in translation. The three algebraic constraints that
we have to take into account in this modelling, are u1x = 0, u1y = 0 and
u1z = 0. We can note that they are linear relative to the DOF and not nonlinear
as previously defined in the case of maintaining distance between two nodes.
Just like in Example 2, a load was applied to the node 8 with the value of
1000 units in the opposite direction of the z axis.

The results found in this example were compared and verified by the
results found with the original GDCM. Table 7 represents the nodes’ dis-
placement found using the stiffness method with k = 106 and the nodes’
displacement found using the penalty method with k = 1010 compared to
the results found in example 2. It is noted that each time k is increased,
the precision improves. However, both methods have limits. For the stiffness
method, when k is above 106, the displacement’ values diverge. This is noted
throughout several results found for this method. However, for this type
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Table 5 Result found after fixing node 1
Stiffness Method Penalty Method Results Found in Example 2

Nodes ux uy uz ux uy uz ux uy uz
1 −2,18E-06 −0,003 −0,0002 −1,62E-10 −3,99E-07 −2,06E-08 0 0 0

4 −0,0142 −0,0318 −1,634 −0,0142 −0,0297 −1,6322 −0,0142 −0,0296 −1,632

5 0,00387 0,0038 −1,358 0,0039 0,0039 −1,3587 0,0039 0,0039 −1,358

8 −0,0631 −0,0641 −3,182 −0,0628 −0,0628 −3,1761 −0,0628 −0,0628 −3,176

9 −0,0298 −0,0142 −1,633 −0,0297 −0,0142 −1,6322 −0,0296 −0,0142 −1,632

Table 6 Example 3: Error percentage for node 4 compared to results found in example 2
ux uy uz

Error percentage for node 4 with the stiffness method 0,0 % −7,43% −0,12%
Error percentage for node 4 with the penalty method 0,0 % −0,34% −0,01%

Figure 7 A cable net with 6 geometric constraints.

of case, the penalty method doesn’t have limits concerning increasing the
value of k.

It is worth noting that the displacement found in both scenarios is highly
similar to the GDCM, however, Table 8 proves that the penalty method shows
better results.

Example 4: Cable net with nonlinear geometric constraints

we consider now, six non linear geometric constraints inside the cable net
previously defined in the example 2. These six constraints keep the distances
respectively between (4, 5), (5,9), (9,8), (8,4), (4,9) and (8,5). In that way, it
is like we have a square rigid platform suspended by eight cables (bleu links)
which are respectively (3,4), (7,8), (1,4),(2,5), (5,6), (9,10), (9,12) and (8,11).
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Table 7 Nodal displacements
Stiffness Method Penalty Method

Nodes ux uy uz ux uy uz
4 −0,02683 −0,02762 −1,32615 −0.0218 −0.0218 −1.525
5 −0,02980 −0,02980 −0,77438 −0.0369 −0.0369 −0,427
8 −0,00814 −0,00814 −2,67144 −0,0067 −0,0067 −2,628
9 −0,02762 −0,02683 −1,32615 −0,0218 −0,0218 −1,526

Table 8 Computed distances between nodes
Final Distances

Initial Distances Stiffness Method Penalty Method
4 and 5 40 40,0008 40
4 and 8 40 40,0031 40
4 and 9 56,5685 56,5674 56,5686
5 and 8 56,5685 56,5697 56,5686
5 and 9 40 40,0008 40
8 and 9 40 40,0031 40

At node 8, the same load is applied in the opposite direction of z than in
the first example.

As shown in Table 7, the results found between the two methods are
similar and coherent with the result from the original example. Similar to
other tests, the stiffness method has a limit value for k (no more than 106). In
addition, the value of k for the penalty method is limited to no more than 1012.

Evidently, the penalty method proves to be the more accurate method.
These results indicate the suggested programs’ good computational efficiency
in different cases.

7 Conclusion

Due to the flexible nature of cable-supported structures, the geometric non-
linear impact must be considered while analyzing them. The Generalized
Displacement Control method (GDCM), was used to perform incremental-
iterative analysis where the loads are not kept constant in the iterative steps
and general numerical stability is maintained when passing limit points
and snap-back points. Three different tests on cable structures were pre-
sented, where the results were compared to previous results found by other
researches. Through this comparison, it was found that the GDCM using a
3D elastic catenary model is verified. In addition, two modifications of this
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method were applied to take into account geometric constraints equations
coupling the large displacements of the cable ends. The first method presented
to eliminate the geometric constraints consisted by using the penalty function
method while in the second method adding external explicit elastic forces
were considered. These two methods were tested and verified by different
numerical examples. From a numerical point of view, the first method is safer
because it is not dependent on the poor numerical conditioning of the stiffness
matrix which occurs around limit points and between snap-backs points.
For future work, the aim is to implement the augmented Lagrangian tech-
nique to control the numerical error of the nonlinear geometric constraints.
In addition, we have also, the objective to model a CDPR using the methods
presented earlier in this paper.
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