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ABSTRACT. On account of measurement and modeling errors, structural identification is better 
tackled within the statistical framework. In this work, a complete process of Bayesian 
inference for the characterization of the dynamic behavior of a linear structure is presented in 
the frequency domain. The polynomial chaos expansion is adopted as a surrogate model to 
propagate the parameter uncertainty and thus accelerate the evaluation of their posterior 
probability distribution. Moreover, one hybrid modal model is proposed by introducing some 
additional variables so as to deal with the modeling errors. Bayesian updating is validated 
experimentally on a steel square plate and the proposed hybrid modal model is illustrated 
numerically on a cantilever beam. 

RÉSUMÉ. En raison des erreurs de mesure et de modélisation, l’identification des paramètres 
d’une structure est mieux traitée dans un cadre probabiliste. Dans cet article, un processus 
complet d’inférence bayésienne pour caractériser le comportement dynamique d’une 
structure linéaire est présenté dans le domaine fréquentiel. Le chaos polynomial est adopté 
pour propager l’incertitude des paramètres et ainsi accélérer l’évaluation de la distribution 
de probabilité a posteriori. De plus, un modèle modal hybride est proposé par l’introduction 
de variables supplémentaires de sorte à traiter l’erreur de modélisation. Le recalage bayesien 
est validé expérimentalement sur une plaque carrée en acier et le modèle modal hybride 
proposé est illustré numériquement sur une poutre encastrée. 
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1. Introduction

The investigation of structural dynamic behavior is a crucial phase to understand

and control structures. On the one hand, the experimental modal analysis (Fu et al.,

2001) allows the characterization of structures in a given measured frequency band

and at given measurement positions, but it is not originally designed as a predictive

approach. On the other hand, the numerical model most widely used, Finite Element

(FE) model, can be predictive in a certain frequency band (e.g. low and medium for

many types of structures). In this latter case the prior discrepancy between the model

predictions and the experimental responses results from the following sources:

1) the model parameter error,

2) the modeling error,

3) the measurement noise and the systematic experimental errors.

The technique of model updating is classically used to decrease the distance bet-

ween the model and the reality by adjusting the model parameters, which is re-

viewed in several references (Mottershead et al., 1993), (Friswell et al., 1995) and

(Natke, 1998). The error 2) is due to the unavoidable simplification to the real struc-

ture during the modeling process ; along with error 3), it makes the tuning of model

parameters hard to perform. Besides, the model updating has often to face the is-

sue of non-idenfiability or multi-modality. The problem of non-identifiability can be

solved by combining more information, for instance via the Tikhonov regularization

(Calvettia et al., 2000) ; however, it still remains in this kind of approach the diffi-

culty of the choice of the implemented distance as well as the weight between the

residual term and the regularization term. To answer these difficulties, the Bayesian

method (Tarantola, 2005) offers a framework which makes possible the combination

of all the prior information to build the cost function in an optimal way. Moreover,

by expressing the information on the variables of interest (model parameters, measu-

rement noise and modeling errors) in terms of probability distributions, the Bayesian

approach provides a posterior information much richer than an optimal deterministic

solution.

In this work, the FE model updating within the Bayesian framework will be car-

ried out by considering all the three types of errors listed above. Section 2 introduces

a Bayesian framework for model updating in the frequency domain where the poly-

nomial chaos expansion is used to represent the stochastic FE model and the mode-

ling error is considered, in a standard way, along with the measurement noise. The

consideration of the modeling error is in fact a difficult task, on which depends the

effectiveness of the method of model updating and the identification results. Section 3

proposes a hybrid modal model to take into account more accurately the deficiency of

the FE model ; the update of model parameters and the quantification of the associated

modeling errors are then tackled simultaneously with the Bayesian inference. Section

4 is dedicated to a sampling tool, Monte Carlo Markov Chain (Hastings, 1970), for

the exploration of the posterior probability function. Finally, section 5 illustrates the
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proposed methodology on an experimental steel plate under free-free condition and

on a numerical cantilever beam.

2. Model updating within the Bayesian framework

The FE model updating being seen as an inverse problem, the forward problem and

the measurement are firstly presented. Systems with single-input and multiple-output

(ns > 1) are considered in this work.

2.1. Forward problem and measurements

For a linear structure, its dynamic behavior is governed by,

[M(θ)]ẍ(t) + [C(θ)]ẋ(t) + [K(θ)]x(t) = F(t) [1]

where the mass matrix [M(θ)], the dissipation matrix [C(θ)] and the stiffness ma-

trix [K(θ)] are in R
n×n with n the number of degrees of freedom of the discretized

structure ; F ∈ R
n×1 is the vector nodal force with one non-zero element ; x is the

vector of nodal displacements, and θ is the vector of model parameters to be tuned,

which usually reflect geometrical, material and boundary condition properties. The

damping modeling is a difficult issue in structural dynamics. However, the dissipation

matrix of a lightly damped structure can be reasonably assumed to be diagonalized by

the eigenvectors of the corresponding undamped system (Gawronski et al., 1997). In

the proposed study, the diagonal damping coefficients are identified by experimental

modal analysis prior to the Bayesian inference. Nevertheless, the proposed approach

taking the modeling error into account, once validated on the current study, might

be extended to the treatment of damping that might be very uncertain for a complex

mechanical system (Pellissetti et al., 2008).

Let us convert Equation [1] in the frequency domain which, compared to the time

domain, offers several advantages: it significantly simplifies the identification task

since it naturally restricts the analysis to the frequency band of interest ; it endows

the measurement noise with a circular complex Gaussian distribution according to the

central limit theorem (Rice, 1995) and thus allows the level of the measurement noise

to be measured experimentally (Pintelon et al., 2001). In the stationary state, the Four-

rer transform of Equation [1] yields U(ω) = H(ω)F(ω) with U(ω) = −ω2
X(ω).

For the ith element of the vector H(ω),

Hi(ω) =

nm∑

r=1

−ω2A
(i)
r

ω2
r − ω2 + 2jηrωrω

[2]

with j2 = −1, nm the number of modes in the frequency band of interest and ηr

the diagonal damping coefficients. The transfer function describes very compactly the

linear structural dynamic behavior in the frequency domain: its parameters – natural
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frequencies ωr, and modal residues Ar arranged in a vector α are returned by the FE

package given the model parameters θ. α ∈ R
nα×1 with nα the dimension of the

vector α. As illustrated in Figure 1, the relation between the ith measured output and

the corresponding model prediction based on an additive error model is,

Yi(ω) = Ui(ω) + Ni(ω), Ui(ω) = Hi(α, ω)F (ω) [3]

where F (ω) and Yi(ω) stand for the input load and the response of the system, res-

pectively ; the additive error Ni(ω) normally endows both measurement errors and the

lack of model accuracy.

Figure 1. Input-output relation with the additive error model

2.2. Bayesian formulation for model updating

In the Bayesian setting, prior and posterior probabilities represent the degree of

belief about possible values of model parameters before and after observing the data

[Y ] = [Y1; · · · ;Yns
] with Yi the vector of structural response at the ith position

over the frequency band of interest. The posterior probability distribution p(θ, σ2|D)
with D the set of the experimental observations [Y ] and the known parameters of the

prior probability distribution, is the full solution of the Bayesian approach, which is

defined according to Bayes’ rule by merging together the available prior information

and experimental information from the observed data,

p(θ, σ2|D) = p([Y ]|θ, σ2)p(θ)p(σ2)/p(D)

∝ p(θ)p(σ2)

ns∏

i=1

p(Yi|θ, σ2) [4]

where p(θ) is the prior probability distribution of the model parameters and p(σ2) the

prior probability distribution of the modeling error. The vector θ of model parameters

is obviously independent of p(D) which can thus be omitted from the formulation. The

likelihood function p([Y ]|θ, σ2) carries the experimental information and describes

the distance Ni(ω) in Figure 1, under the assumption that the modeling error, one part

of Ni(ω), is a circular complex Gaussian distribution with variance σ2. Considering a

set of frequency lines {ωk}
nω

k=1, it can be expressed

p(Yi|θ, σ2) =
1

πnω

nω∏
k=1

σ2
Ni

(ωk)

exp(−‖(Yi − ⌈Hi(α(θ))⌋F)/σNi
‖2

) [5]
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with ⌈Hi(α(θ))⌋ = diag(Hi(α(θ), ω1), Hi(α(θ), ω2), · · · , Hi(α(θ), ωnω
)).

The updated posterior information on θ and σ2 can be extracted from the posterior

probability distribution p(θ, σ2|D), which will be stated in more details in Section 4.

However, such operation of extraction is time-consuming, even prohibitive for large

scale structures, because it involves the expensive FE calculations to be repeated in

the mapping from θ to Hi(α(θ)). In order to keep propagation of uncertainty through

the forward model realistic from a computational point of view, a spectral stochastic

FE model (Ghanem et al., 1991) is constructed as a surrogate model to replace the

calculation of the vector α of modal parameters including natural frequencies and

modal residues.

2.3. Surrogate model

For any L2 random variable, the polynomial chaos (Wiener, 1938), (Ghanem et

al., 1991) allows its expansion from a set of independent standardized Gaussian va-

riables ξ. The Hermite polynomial chaos expansion then consisting in approximating

the modal parameters (forward problem) vector α in the following truncated form,

α(ξ) ≈
P∑

k=1

akΨk(ξ) [6]

where ak ∈ R
nα×1, Ψk(ξ) is a Hermite polynomial with ξ the standard normal ran-

dom vector, and P is the order of the truncated development such that P =
(nξ+p)!

nξ!p!

with nξ the dimension of ξ and p the degree of the Hermite polynomial. The causality

between the modal parameters α and the random vectors ξ are created by expressing

the model parameters θ(ξ) as a function of ξ.

The property of Hermite polynomials to be orthogonal with respect to the standar-

dized Gaussian distribution can be used to determine the coefficient in Equation [6],

ak =
〈α(ξ)Ψk(ξ)〉

〈Ψ2
k(ξ)〉

, with 〈α(ξ)Ψk(ξ)〉 =

∫
α(ξ)Ψk(ξ)p(ξ)dξ [7]

with p(ξ) the standardized multivariable Gaussian distribution. In this work, a non-

intrusive approach is adopted based on FE package in order to evaluate the in-

ner product 〈α(ξ)Ψk(ξ)〉 by regression (Iman, 1999) or Gauss-Hermite quadrature

(Jedrzejewski, 2005), thus requiring repeated evaluations of α corresponding to dif-

ferent realizations of ξ.

The vector α of unknown modal parameters being parameterized by ξ, the polyno-

mial chaos representation works as a surrogate model of the FE model, which allows

the propagation of uncertainty from the ξ-space to the α-space. The function θ(ξ)
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having been constructed according to the prior distribution of θ, the Bayesian formula

of Equation [4] can be converted into the ξ-space,

p(ξ, σ2|D) ∝ p(ξ)p(σ2)

ns∏

i=1

p(Yi(ω)|ξ, σ2). [8]

It is worth pointing out once again that the surrogate model of α(ξ) now replaces

the FE model in evaluating posterior probability, which makes the sampling particu-

larly inexpensive and therefore drastically accelerate the exploration.

3. Alternative approach: consideration of the modeling error

The description of modeling errors is a difficult issue. The standard way in the

Bayesian approach is to include it in the additive error Ni(ω) (see Equation [3]), as

done in the previous section through a complex circular Gaussian distribution. Never-

theless, such a choice leads to inaccurate results when the modeling error is too large,

even after the model has been updated, as it is only partially compensated by the ad-

justment of the model parameters. Furthermore, the prediction based on the updated

transfer function remains in the scope of the FE model, that might be too restric-

tive. It is therefore of interest to take into account the modeling error in a different

way such that the prediction is less restrictive. The reference (Soize, 2005) presents

a non-parametric approach that encompasses both the parameter uncertainty and the

modeling error by building random mass and stiffness matrices, where the dispersion

level of the random matrix are governed by only one parameter. Here, a hybrid formu-

lation of modal parameters is proposed to describe the dynamic behavior based on a

stochastic FE model, the idea being to introduce some additional variables correspon-

ding to the modeling error. The objective is not only to update the FE model, but also

to quantify the associated posterior modeling error.

3.1. Additional variables

Some additional random variables ǫ are introduced to originally represent the mo-

deling error including the simplification error, the discretization error, the truncation

error of polynomial chaos expansion, and so on. The introduced variables ǫ are sepa-

rated into ǫA and ǫω that represent model deficiency on the modal residues and natural

frequencies, respectively:

ǫ = [ǫω; ǫA], with ǫA = [ǫ
(1)
A , ǫ

(2)
A , · · · , ǫ

(ns)
A ] [9]

where ǫω ∈ R
nd

ω×1 and ǫ
(i)
A ∈ R

nd
A
×1 related to the ith transfer function. Faced with

the difficulty of specifying judiciously its probability distribution, a first straightfor-

ward choice is to consider that ǫ follows a Gaussian distribution,

p(ǫ) = N (0, ⌈Cǫ⌋) [10]



Bayesian model updating 261

with ⌈Cǫ⌋ ∈ R
(nsnd

A
+nd

ω)×(nsnd
A

+nd
ω). The additional variables ǫ are assumed inde-

pendent of the model parameters θ before Bayesian inference. The random variables

ǫA assigned to each mode are moreover supposed to have the same variance for all

the positions of the measured outputs. The hybrid formulation of modal parameters is

then written as follows,

α̃(ξ, ǫ) = α(ξ) + ǫ. [11]

3.2. Bayesian inference in the presence of modeling error

The prediction of the FE model is linearized with respect to ǫ using a Taylor ex-

pansion at ǫ = 0, for the ith output,

Ui(α(ξ), ǫ) ≈ Ui(α(ξ)) + Ei(ξ, ǫ), [12]

where Ei(ξ, ǫ) = [Si(ξ)]ǫ with [Si(ξ)] ∈ C
nω×(nd

A
+nd

ω) the sensibility matrix of

ǫ. The variables ξ and ǫ being of different physical origins and mutually independent

from a prior point of view, the Bayesian joint inference of all the parameters of interest

is achieved from,

p(ξ, ǫ, ⌈Cǫ⌋) ∝ p([Y ]|ξ, ǫ)p(ξ)p(ǫ| ⌈Cǫ⌋)p(⌈Cǫ⌋). [13]

Considering the additional variables as the nuisance parameters, the marginal like-

lihood function of the variables ξ is finally expressed as follows,

p([Y ]|ξ, ⌈Cǫ⌋) =

∫
p([Y ]|ξ, ǫ)p(ǫ| ⌈Cǫ⌋)dǫ [14]

=

∫
1

πnωns
∏ns

i=1
det(⌈CNi⌋)

exp(−
∑ns

i=1(Yi−Ui)
H⌈CNi⌋

−1
(Yi−Ui))p(ǫ|⌈Cǫ⌋)dǫ

where the integral can be performed analytically thanks to linearisation of the transfer

function in Equation [12]. One can note that the marginal likelihood function of ξ now

takes into account the measurement noise and the modeling error. The application of

the Bayesian inference on the hybrid modal model yields,

p(ξ, ⌈Cǫ⌋ |D) ∝ p([Y ]|ξ, ⌈Cǫ⌋)p(ξ)p(⌈Cǫ⌋) [15]

that now has to be explored.

4. Exploration of posterior probability distribution

Compared with deterministic estimation methods, the solutions of the Bayesian

approach are not only the posterior maximum and the mean values of the parameters

(e.g. ξ, θ and α), but also their joint/marginal probability distributions. The estimation
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of any of these quantities is not easily achieved directly or analytically since the poste-

rior probability functions are highly nonlinear and implicit function of the parameters,

as shown in Equation [8] and [15], an effective sampling scheme should be used. In

this paper, the Markov chain Monte Carlo (MCMC) is adopted to directly simulate

drawing samples from the posterior probability distribution p(ξ|D) or p(ξ, ⌈Cǫ⌋ |D).
MCMC eliminates the need to calculate the posterior normalization factor P (D). In

the present work, the sampling efficiency is improved by the fact that samples are ren-

dered inexpensive by the polynomial chaos expansion. Based on the samples from the

posterior probability distribution,

– the best one with the highest probability can be chosen as the posterior maxi-

mum value since the samples drawn by MCMC are situated in the region of high

probability ;

– the integral required for the posterior mean values can now be approximated

among the samples based on Monte Carlo integral ;

– the marginal probability density of parameters of interest can be estimated with

the help of kernel density estimation or by the conditional marginal density estimator

(Chen et al., 2000) in the case of high dimension.

Unfortunately, we have found that the sampling technique of MCMC with regular

Metropolis-Hastings scheme explores quite slowly the posterior space of variables

ξ, which results in unreliable or unstable estimators. An effective MCMC algorithm

is specially desired for complex Bayesian model. The evolutionary MCMC (Liang

et al., 2001) is here adopted, which works by simulating a population of samples

in parallel with a different temperature attached to each sample. The population is

updated by mutation, crossover and exchange operations. All these genetic operators

are modified for their applications on MCMC to satisfy the invariance or reversibility

property of the Markov chain transitions. As a result, evolutionary MCMC has the

learning ability of the genetic algorithm as well as the fast mixing ability of parallel

tempering (simulated tempering).

In this work, the identified results of Bayesian inference from MCMC will be

expressed in terms of confidence interval on transfer functions. For a certain frequency

ω, a large number of realizations H(α(ξ), ω) are calculated based on samples of ξ ;

the Bayesian confidence intervals of 90% are then deduced using the Chen-Shao’s

algorithm (Chen et al., 2000), which returns the shortest confidence interval.

5. Applications

At first, the FE model of a practical square steel plate is updated based on Equa-

tion [8] applied to experimental data ; then the approach based on Equation [15] with

consideration of modeling error variables is applied to a numerical cantilever beam.
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5.1. Experimental steel plate

The experimental system with one input and five outputs is represented in Figure

2(a). The sampling frequency is 3200 Hz. A random multi-sine signal is used to excite

the plate, which is defined as,

r(t) =

nω∑

k=1

Rk sin(ωkt + ϕk), ωk = 2πk/T [16]

where the variables ϕk are independently et identically distributed according to an

uniform distribution such that E(ejϕk) = 0. The use of such a periodical signal allows

the estimation of the mean value and the associated standard deviation of the signal

using the robust approach (Pintelon et al., 2001). 50 signals of different phase realiza-

tions, each with 52 periods, were drawn. The first two periods were neglected due to

the transient effect. The measured output Y1 is plotted in Figure 2(b) in terms of the

mean value and the standard deviation.

(a) one-input-five-output
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Figure 2. Setup plant and measurement

The plate was discretized into 1600 shell elements using the FE software ANSYS.

The thickness t(mm), the density ρ(kg/m3) and the elastic modulus E(GPa) consti-

tute the vector θ ; their prior information was: E ∼ N (240, 30), t ∼ N (2.7, 0.1),
ρ ∼ N (7500, 300). p(σ2) was assumed to be an inverse-Gamma: Inv-Γ(2, 5). The

damping coefficients identified experimentally was on the oder of 10−3.
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Figure 3. Polynomial chaos expansion of the 10th eigenfrequency ω10
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The Gausse-Hermite quadrature was used to estimate the coefficients of the po-

lynomial chaos expansion based on the non-intrusive approach, the validity of the

polynomial chaos expansion is verified in Figure 3. The uncertainty of prior transfer

function stems from the prior uncertainty of model parameters θ and is illustrated by

using the Bayesian confidence interval of 90% on transfer function H5 in Figure 4(a).

The posterior information on transfer function H5 is presented in Figure 4(b) where

its dispersion is seen to be greatly reduced. The updated model is validated by transfer

function H3 which was not used in the updating process as illustrated in Figure 5.

(a) Prior transfer function (b) Posterior transfer function

Figure 4. Transfer function H5 (points: experimental TF, line: optimal TF, gray zone:

confidence interval)

Figure 5. Model validation on H3 (points: experimental TF, line: optimal TF)

5.2. Numerical cantilever beam

The proposed hybrid modal model for taking into account the modeling error

is applied to a numerical exemple of a cantilever beam, illustrated in Figure 6.

In this example, the modeling errors is caused by discretization errors and artifi-

cial errors. The "reality" is simulated by a FE model of 200 beam elements with

E = 210.45 GPa. Additional artificial errors are added to the modal parameters as

follows: ∀r = 1, · · · , nm, ǫωr
= 0.8%ωrx, ǫ

(i)
Ar

= 8%A
(i)
r x where the variable

x ∼ N (0, 1), nm = 5. With a sampling frequency of 5000 Hz, the "experimental"

response is formed by the "real" system response perturbed by a white Gaussian noise

with signal to noise ratio of 38 dB. Two responses Y1 and Y2 illustrated in Figure 6

are used to update our knowledge about ξ and ⌈Cǫ⌋. Response Y3 is used to validate

the updated model. A FE model of 20 elements is used to characterize its dynamic
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behavior, the elastic modulus E(GPa) is introduced as a random variable following

the Gaussian law N (200, 30). The inverse Gamma distribution is chosen as the prior

probability distribution for ⌈Cǫ⌋, e.g. σ2
ǫ3

∼ Inv-Γ(2, 5). Bayesian confidence interval

of 90% is constructed based on the mean values of E and of [Cǫ] for transfer functions

H2 as illustrated in Figure 7. The validation of the updated model is shown through

transfer function H3 in Figure 8. The prior transfer function is calculated using the

prior mean value of E.

Figure 6. Numerical cantilever beam (measurement plant: one input and three out-

puts)
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Figure 7. Transfer function H2 (points: experimental TF, dotted line: prior TF, line:

optimal TF, gray zone: confidence interval)
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Figure 8. Transfer function H3 (points: experimental TF, dotted line: prior TF, line:

optimal TF, gray zone: confidence interval)

6. Conclusion

A Bayesian framework for the updating of numerical models of structures from the

dynamic responses has been presented in the frequency domain. The Bayesian upda-

ting of FE model was carried out based on a surrogate model thanks to the introduction

of the polynomial chaos. The consideration of the modeling error being a very difficult

problem, it was addressed by introducing additional random variables where the idea
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consisted in better reformulating the distance between the FE model and the reality.

Under the simple hypothesis on the introduced variables, the proposed approach was

shown promising through a simple numerical example. The more appropriate prior

information on the additional random variables is to be further developed.
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