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ABSTRACT. Within the framework of the sintering process simulation, this paper proposes a 
numerical strategy for the direct simulation of the matter transport by surface diffusion. A 
level-set method is used to describe the topological changes which arise at the free boundary 
of the sintering particles. The surface velocity is found to be proportional to the surface 
Laplacian of the curvature, that is, proportional to the fourth-order derivative of the level-set 
function. Consequently, both curvature and velocity must be computed carefully and with 
accuracy. Finally, three-dimensional simulations are shown and investigated. 

RÉSUMÉ. Dans le contexte général de la simulation du procédé de frittage, cet article présente 
une stratégie numérique pour la simulation directe du transport de matière par diffusion 
surfacique. Une méthode level-set est utilisée pour décrire l’évolution de la surface libre des 
grains. La vitesse d’interface est alors fonction du Laplacien surfacique de la courbure, i.e. 
de la dérivée quatrième de la fonction level-set. La courbure et la vitesse surfacique doivent 
donc être calculées rigoureusement et avec précision. Plusieurs exemples de simulations, en 
trois dimensions, sont présentés et analysés. 
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1. Introduction

The general context of this work is the direct simulation of the formation as well

as of the subsequent evolution of a powder compact microstructure during a sinter-

ing process. Such a process consists in consolidating a metallic or ceramic powder

compact, by thermally activating diffusion phenomena to a temperature lower than

the melting temperature of the material. When considering a pressure-free sintering

process (see (Ashby, 1974) for further details), the surface diffusion is the path of mat-

ter transport which is first activated (see Figure 1). Indeed, in order to minimize the

surface energy, the matter flows over the grain free boundary towards the maximum

(in absolute value) of curvature. The location of the grain centres remains unchanged

under this transport path, that is, the porosity does not decrease (no shrinkage). Due to

this first diffusion, stresses appear in the material, giving rise to the boundary diffusion

and to the volume diffusion, with a subsequent decrease of the global porosity.

This paper deals with the matter transport by the surface diffusion from the grain

surface towards the neck formed between two grains. This situation does not involve

the mechanical response of the material, since the diffusion is described only by a

geometrical criterion: the surface Laplacian of the curvature. An outline of the paper

is as follows. The physical description of the surface diffusion is first detailed in

Section 2. Section 3 is devoted to the level-set strategy developed to solve the surface

diffusion equations. Finally, numerical simulations are shown in Section 4.

Figure 1. Matter transport between two identical grains

2. Surface diffusion equations

Let Ωg be a set of grains, and let Sg be the free boundary of this set (see Figure 1).

Regarding the literature about the ceramic sintering process modelling (Ashby, 1974;

Bouvard et al., 1996), the matter flow by surface diffusion is characterized by a flux

js along the free surface Sg, driven by chemical potential gradients. In turn, these

gradients depend on the gradient of the mean curvature K:

js = −
δsDsγs

RT
∇s K [1]

where T is the absolute temperature, R is the ideal gas constant, Ds is the surface

diffusion coefficient, δs is the thickness in which the diffusion occurs and γs is the
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surface free energy. In expression [1], operator ∇s denotes the surface gradient, de-

fined as the tangential component of the gradient

∇s K = ∇K − (∇K · n)n

where n is the outward-pointing unit vector normal to the free surface Sg. The surface

gradient can easily be rewritten by introducing P , the projection matrix onto the plane

tangent to Sg:

∇s K = P ∇K

with

P = I − n ⊗ n [2]

where I is the identity matrix.

The surface flux js results in the deposition or removal of material, which gives

rise to a displacement rate, assumed to be normal to the surface. This surface diffusion

velocity is then written vs = vnn. The mass balance between, on one hand the matter

which flows over the free surface Sg , and on the other hand the normal displacement

of this surface, leads to the following expression of the surface velocity (Bouvard et

al., 1996):

vs = −Ω(∇s ·js)n = C0(∆s K)n [3]

where Ω is the molar volume of the material and with C0 =
δsDsΩγs

RT
which is as-

sumed to be constant in this approach. It means that the temperature is assumed to be

at least uniform in the computational volume. In fact, all the simulations presented in

the following correspond to isothermal cases. The operator ∆s, the “surface Lapla-

cian” operator is the so-called Laplace-Beltrami operator.

Finally, let us remark that the surface velocity given by Equation [3] preserves the

volume. Indeed, if |Ωg| denotes the grain volume measure, its variation during the

process is expressed by

d|Ωg|

dt
=

∫

Sg

vs · n dS = −Ω

∫

Sg

∇s ·js dS

Since the flux is continuous and Sg is a closed surface, this variation vanishes, and

d|Ωg|/dt = 0. Consequently, the grain volume remains constant. This point, as

well as the absence of shrinkage, will be a criterion to assert the relevancy of our

simulations.

3. Level-set formulation

Equation [3] is discretized by using a finite element method. The simulation of

the matter transport by surface diffusion requires only a surface description of the
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grains. However, the final objective of this work is to take into account the different

paths of the matter transport, including in volume. That is why the numerical strategy

proposed in this paper is based on a volume description of the grains, i.e., the whole

computational domain is meshed. Furthermore, in order to deal implicitly with the

topological changes arising in the grain surface (formation of the neck), an Eulerian

approach is chosen to describe the grain surface changes. Hence, the computational

domain Ω ⊂ IR3 (the unit cube) is made up of two parts: the grain set Sg, and the

surrounding media Ωa (the air, for example), Ω = Ωg ∪ Ωa. An additional function,

the level-set function, φ : Ω → IR, is then required to describe the grain free boundary.

This point is detailed in the next section.

3.1. Description of the grains

For any time t, and any point x ∈ Ω, the value of the level-set function φ(x, t)
is positive if x ∈ Ωa(t), and is negative if x ∈ Ωg(t). Consequently the grain free

boundary is defined by the zero isosurface of φ:

Sg(t) = {x ∈ Ω ; φ(x, t) = 0}

This level-set function φ, which has to be smooth enough in the vicinity of Sg , is

defined as following, according to (Coupez, 2006; Bernacki et al., 2008). At the initial

time t = 0, φ is initialized by the grain initial state φ0, φ(x, 0) = φ0(x), with

φ0(x) =























2E

π
sin(

πd(x, Sg(0))

2E
) if |d(x, Sg(0))| ≤ E

+
2E

π
if d(x, Sg(0)) ≥ E

−
2E

π
if d(x, Sg(0)) ≤ −E

[4]

where d(x, Sg(0)) is the signed distance from the point x to the initial free surface

Sg(0). The numerical parameter E, called the interface width, is chosen equal to

1.5 × mesh size in the presented simulations. Note that, since sinx ≈ x when

|x| ≪ 1, φ0(x) ≈ d(x, Sg(0)) in the vicinity of the interface Sg(0). Hence, the

level-set function φ corresponds to the signed distance function to the interface in the

neighbourhood of this interface. Furthermore, regarding [4], φ is extended by a con-

stant value (positive or negative) equal to ±2E/π outside the narrow band [−E,+E]
around the interface Sg , and is differentiable through the boundaries of this band, i.e.,

at each x such that d(x, Sg) = ±E.

At any time t > 0, φ is solution, in a neighbourhood of the interface, of the

“classical” advection equation,

∂φ

∂t
+ vs · ∇φ = 0, [5]
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where vs is given by Equation [3], while outside this neighbourhood, a renormaliza-

tion procedure is applied by enforcing

‖∇φ‖ =

√

1 − (
πφ

2E
)2

This approach is similar to the classical renormalization technique consisting in

enforcing ‖∇φ‖ = 1, but applied to a function φ of the form [4] (indeed, d
dx sin(x) =

cos(x) =
√

1 − sin2(x)). Hence, the advection and the renormalization steps are

performed by solving one single equation as described in (Coupez, 2006).

3.2. Curvature and surface velocity level-set formulation

By definition, the value of φ(x, t) gives the position of a point x at a time t with

respect to the grain free boundary. Furthermore, and it is a key point for the surface

diffusion simulation, both the unit vector nφ normal to the interface and the mean

curvature Kφ of this interface can be expressed in a level-set way by the two following

relations (Sethian, 1999; Osher et al., 2001):

nφ =
∇φ

‖∇φ‖
[6]

and,

Kφ = ∇ ·
∇φ

‖∇φ‖
[7]

where ‖·‖ denotes the Euclidian norm in IR3. Hence, if the level-set function is known,

then the curvature can be calculated, at least theoretically. Note that expressions [6]

and [7] define the normal vector and the mean curvature in all the computational do-

main Ω, and not only over the free surface {φ = 0}. Of course, nφ and Kφ vanish

outside the narrow band [−E, E] around the interface, while they correspond to the

usual normal vector n and curvature K in the vicinity of the interface (Bruchon et

al., 2009a). Following (Burger et al., 2007), the surface diffusion velocity [3] can be

rewritten in a level-set form as

vs = vn
∇φ

‖∇φ‖
[8]

and,

vn = C0
1

‖∇φ‖
∇ ·(‖∇φ‖Pφ ∇Kφ) [9]

where the projection matrix [2] is now defined by

Pφ = I −
∇φ

‖∇φ‖
⊗

∇φ

‖∇φ‖
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The velocity [8] is defined in the whole computational domain, and corresponds, in

the vicinity of the zero level set of φ, to the surface diffusion velocity. The differential

operators (gradient and divergence) involved in Equation [9] are now expressed ex-

plicitly with the cartesian coordinates (x, y, z), and can therefore be computed within

the context of an Eulerian description of the grains.

3.3. Curvature - normal velocity stabilized mixed system

Formulation [9] is discretized by using a finite element approach. The compu-

tational domain Ω is discretized by a simplex mesh Th(Ω), that is, a set of tetrahe-

drons. The unknowns φ, K and vn are approximated by φh, Kh and vnh, respectively,

chosen as being continuous and piecewise linear over Ω. Furthermore, the partition

0 = t0 < t1 < · · · < tΘ = Θ of the time interval [0,Θ] is introduced: φt
h, Kt

h and

vn
t
h denote the finite element approximations evaluated at the time t.

Regarding Section 3.2, all seems easy: if φt
h is assumed to be known, then Kt

h

and vn
t
h could be directly computed by introducing Equations [6], [7] and [9] into the

finite element formulation. However, three difficulties appear and must be understood.

First, the velocity vnh depends on the fourth-order spatial derivative of φh. Since φh is

piecewise linear, the gradient ∇φh is piecewise constant, and the nth-order derivative

∇(n) φh is identically equal to zero when n ≥ 2. Equations [7] and [9] must therefore

be considered in a weak sense (see Equation [12] and (Burger et al., 2007; Bänsch

et al., 2005)). The second difficulty is the nonlinear coupling between the level-set

function φ, the curvature and the surface diffusion velocity. We have chosen to treat

the velocity in an explicit way in the transport equation [5]. In other words, φt+∆t
h

is computed by solving Equation [5] with vs

t
h, the velocity evaluated on the config-

uration described by φt
h. Finally, the last difficulty is that the fully explicit scheme

which consists in computing successively Kt
h and vn

t
h, assuming that φt

h is known,

and then to transport φh from time t to time t + ∆t, leads to numerical oscillations of

the level-set function (Bruchon et al., 2009b).

To overcome these difficulties, the numerical method proposed in this section con-

sists in building a system, the unknowns of which are the curvature Kt
h and the nor-

mal velocity vn
t
h (which is equal to C0 ∆s Kh regarding Equation [3]). In order to

introduce implicitly a regularization term in this formulation, the following first-order

Taylor’s expansion is considered:

φ
t+ 1

2

h =
def.

φt
h +

∂φt
h

∂t
∆t = φt+∆t

h + o(∆t)

Hence, φ
t+ 1

2

h is a first-order approximation of φt+∆t
h . Since the level-set function

φ is solution of the transport Equation [5], ∂φ/∂t = −vs · ∇φ, and the previous

relation can be turned into
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φ
t+ 1

2

h = φt
h − vs

t
h · ∇φt

h∆t

Finally, taking into account expression [8] leads to

φ
t+ 1

2

h = φt
h − vn

t
h‖∇φt

h‖∆t [10]

The system with the unknowns K/ ∆s K can now be constructed by considering

φ
t+ 1

2

h instead of φt
h in relation [7] giving the curvature of the discretized level-set

function. Hence, at a time t, assuming that φt
h is known, the system in curvature Kt

h /

normal velocity vn
t
h is given by

Kt
h + ∇ ·

(

∆t

A
∇ vn

t
h

)

= ∇ ·

(

1

A
∇φt

h

)

vn
t
h‖∇φt

h‖ − C0 ∇ ·(‖∇φt
h‖Pφt

h
∇Kt

h) = 0
[11]

The key point of this approach is that using φ
t+ 1

2

h instead of φt
h to compute the cur-

vature, induces "naturally" an additional term in the left-hand side of the first equation

of [11]. This term, coupling K and vn, is a regularization term of the form ∆ vnh,

with the regularization parameter ∆t/A. The parameter denoted by A should be equal

to ‖∇φ
t+ 1

2

h ‖. However, to avoid to deal with this nonlinear term, A is simply taken

equal to ‖∇φt
h − ∆t∇ vn

t−∆t
h ‖. Furthermore, the term ‖∇φt‖ which appears in

Equation [10] has been taken identically equal to 1 in this curvature expression.

Since the effective computation of Kh and vnh is carried out by using a finite

element discretization of [11], the mixed weak formulation of [11] has to be written:

At time t, assuming φt
h known, find (Kt

h, vn
t
h) ∈ Vh × Vh solution of

∫

Ω

Khψh dΩ − ∆t

∫

Ω

1

A
∇ vn

t
h · ∇ψh dΩ = −

∫

Ω

1

A
∇φt

h · ∇ψh dΩ

∫

Ω

‖∇φt
h‖vn

t
hψh dΩ +

∫

Ω

C0‖∇φt
h‖(Pφt

h
∇Kt

h) · ∇ψh dΩ = 0

for all ψh ∈ Vh

[12]

Note that one single type of weighting functions ψh has been used for the curvature

equation and for the velocity one, since both curvature and velocity belong to the same

functional space Vh, the space of the continuous functions which are piecewise linear.

Furthermore, previous Equation [12] does not require the enforcement of Dirichlet

conditions: since φh is constant far from the free boundary, Kh and vnh vanish over

the mesh boundary.
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To summarize the previous developments, after an initialization step consisting in

calculating the initial level-set function by Equation [4], our time-stepping strategy

consists, at time t and assuming φt
h is known, in the computation of the surface veloc-

ity by [12] and [8], and in the subsequent transport of the level-set function by solving

Equation [5]. A mesh adaptation strategy is also used to obtain an accurate description

of the grain free boundary (Bruchon et al., 2009a).

4. Numerical simulations

This section presents several direct simulations of change in free surface by sur-

face diffusion, using the numerical strategy developed previously. The presented de-

velopments have been implemented in the CIMLIB finite element library. This C++

library, which is highly parallel, is developed at Centre de Mise en Forme des Matéri-

aux (Mines ParisTech, UMR CNRS 7635) by the team of T. Coupez (Digonnet et

al., 2003).

4.1. Change in two grains of the same size by surface diffusion

Figure 2 shows the temporal change in the zero isosurface of the level-set function

corresponding to two spherical grains of radius R = 0.2. These grains are initially

in contact (see Figure 2(a)), though the discretization with a mesh does not allow the

grains to be perfectly tangent). Despite the initial “roughness” of the contact area be-

tween the grains, and due to the matter diffusion, this surface becomes quickly smooth.

The grain volume is well-preserved, and as expected, no shrinkage phenomenon oc-

curs. The radius x of the circular contact area is called the neck radius. Theoretical

models, based on geometrical assumptions and established within the context of the

sintering process modelling (Rahaman, 2003), predict that the adimensional neck ra-

dius x/R behaves as the power 1/7 of the time:

x(t)

R
=

(

56C0

R4
t

)1/7

= 1.78t′1/7 [13]

where t′ is an adimensional time, defined by t′ = C0

R4 t. Figure 3 shows, in logarithmic

scale, the temporal change in the adimensional radius x/R, obtained by direct simu-

lation for different values of the grain radius, ranging from 0.1 to 2.5. Accordingly to

the analytical model, the simulation shows that the change in x/R versus t′, does not

depend on the grain radius R, and behaves as t1/7 (curve mentioned as “Simulation,

1/7” in Figure 3). The only difference between the analytical model and the simulation

results, is the coefficient 1.78 provided by the analytical model (curve referred to as

“Analytical model, 1/7”). Our simulations provide a coefficient approximatively equal

to 1.3, whatever the time step (ranging from 10−6 to 10−2) and the mesh size (ranging

from 10−4 to 10−2, with isotropic or anisotropic remeshing). In Equation (13), the

two key parameters which characterize the surface diffusion from the grain surface
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towards the neck, are, on one hand the power 1/7, and on the other hand, the power 4
applied to R in the denominator (Rahaman, 2003). The differences between the simu-

lations and the analytical model may be explained by the geometrical approximations

made on the curvature in the analytical model.

(a) t = 0 (b) t = 3

Figure 2. Change in the free boundary {φh = 0} due to the surface diffusion between

two grains of equal size (radius R = 0.1)
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Figure 3. Change in the adimensional neck radius x/R over adimensional time t′

(logarithmic scale) for different values of R, and with C0 = 10−7

4.2. Change in a small cluster of grains by surface diffusion

The sintering by surface diffusion of 20 grains (see Figure 4) is investigated in

this section. The grain radii vary randomly uniformly between 0.08 and 0.2, while

the grain position is initially randomly uniformly distributed, with the only restric-

tions that there is no isolated grain, and that two grains in contact must be tangent,

as shown in Figure 4(a). The computational domain is the unit-cube, discretized with

an unstructured mesh made up of 1,320,000 tetrahedrons (227,000 nodes). This mesh

is adapted dynamically, in order to be refined in the vicinity of the free boundary,

according to the strategy developed in (Bruchon et al., 2009a) (the mesh size ranges

from 0.01 to 0.08). As previously, the contact area between two grains are not initially
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well-defined. However, it can be seen when comparing Figures 4(a) and 4(b) that the

diffusion smoothes quickly these surfaces. Neck formation is then observed, and the

cluster evolves towards an equilibrium state. As expected, no shrinkage phenomenon

occurs (the dimensions of the bounding box containing the grains remain constant

along the simulation), and the grain volume is well preserved during the simulation as

shown in Figure 5. The CPU time of this computationï¿½involving 160 time steps, is

of 165 minutes by using a parallel computing strategy on four cores (Intel Xeon 2.2

GHz processors).

(a) t = 0 (b) t = 0.4

(c) t = 1.2 (d) t = 1.6

Figure 4. Surface diffusion simulation: change in the free boundary {φh = 0} of 20

grains of radii randomly uniformly distributed between 0.08 and 0.2 (C0 = 10−7,

∆t = 10−2)
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5. Conclusion

Within the general context of the sintering process simulation, a level-set formula-

tion of the surface diffusion problem has been proposed. The main difficulty induced

by this approach, the dependence of the surface velocity on the fourth-order spatial

derivative of the level-set function, has been overcome by considering a mixed system

in curvature / surface Laplacian of the curvature. This formulation induces implicitly

a stabilisation term ∆vn with an associated stabilisation parameter depending on the

time step. The resulting discretized formulation is shown to be stable in all our sim-

ulations. The accuracy of this approach has been proved by investigating the surface

diffusion between two grains and by comparing, in this case, the simulation with an

analytical model. Furthermore, the ability of our numerical strategy, to describe the

changes occuring in complex geometries, has been shown by detailing a simulation

involving 20 grains. The next step in the development of this work is to describe the

join separating two particles, in order to model the matter transport by grain boundary

diffusion.
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