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ABSTRACT. Handling of large industrial mechanical assemblies implies structure interactions 
commonly modeled with contact formulations. In cases where component interfaces are 
discretized using non conforming meshes, classical contact solutions have difficulties 
producing correct contact pressure fields. The method presented in this paper gives a relevant 
measure of interface compatibility and shows how it can be exploited to obtain regular 
contact pressures or limit over-integration in the contact formulation. 

RÉSUMÉ. La gestion d’assemblages mécaniques complexes nécessite souvent des modèles 
d’interaction de structure par une formulation en contact. Lorsque la discrétisation éléments 
finis des interfaces est non compatible, les résolutions classiques peuvent êtres non 
régulières. La méthode présentée dans ce papier donne une mesure pertinente de la 
compatibilité des interfaces et montre comment l’exploiter pour régulariser les pressions de 
contact ou limiter la sur-intégration dans la formulation du contact. 
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1. Introduction

The constant improvement of computational power allows the implementation of

numerical prototyping at every stage of the design cycle, thus reducing costs and de-

velopment time. In particular, simulation of complex mechanical assemblies with the

finite element method is now widespread in industry. Such models however imply the

ability to handle components interactions of discretized interfaces at the system level.

Interaction between moving parts typically requires contact models which can be

split in two main categories, using either Lagrange or penalized formulations. La-

grange formulations enforce strict non-penetration, while penalization authorizes a

relative level of interface interpenetration through a pressure-gap relationship. Both

models are an idealization of contact, indeed, the reality of contacting surfaces im-

plies interpenetration seen at the microscopic level as the compression of contacting

asperities. Non linear penalization formulations, which is the modeling context of this

study, can then be seen as a characterization at the system level of the local contact

behavior.

External modeling and model generation constraints usually found for industrial

models (automatic mesh generation at the component level, mesh provided by con-

tractors,... ) often lead to non-conforming meshes for the contacting interfaces. The

definition of master/slave surfaces is also a question that is often with no clear an-

swer, in particular with partially covering surfaces due to large displacements or the

presence of holes.

The problem of implementing bilateral or contact coupling for non-conforming

meshes has been widely studied in the finite element (Babuska, 1973; Bernadi et

al., 1992; Kim, 2002) and component mode synthesis (Balmes, 1996; de Klerk et

al., 2008) literature. The strategy presented here is based on the notions of pseudo

compatibility introduced in (Ben Dhia et al., 2003) extended to tridimensional meshed

volumes and the need to use specific integration rules for interfaces (Ben Dhia, 2002).

Section 2 illustrates the problematic and proposes a measure of non conforming

interface compatibility which can be taken as a quality indicator. The measure is

directly exploited in Section 3 to regularize contact solutions by describing interface

fields as a linear combination of quasi-compatible shapes, through either primal or

dual formulations. Section 4 eventually provides applications to an academic model

showing large mesh refinement differences and to an industrial pad/disc model from

Bosch, showing large non compatible interfaces.
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2. A measure of interface compatibility

A compatibility measure is an indicator of the interface ability to transmit a field

from one surface to the other. For a general non conforming interface, not all field

distributions can be equally represented by both surfaces. A measure of compatibility

thus needs to evaluate differences between the representations of a given field on both

surfaces.

2.1. Illustration of the problem

The usual finite element formulation of penalized contact can yield poor results

in the case of non conforming interface meshes, especially when mesh sizes differ

in contacting surfaces and partial element coverage is present - e.g. due to holes or

global motion. The academic illustration presented in Figure 1 is a contact between

two cubes in vertical translation. The lower cube is clamped at his base, drilled and

finely meshed. The upper cube is plain, coarsely meshed and a pressure is applied to

its top surface.

Figure 1. Example of incompatible mesh not covering. Reference solution is plotted

in the middle, against the 1 (right) and 4 (far right) point rule integration solution

using the upper cube as master

Figure 1 presents displacement results obtained for different formulations. Using

the coarse upper cube as the master means that a lot of slave nodes are not matched (or

not seen by any master contact point). The richer shapes of Γ2 cannot be represented

on Γ1 and are therefore not seen nor constrained by the contact formulation on Γ1.

This pattern is close to hourglass modes observed for under-integrated elements.

Introducing very rich integration avoids oscillations but can significantly augment

computational costs and leads to excessive stiffness, or locking, when zero gap is

enforced strictly (Ben Dhia et al., 2003). The following sections will introduce an

energy function for the gap and show how this can be used to quantify and possibly

relax compatibility of displacements on the interfaces.
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2.2. Definition of gap energy

Contact between two solids Ω1 and Ω2, is defined between two surfaces Γ1 and

Γ2. The compatibility is computed on the subset of effective contact Γ of Γ1 × Γ2, as

shown Figure 2.

Figure 2. Definition of a domain Γ for the compatibility computation

Any contact formulation needs to evaluate the gap field between two surfaces,

which is defined for a displacement u(q1) of Γ1 and u(q2) of Γ2, where q1 (resp. q2)

is the discretized displacement on Γ1 (resp. Γ2) as

{g(u(q1), u(q2))} = {u(q1) − u(q2)}
T
{n} [1]

The first step is to define a scalar product on Γ1 × Γ2 that is a norm for the gap.

The strain energy of a penalized contact with a uniform contact stiffness density k is

chosen here. For a displacement u, this energy is given by

Ep =

∫

Γ

kg (u(q1), u(q2))
2
dS [2]

This scalar product must be approximated as precisely as possible (Ben Dhia, 2002).

The computation strategy chosen here is an automated Delaunay triangulation over the

subset Γ of Γ1 ×Γ2 in effective contact. The scalar product is computed by numerical

quadrature from the mesh of Γ

Ep =
∑

xi

kwiJ(xi)gi (ui(q1), ui(q2))
2

[3]

In practice, the gap is computed on NΓ integration points (Gauss) and linearly linked

to the normal displacement observation matrices
[

C1
N

]

NΓ×NΓ1

(resp.
[

C2
N

]

NΓ×NΓ2

)

of Γ1 (resp. Γ2) on Γ. This yields the discretized gap formulation

{g}i =
[

C1
Ni

]

{q1} −
[

C2
Ni

]

{q2} [4]

The contact strain energy is then of the form

Ep =

{

q1

q2

}T
[

C1
Ni

−C2
Ni

]T
[

\kwiJ(xi)\

]

[

C1
Ni

−C2
Ni

]

{

q1

q2

}

[5]
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which defines the scalar product on Γ. The scalar product matrix is noted [A] and is

written by blocks

Ep = {q}
T

[A] {q} =

{

q1

q2

}T [

A11 AT
21

A21 A22

] {

q1

q2

}

[6]

2.3. Robust compatibility computation

In (Ben Dhia et al., 2003) the so-called (1− ǫ)-compatibility is computed by con-

sidering the norm difference between a displacement q1 of an interface Γ1 and its

projection to the facing interface π1
2 {q1} ∈ Γ2. The projection, defined as the vector

of Γ2 that minimizes the gap energy, verifies

[A21] {q1} − [A22]π
1
2 {q1} = 0 [7]

This suggests a formulation of the (1 − ǫ)-compatibility as a Rayleigh quotient, as

C1
2 ({q1})

2 =
‖π1

2 {q1} ‖A22

‖ {q1} ‖A11

=
{q1}

T
[A21]

T
[A22]

−1
[A21] {q1}

{q1}
T

[A11] {q1}
[8]

Such formulation raises robustness issues as partial element covering tends to yield

ill conditioning of [A11] and [A22]. The formulation presented here computes the

singular value decomposition (SVD) of [A] (rather than [A21] suggested in (Ben Dhia

et al., 2003)). As [A] is symmetric,

[A] =

[

. . .

{

u1
i

u2
i

}

. . .

]

[

\σi\

]

{U}
T

[9]

The SVD generates a displacement basis {ui} of the coupled interface with the level of

gap energy generated σi. Low singular values thus characterize compatible interface

displacements. The compatible displacement fields obtained are then known to be

represented on both surfaces well enough - which will be quantified by a tolerance ǫ.

A new definition of interface compatibility is suggested as

C1
2 (ǫ) =

card
{

i/ σi

maxi σi

≤ ǫ
}

mini=1,2(card(Γi))
[10]

It is useful to note that the gap observation [4] can be performed with the full contact

set. Unmatched contact DOF will generate zero terms on the diagonal of [A]. No con-

ditioning issue affects the SVD computation which would output in that case a null (to

numerical precision) singular value associated with shapes showing unmatched points

displacements only. The description of the unmatched point displacements is then a

full recombination of the finite element basis. The refinement of Γ is nevertheless

necessary for a good description of the non spurious contact points.
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3. Using (1-ǫ) vector pairs to solve contact problems

The compatibility measure through an SVD generates couples of quasi-compatible

displacements on both sides of an interface. The following sections discuss their use

for contact problems.

3.1. Primal and dual formulation

The primal formulation constrains the interface displacement to the subspace of

quasi-compatible displacements. The model DOF are sorted to segregate the interface

DOF (qi1 and qi2) from the rest (qc), thus allowing the projection to the generalized

quasi-compatible interface DOF (qǫ1 and qǫ2). Regular contact force distributions are

then a consequence of the imposed displacement regularity.







qc

qi1

qi2







=





I 0 0
0 U1

ǫ 0
0 0 U2

ǫ











qc

qǫ1

qǫ2







= [Tǫ]







qc

qǫ1

qǫ2







[11]

The gap observation is consequently projected and can be written

{g} =
[

C1
Ni

[

U1
ǫ

]]

{qǫ1} −
[

C2
Ni

[

U2
ǫ

]]

{qǫ2} [12]

Exact compatibility (zero gap on Γ) is known to generate locking issues, as dis-

cussed for example in (Balmes, 1996; Ben Dhia et al., 2003). Introducing quasi-

compatible displacements relaxes the constraint while avoiding large relative displace-

ments.

In a dual formulation, the projection on the (1-ǫ)-compatible displacement pairs of

the contact forces is assumed to be zero. This clearly avoids local stress concentrations

associated with locking but also leads to larger gaps. Dual formulations also have the

advantage of preserving the use of physical displacement DOFs.

3.2. Regularized gap function for non-linear contact laws

In general penalized contact approaches, the load is a non linear function of the

gap. Exponential functions are in particular used for brake squeal studies (Vermot des

Roches et al., 2008). In a dual formulation, locking is avoided but the gap is no longer

regular. It is thus proposed to use a regularized gap observation on Γ to compute

contact forces.

For a surface Γn the regularized displacement is a linear combination of the trace

on Γn of the compatible vectors, [Un
ǫ ]

{qǫ
n}NΓn

×Nǫ
= [Un

ǫ ]NΓn
×Nǫ

{αn}Nǫ
[13]
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where {αn} is a solution of the minimization problem

{αn} = min
{α}

‖ [Un
ǫ ] {α} − {qn} ‖K [14]

This defines a pseudo-inverse, as the solution searched is the closest to {qn} possible,

relatively to a norm K. The choice of K is fully open. It cannot be a restriction of [A]
due to conditioning problems, but considering a norm in displacement or strain on Γn

seems meaningful. The identity was chosen here so that the modified gap observation

is

{g}i =
[

C1
Ni

[

U1
ǫ

] [

U1
ǫ

]+
]

{q1} −
[

C2
Ni

[

U2
ǫ

] [

U2
ǫ

]+
]

{q2} [15]

Projection of both sides of the interface can be considered. In master/slave configura-

tions, a slave surface only projection is sufficient to suppress the observation of non

quasi-compatible displacements.

3.3. Opportunities for contact under-integration

Obtaining proper quasi-compatible modes requires a good representation of the

scalar product presented in Section 2.2. Relatively rich integration rules on both sur-

faces are therefore needed for these computation steps. However, the selection of

quasi-compatible modes typically restricts the number of needed interface degrees

of freedom significantly. The number of integration points needed for contact can

consequently be decreased as information redundancy occurs. This is particularly in-

teresting in vibration studies for which the contact surface is assumed constant during

long time simulations, so that coarser rules will decrease computation time.

The proposed strategy is to use a fine integration rule to compute [A] and
[

U i
ǫ

]

defined in [8] and [9], then to switch to a coarser rule for the evaluation of the regular-

ized gap [15] and resulting contact loads. Such under-integration could be optimized

by the use of the Orthogonal Maximum Sequence method (Balmes, 2005) to create an

optimal set of contact points associated to the quasi-compatible shapes to be observed.

4. Illustrations

The concepts of Sections 2 and 3 are applied to the academic model which fea-

tures great mesh refinement differences, and to an industrial model featuring a rel-

atively large interface. Regularization patterns are presented on the first case while

under-integration strategies in the scope of an improvement of dynamical behavior

are discussed on the latter model.
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4.1. A drilled cube example

This section illustrates the resolution method presented to the drilled cube exam-

ple, using the upper cube as contact master, which yields poor results when no regu-

larization is considered. The first step to the resolution is the creation of Γ, and the

SVD computation of [A], as plotted in Figure 3.

(a) Shape #1,

σ = 4.2.10
−18

(b) Shape #22,

σ = 5.3.10
−4

(c) Shape #96,

σ = 7.9.10
−2

(d) Shape #166,

σ = 1.2.10
−1

Figure 3. Shapes resulting from the SVD of [A] plotted on Γ1 and Γ2. The gap is

computed and plotted on the Gauss points of Γ

The gap is computed on the Gauss integration points of Γ for which a Delaunay

triangulation is performed for visualization purposes. The compatible shapes shown in

Figure 3a or 3b correspond to very small gaps. The incompatible shapes in Figure 3c

and 3d show a high singular value (8% and 12%) and correspond to a large gap visible

on Γ. In this problem, 25 quasi-compatible shapes at most exist since this is the

number of DOF of the coarse interface.

To illustrate the regularized gap approach, the projected observation
[

C1
N

[

U1
ǫ

] [

U2
ǫ

]+
]

is plotted and compared to
[

C1
N

]

in Figure 4. The observa-

tion is the dual of the contact pressure as they are directly related by the pressure-gap

contact law. The regularization method clearly distributes the gap observation to the

contact point vicinity, instead of having a point-to-matched-point observation.

(a) Initial observation (b) Regularized observation

Figure 4. Observation for a given Gauss integration point (o) of the master surface
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Figure 5 plots gap results obtained for the center (one) point integration rule. The

basic results are very poor as said earlier, and both primal and dual regularized solu-

tions are satisfying.

(a) Center rule (b) Center Dual Reg. (c) Center Primal Reg.

Figure 5. Gap observations obtained using the center integration rule for contact,

observed on the rich 3x3 rule Gauss points Delaunay triangulation, ǫ = 10−5

Basic solutions provide poor contact fields, using a richer integration rule for that

case is however an improvement. Indeed the approached contact area seen by the

covered contact points increases by 25% when switching from the center point rule to

the 2x2 points rule.

The primal resolution directly constraints displacements but can raise locking is-

sues. No such pattern is observed for the cube and direct displacement restriction

yields in this case better contact pressure fields. It is however costlier to implement as

the interface projection would typically require DOF reordering prior to solve.

4.2. Application to an industrial brake model

State-of-the-art brake models used in this section are provided by Bosch. The

system is meshed automatically by component using 10 node tetrahedron elements,

resulting in non conforming interfaces. Figure 7a shows the components retained, the

disc and a pad with its backplate and lining. Pressure is applied using the trace of the

caliper fingers on the backplate.

Static responses are properly handled here using a rich contact integration rule

(even over-integration). For applications in dynamics, one seeks to compute small

oscillations around a bilateral contact state. The measure of incompatibility intro-

duced in the paper shows that although the mesh sizes are similar, compatibility is not

very good. The combination of incompatible mesh and rich integration, then leads to

locking issues which will be illustrated at the end of this section.

Applying the concepts presented in Section 2.2 leads to the compatible singular

values and associated compatibility measure shown in Figure 6. The first 10% of

compatible shapes are free movements for the uncovered nodes of the partially covered

elements. A threshold ǫ value is seen before more quasi-compatible shapes are found.



326 EJCM – 19/2010. Giens 2009

More than 70% of shapes are above a ǫ = 10−4 threshold. Thus although mesh sizes

are similar, the compatibility is low. Enforcing strict displacement equality is thus

expected to induce locking.

(a) (b)
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(d)

Figure 6. (a): Global view of the pad/disc model - (b) Superimposed pad/disc

interface- (c): Singular values of [A] - (d): (1-ǫ)-compatibility as function of ǫ

Sample shapes resulting from the SVD are plotted in Figure 7. Shapes are plotted

on Γ1 and Γ2 which are the upper and lower surfaces. The gap between both surfaces

displacement is plotted on Γ shown at the intermediate height.

(a) Shape #52,

σ = 1.1.10
−11

(b) Shape #73,

σ = 1.1.10
−6

(c) Shape #150,

σ = 1.2.10
−4

(d) Shape #217,

σ = 8.2.10
−4

Figure 7. Sample quasi-compatible shapes. Γ is represented as a Delaunay triangu-

lation of its Gauss points

The resolution of a contact problem with an exponential law is here satisfying

using a rich integration rule (6 points for a 6 nodes triangle), but requires 1824 contact

points. A center point integration rule uses only 394 points but results in strong contact

irregularities. Indeed, the finite element formulation of a 6 node triangle allows the

center point to move without a node movement. Further work on the reduction of the
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number of contact points will thus need to address the relation between the localization

of contact points and the inherently non-local nature of (1-ǫ) compatible deformations.

As well documented in the literature, over-integration is a good solution to solve

static contact problems. In dynamics, enforcing permanent contact exactly for incom-

patible meshes leads to locking. As an illustration, Figure 8 shows a transfer function

from the vertical displacements of a disc point to a pad point. Modes are computed

enforcing perfect bilateral contact (no gap) of the contact interface through either the

basic contact normal displacement observation or the modified one (Equation [15]),

using ǫ = 10−3.
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(b)

Figure 8. (a) Dynamic behavior differences using a 6 point integration rule, or the

regularization strategy based on a 1 center point rule (ǫ = 10−3, 42% of shapes

kept). (b) Frequency differences observed

The over-integrated solution shows positive frequency shifts from 6 to 30%, corre-

sponding to resonance shifts visible even at low frequencies, and a clear stiffening

(locking) of the structure. The application of interest being brake squeal simula-

tions (Vermot des Roches et al., 2008), the typical frequency range of interest goes

up to 16kHz. The great differences observed in this range must clearly be addressed.

5. Conclusion

The article presented a general methodology to deal with field transmission in

non conforming interface meshes. A scalar product on the interface is used to define

compatible motion. Using a very rich integration for the evaluation of the gap energy,

avoids stress concentrations associated with integration points in coarse meshes and

is applicable to partially covered interfaces and cases where no obvious slave/master

strategy exists.

Using rich integration, the contact must be verified at a high number of points so

that only strictly compatible deformations of the interface are allowed. This leads

to an over stiffening of the model, known as locking, which is particularly visible for

applications in dynamics where the loads transmitted in the interface are not as smooth

as in contact problems.



328 EJCM – 19/2010. Giens 2009

A singular value decomposition of the gap energy operator generates pairs of

(1-ǫ)-compatible deformations which handles difficult cases of very partial overlap.

The relation between total number of DOF and number of (1-ǫ)-compatible vectors is

a direct numerical indicator of mesh compatibility. The industrial application shown

illustrates the fact that meshes with comparable element sizes can have relatively low

compatibility.

(1-ǫ)-compatible vector pairs can be used to avoid inappropriate gaps in a primal

method that only allows compatible motion or to compute a regular pressure field

by introducing a regularized gap function (dual method). An academic example il-

lustrated how this is applicable to pathological cases such as gross under-integration

which can be associated with the selection of a coarse master mesh. Another use

might be the introduction of a coarse contact rule for applications in long transient

simulations.

The need to relax continuity to avoid locking was finally illustrated for a real ex-

ample. This leads to correct coupled behavior while avoiding pathologies of under-

integration. It clearly appears that locking is particularly important for contact be-

tween solids. And that soft contact law, by opposition to Langrangian formulations

or penalty approaches with stiff contact, will be less sensitive to the problem. The

trade-off between the local nature of gap evaluations and the global nature of (1-ǫ)-

compatible deformations still needs further discussion.
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