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ABSTRACT. This paper concerns the development of a new Cartesian grid / immersed boundary
(IB) method for the computation of incompressible viscous flows in irregular geometries. In
1B methods, the computational grid is not aligned with the irregular boundary, and of upmost
importance for accuracy and stability is the discretization in cells which are “cut" by the
boundary. In this paper, we present an IB method (the LS-STAG method) based on the
Cartesian MAC method where the irregular boundary is represented by its level-set function.
This implicit representation of the immersed boundary enables us to discretize efficiently the
fluxes in the cut-cells by imposing the strict conservation of total kinetic energy at the discrete
level. The accuracy and robustness of our method are assessed on benchmark flows.

RESUME. Nous présentons une nouvelle méthode cartésienne de type « frontiere immergée »
(immersed boundary, ou méthode 1B) pour les écoulements visqueux incompressibles en
géométries irrégulieres, qui est telle que la grille de calcul n’est pas alignée avec la frontiére
de la géométrie. Notre méthode IB, appellée LS-STAG, utilise une fonction level-set pour
représenter les frontieres irrégulieres. Cette représentation implicite de la frontiere nous
permet de discrétiser efficacement les flux dans les cellules cartésiennes coupées en imposant
que le schéma numérique conserve l’énergie cinétique totale au sens discret. La précision et
la robustesse de la méthode sont évaluées pour des écoulements canoniques.
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1. Introduction

Much attention hes recently been devoted to the extension of Cartesian grid flow
solvers to complex geometries by immersed boundry (IB) methods (seeMittal et al.
(2005 for arecent review). In these methods, the irregular boundxry is not aligned
with the computational grid, and the treament of the cut-cdls, cdls of irregular shape
which are formed by theintersedion d the Cartesian cdl s by the immersed boundry,
remains an important isale. Indedl, the discretization in these aut-cdls shoud be
designed such that : (a) the global stability and acairagy of the original Cartesian
method are nat severely diminished and (b) the high computational efficiency of the
structured solver is preserved.

Two major clases of | B methods can be distinguished onthe basis of their tred-
ment of cut-cdls. Clasdcd IB methods auch as the momentum forcing method in-
trodwced by Fadlun et al. (2000, use afinite volume/difference structured solver in
Cartesian cdls away from the irregular boundxry, and dscad the discretization o
flow equations in the aut-cdls. Instead, spedal interpalaions are used for setting the
value of the dependent variables in the latter cdls. Thus, grict conservation o quan-
tities auch as mass momentum or kinetic energy is not observed nea the irregular
boundry. The most severe manifestations of these shortcomings is the occurrence of
non-divergencefreevelocities or unphysica oscill ations of the presaure in the vicinity
of the immersed boundry. Numerous revisions of these interpadlations are still pro-
posed for improving the acaracy and consistency of this classof |B methods (Kang
et al., 2004 Muldoonet al., 2008.

A seoond classof 1B methods (also cdled cut-cdl methods or simply Cartesian
grid methods (Ye et al., 1999 Drége et al., 2005 Chung 2006 Mittal et al., 2008
aims for actually discretizing the flow equations in cut-cdls. The discretizaion in
the aut-cdlsisusually performed by ad ha: treaments which have more in common
with the techniques used on curvilinea or unstructured body-conformal grids than
Cartesian techniques. Most notable is the cdl merging technique used by Ye et al.
(1999 and Chung (2006 that merges a aut-cdl with a neighbaing Cartesian cdl to
form anew polygoral cdl with more than four neighbas. The discretizaiion stencil in
this newly formed cdl | oses thus the 5-paint structure (in 2D) of Cartesian methods.
Such treaments of the aut-cdls generate anon regligible bookkeeping to discretize
the flow equations and actually solve them, and it is difficult to evaluate the impaa of
these treaments on the computational cost of the flow simulations.

The purpose of this article is to present a new IB method for incompressble vis-
cous flows which takes the best aspeds of both classes of 1B methods. This method,
cdled the LS-STAG method is based on the symmetry preserving finite-volume
method byVerstappen et al. (2003, which has the ability to preserve on norruniform
staggered Cartesian grids the conservation properties (for total mass momentum and
kinetic energy) of the original MAC method (Harlow et al., 1965. The LS-STAG
method les the following dstinctive feaures :
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— The immersed boundry is implicitly represented by its gned distance func-
tion, also knavn asthe level-set function (Osher et al., 2003. Level-set methods were
devised by Osher et al. (1988 for the solution of computational physics problems
involving dyramic interfaces. So far for incompressble flows, the main applicaion
areas of level set methods have been the computation o two-phase flows (Sussnan
et al., 1994. In the present paper, the level-set function enables us to easily com-
pute dl relevant geometry parameters of the computational cdls, reducing thus the
bookkeeping aswciated to the handing d complex geometries.

— In contrast to classcd I1B methods, flow variables are acudly computed in the
cut-cdls, and na interpolated. Furthermore, the LS-STAG method has the ability to
discretize the fluxes in Cartesian and cut-cdls in a consistent and urified fashion :
there is no need for deriving an ad hac treament for the aut-cdl's, which would be
totally disconreded from the basic MAC discretization used in the Cartesian cdls.

— For building ou discretization, we have required the strict conservation o to-
tal kinetic energy in the whde fluid damain, which is a aucid property for ob-
taining physicdly redistic numericd solutions (Morinishi et al., 1998 Verstappen
et al., 2003. To achieve this property upto the aut-cels, we had to predsely take into
acoun the terms ading onthe immersed boundxry in the global conservation equa-
tions, at bath continuows and dscrete levels. Asaresult, the onwedive and presaure
fluxes have been urambiguosly determined by these requirements, and the boundary
condtions at the immersed boundry have been incorporated into these fluxes with a
consistent manner.

— From the dgorithmic point of view, one of the main consequencesisthat the LS
STAG discretizaion preserves the 5-paint structure of the original Cartesian method
This property all owed the use of an efficient bladk box multigrid solver for structured
grids (van Kan et al., 2000, where no ad hac modifications had to be undertaken for
taking acourt of the immersed boundry.

The paper is organized as follows. In Sedion 2 we first recdl the notations and
salient properties of the staggered Cartesian mesh and then we present the LS-STAG
mesh, its extension for the handing o immersed boundries. Next, we will present
discretizaion o the continuity equation, whose mnsistency in bah cut- and Cartesian
cdlsisa aucial point for building an energy preserving numericad methodfor incom-
pressble flows. In the next subsedions, we will i mpose kinetic energy conservation
upon ou numericd scheme for completely charaderizing the discrete presaure and
convedive fluxes in the aut-cdls. We will complete the spatial discretization with a
discretization o the viscous fluxes in the aut-cdls that will preserve the simplicity of
the 5-paint stencil of Cartesian methods. Finally, Sedion 3is devoted to numericd
tests on canoricd flows at low to moderate Reynalds number for assessng the aca-
ragy and robustnessof the LS-STAG method : the Couette Taylor flow and the flow
past a drcular cylinder.
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2. Preliminaries and description of the LS-STAG method in complex geometries

In the following, we consider discretizing the Navier-Stokes equations with the
finite-volume methodin aredanguar domain 2, whereI' isits aurface After integra-
tion by parts of these equationsin 2 (or in any of its closed subdamains), the integral
form of the continuity equationreads:

/U-ndSzO, [1]
r

where v = (u, v) isthe velocity, and the integral form of the momentum equationsin
the x andy diredionsis respedively :

4 udV—l—/(v-n)udS+/pew~ndS—i/Vu-ndS:0,
r r Re Jr

dt Jq
[24]
4 vdVJr/(v-n)vdSJr/pe-ndS—i/qundS:O
dt Jq r ro 7 Re Jr ’
(2]

where p isthe pressure and Re is the Reynolds number.

2.1. The staggered MAC mesh for Cartesian geometries

The Cartesian method onwhich our IB methodis based is the second-order finite
volume discretization o Verstappen et al. (2003, which has the aility to preserve
on nonuniform Cartesian cdls the mnservation properties (for total mass and ki-
netic energy) of the origina MAC method ona uniform staggered grid (Harlow et
al., 1965. The staggered arrangement of the unknowns in a Cartesian cdl i s repre-
sented in Figure 1. Theredanguar computational (2 is partitioned into Cartesian cdls
Qi; =] @i—1, zi [ x]yj—1, y; [, whose volume is V; ; = Ax; Ay, and center is
xf; = (77, y5). Thesurfacel’; ; of cel €2; ; is subdvided into four elementary plane
facesas :

_ e n s
iy =15, UL UL, UL, 3]

by using the usual compassnatations (Patankar, 1980. Cell €; ; is used as a control
volume for discretizing the continuity Equation [1], whereas the staggered cell (2}, =
Ja$, a4 [x]yj—1. y; [ isthe control volume for the z-momentum Equation [2a].
For subdviding the surfacel™’ ; of this control volume, we first decompose the north
and south faces of 0, j asT7; = T} UTTS and T ; = I35 U TS respedively, and
then write :

Tify =5yt Uiy u (95 U TR ) w (97 U TR ). [4]
An analogous decomposition hdds for the faces of the control volume 27 ;, which is
used for discretizing the y-momentum Equation [2b]. These natations will be useful
for describing the LS-STAG mesh.
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Figure 1. Staggered arrangement of the variables for (@) : a Cartesiancdl €2; ;, and
representation o control volumes for (b) : u; ; and (c) : v; ;. The control volumes
D€ Qi Uit j andQ;?,j € Q;; UQ, ;41 areto be completed with their comple-
mentary part in ;41 ; and{; ;. respedivey

2.2. The LS-STAG mesh for irregular geometries

We oonsider now an irregular solid damain Q' which is embedded in the com-
putational domain €, such that Qf = Q\ Q' represents the fluid damain where the
Navier-Stokes equations are to be discretized. To keep trad of theirregular boundary
', we employ a signed distance function ¢(x) (i.e. , the level set function (Osher
et al., 2003) such that ¢(x) is negative in the fluid region Qf, ¢(z) is positive in the
solid region °, and such that the boundiry I''P corresponds to the zeo level-set of
thisfunction, i.e. :

-A, x€ Q_f,
o(x) = 0, xel® [5]
+A, xzeQP

where A represents the distance between « and the neaest point on the immersed
boundry.
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Figure 2. Saggered arrangement of the variables near the trapezoidd cut-cdl €; ;
onthe LS-STAG mesh

Thisleals to the modification of the MAC mesh that is described in Figure 2, and
that will be subsequently referred to as the LS-STAG mesh. In ead cut-cdl €2, ;, the
immersed boundry is represented by aline segment whase extremiti es are defined by
linea interpalation d the variable ¢; ;, which takes the value of the level-set function
o(z4,y;) at the upper right corner of the cdl. We use notations smilar to the Carte-
sian method for the faces of the aut-cdls. For example in Figure 2, the faces of the
trapezoidal cut-cdl €; ; are denoted :

Iy, =Ty, Ul uTs, Uy, [6]
where F'b represents the solid nath faceof the aut-cdl. Asit will bejustified later,
the vel 00|ty unknawvns are exadly located in the midde of the fluid part of the faces.
In Figure 2, the discrete presaure p; ; is locaed at the intersedion d the velocity lo-
cdions. Thislocaionis used for visualizaion pupose only, and will never be used
in the discretization. In effed, we will find ou in Sedion 24 that the discrete pres-
sure is piecavise constant in ead cut-cdl, as in some mixed finite dement methods
(e.g. Pironreau (1989), andthus does nat need to be predsely located in the aut-cdls.

As observed in Figure 2, there ae three basic types of cut-cdls : trapezoidal
cdlssuch as §); ; or Q;44 5, triangdar cdls (i.e., ©;_; j+1) and pentagond cdls
(e, ©;_1;). The discretization o the momentum equations will be performed in
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Figure 3. Basic types of half control volume for the veocity unknown u; ; inside the
cut-cdl Q; ;, andrelevant quartities used in the LS-STAG discretization. The dia-
monds () dencte the locations of the discretization d the veocity bounday cond-
tions
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the staggered control volumes €2} ; and €27 ;, whase shape has to be adapted to eat
type of cut-cdls. For examplein Flgure 2, the faces of the control volume Q' ; read :

u 1, ib, b,
Iy, =Ty oy u (T3S uTsy, ;) u (s U Y ) (7]
where the solid faces T U T . are formed with two halves of the solid faceof
the neighbaing trapezmdal cut-cellsT® T, and T} ; < TP, . For the other

type of cut-cdls, these control volumes will be oonstructed from the six halves of
generic control volumes that we represent in Figure 3 1. In this figure, the irregular
shape of the staggered control volumes is given for representation pupose only, and
their geometric parameters, such as their adual volume or shape of the verticd faces
;" and T} are never used by the L S-STAG discretization: instead, we will employ
arguments b&d on the strict conservation o global quantities of the flow, such as
total massand kinetic energy, for discretizing the Navier-Stokes equations in the aut-
cdls. More predsely, we will built i n the next sedion a discretization for ead of the
half control volumes of Figure 3, such that any combination o these halves that forms
a oontrol volume ;' ; yields a consistent discretization of the momentum equetions,
with the dorementioned global conservation properties.

However, the LS-STAG methodrelies onasharp representation o the geometry of
the aut-cdls; ;. Inthisresped, the level-set functionwill proveto be avery efficient
tod for cdculating the geometric parameters of a aut-cdl, such as its volume or the
projeded aress of its faces. A quantity that will be extensively used for cdculating
these parametersisthefluid pation o the faces of cdl ©; ;. For examplein Figure 2,
by using ore-dimensional li nea interpoation of ¢(x;, y) fory € [y,;—1, y;], we ca-
culatethe length yi?; —y; 1 of the portion of facel? ; that belongsto thefluid domain
as:

i u . u 7,j—1
y;l,)j —yj—1 = 0;; Ay;, with 05 = gb”qilj—gm]
The scdar quantities 6, and 6", , which take valuesin [0, 1], will subsequently be
cdled the cdl-face fraction ratlos They represent the fluid pation o the eat and
north faces I'? ; and I'7 ; respedively. They will be extensively used for deteding if
the discrete velocities um and v; ; belong to the fluid domain, and for discretizing
the surface ad vdume integralsin the Navier-Stokes Equations [1]-[ 2]. The cdl-face
fradionratios also appea in the analytic expresson o the volume V; ; of the aut-cels
givenin Figure 3.

snce 6(1,1/%) = 0.

1. Note that the re-entrant corner of a Cartesian mesh is a particular case of pentagoral cdl (c)
when ¢; ; = 0, and that Case (f) (which correspondsto ¢;—1,j—1 = ¢i—1,; = ¢i,; = 0 and
¢i.;j—1 < 0) correspondsto the particular case of asalient corner. Only the definition of the cdl
volume distinguishes the latter cel from thelimiting case of triangle (e) defined by ¢p;—1,j—1 =
¢i; =0, di—1,; > 0and ¢, j—1 < 0. Only the definition of the cdl volume distinguishes the
latter cdl from the limiting case of triangle (e) defined by ¢s—1,;—1 = ¢4,; = 0, ¢i—1,; > 0
and¢; j—1 < 0.



Immersed boundry/level-set method 569

2.3. Discretization of the continuity equation

As in the Cartesian method d Verstappen et al. (2003, the starting pdnt of the
LS-STAG discretization concerns the massconservation law [1] in cdl ©; ;, whichis
represented by Equation [1]. For any fluid cdl (cut-cdl or Cartesian), we denate its
facesasl’; ; =T, UI7, UL, ULT ;U F'b , and deacompose the continuity equation
as the net massflux througheac‘n of theﬁefaces

o ~ B B _ —ib
= =Ty + Uiy = Vij-1+0i; +U; ;=0 (8]

Inthisequation, U = fr.b v'P 'b ; d.S denates the massflow throughthe solid part

of the cdl boundary This quant|ty may be nonzero for non hanogeneous boundiry
condtions only. The massflow throughthe fluid part of the faces is dencted with a
bar : for example, the flow throughfacel'? ; of Figure 2is:

UILb,
;= / v-e, dS :/ ’ u(zi,y) dy. [9]
Fi,j Yj—1

In order to easily discretize this integral, we first locae the discrete unknawvn w; ; in
the middle of the fluid part of the face &:

uivj = u(xi’yjfl + 2 97,] ij) [10]
Then, by using midpant quadrature, we obtain :
w5 = 0 Ayjui g, (11

and following analogots discretizations for the other faces, the discrete continuity
equationreals:

Z J = ij(ﬁ i Ui j 9,-/“_10‘ ui—l,j) +AI1(0717)] Vij — 9&'—1 Ui,j—l)
LT =0, [17
i, — Y

We now turn to the discretization o the boundry term as

Uib ~u

ig 2 g AS]P; + v [ny AS]P [13]

Zj’

where [n, AS]; and [n, AS]; arethe projected areas of the solid faceof the aut-cell
in the horizontal and vertica diredtions respedively, and velocity v, = (u;, vif;)
represents an approximation d the velocity on the solid boundry F;bj of the aut-cdl.

Thislast term is cdculated with the trapezoidal rule, for examplein Figure 2 :

1 ; 1 ;
vll?J = 5”(1‘1‘, y;t,)]) + §v(xi—17y;b—1,j)v [14]
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where the velocity datum at the intersedion pants between the solid boundry and
the aut-cdls is given by the boundiry condtions of the continuows problem. The
projeded aress are reaily cdculated from the cdl-facefradionratios as :

[nwAS]iit,)j = ( z’u—l,j - 91‘?]‘ )ij, [”yAS]ii?j = (eil,}j—l - 953' JAz;.
[19]

We mention that this discretization of the continuity equation is valid for any type
of cut-cdls, and in the particular case of a Cartesian fluid cdl ( such as the cdl-face
fradionratiosare equal to 0 or 1 only), Equation[12] reducesto the discrete continuity
equation o the original MAC method

In the following, it will be useful to write the discrete cortinuity equation in its
matrix form :

DU+ T =0, [16]

where eat line (i, j) of this system corresponds to Equation [12] writtenin cell §2; ;,

and the vedors U and U'b contains the velocity unknowns (u; ;, v; ;) and the dis-
cretization o the boundary terms respedively.

2.4. Energy preserving discretization of the momentum equations

Now, we turn to the discretizaion of the momentum equations [2], whose semi-
discrete matrix representation reads :
dU — 1 ; 1
- P- — ibe  _~ qibyv _ 1
Mdt +ClUIU+¢G ReICU+S ReS 0, [17]
where the diagonal massmatrix M is build from the volume of the fluid cell's, matrix
C[U] represents the discretization o the conwvedive fluxes, G is the discrete pressure
gradient, K represents the viscous term, S'°¢ and S™®V are source terms arising from
the boundary conditions of the convedive and viscous termsrespedively.

The discretization o these terms shoud preserve the discrete courterpart of the
conservation o the kinetic energy E(t) = 1 Joy v* dV when the viscosity vanishes.
The mnservation equation for E¢(¢) is obtained from the Navier-Stokes equation by
multi plying the momentum Equation [2] with v and integrating in the whale fluid
domain. After integration by parts of the volumic integrals, this conservation equation

reads

dEc lv|? v|? lv|? Vv
@ = LG g L [ (T en ds. g

Thanks to the continuity equation, the only term remaining in the volume integral in-
volves the viscous dresses, and expresss the lossof energy by viscous disgpation.



Immersed boundry/level-set method 571

The nonvanishing terms in the surfaceintegrals show that the presaure and convec

tive terms only influence the kinetic energy budget by their adion at the immersed
boundxy.

In order to buld the discrete counterpart of [18], we first discretize the kinetic
energy Ec(t) with the trapezoidal rulein ead fluid cdl €, ; :

1 1 . I
Eo(t) 2 El(t) = 5UTMU + §U'b’TM'bU'b, [19]

where M is the diagonal massmatrix that appeas in the discrete momentum Equa-
tion[17], and U™*T MU js the contribution o the boundry conditions, which are
asumed to be steady. For ead line (4, j) of the discrete system [17], the trapezoidal
rule gives the value of the diagorel coefficient of the massmatrix in the horizontal and
verticd diredions:

L 1 1 o 1 1
(M6 (i, 5) = §Vi,j + §Vi+1,a‘7 (MY]p (4, 5) = §Vm‘ + §Vi,j+1- [20]

These expressons show that, in the aut-cell s at least, the massmatrix for u, ; andv; ;
isnot constructed from the adual areas of €2}’ ; et Q27 ..

The conservation equation for E%(t) is obtained after time-differentiation of [19],
then by wsing the discrete momentum Equation[17] we finally obtain :

dE! LU +CO) .. rr. o KTHK
q =-U — 5 U-P' G U-U 5Re

T(gibe L qiby
U-u'(S ReS ).
[21]

In order to oltain an expresson similar to [18], the viscous term —UT(KT 4 K)U
shoud mimic the viscous disspation o the kinetic energy budget, and thus shoud
always be strictly negative. This feaure is obtained as soonas the matrix LT + K is
positive definite. For afinite-volume method, this is obtained as on as the discrete
viscous flux is gable and consistent (Eymard et al., 2000. Note that the symmetry of
K isnot required. If, in addition, we impose that the discretization o the convedive
terms leads to a skew-symmetric matrix :

c[U] =[OV, [22

andthat, asin thefinite dement method, the pressure gradient isdual to the divergence
operator (seeEquation [16]) :

G=-DT, [23]

wefinally observethat the boundiry terms only aff edsthe kinetic energy budget when
the viscosity vanishes (Re — +o0) :

h . '
ddEtC = -PT" - UTSPe, [24]
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Discretization of the presaure gradient

In the ebove equation, the term PTU'b represents the discretizetion o the presaure
term [, pv - m dS in Equation [18], and condtion [23] alows us to completely
determine the discret pressure gradient in control volumes ;' and €27 ; from the
discrete divergence operator [12] :

/ peég - ndS = [gxp]ld - 6113 ij (pi-‘rl,j - pi,j)a [258]
T

u
3

/ bey ndS = [gyPLJ = 311,)] A(El (pi,j+1 - pi,j) . [qu
r

v
2,7

These formulae ae valid for any type of fluid cdls, and in the particular case of
Cartesian fluid cdl s (such that the cdl-facefradionratios are equal to 1), onerecvers
the finite-diff erence gradient of the MAC method:

x Di+1,5 — Pi,j 21 s -
P, =—2> -2 M 7)),
[g ]Z,] %Axi+1 + %A.’Ez [ }P(Z ])

where [M*], (i, 7) = (3Azi41 + 5Ax;)Ay; for the Cartesian control volume Q.

In the aut-cdls however, it is not posdble to interpret Formulas [25] as finite-
difference qudients for p; ; located at the centroids of the aut-cels. Instea, the
LS-STAG discretizaion has much in common with the P1 norconforming/PO finite
element method where the presaure is approximated with a piecevise constant paly-
nomia with degrees of freedom at the dements centroid (Pironreau, 1989. As a
consequence, p; ; is avalid approximation o the presaure anywhere inside aut-cell
(2, ;, even onits lid face Note that an equivalence of this assumptionin a Cartesian
mesh is that the presaure gradient is zero at solid boundries. In the next sedion, we
shall observe that the normal viscous dresss are discretized similarly.

Discretization o the convedive fluxes

For the z-momentum Equation [2a], the skew-symmetry property [22] of C[U]
imposes uponthe discretization o the mnvedive term, that we write in a Cartesian
control volume away from theimmersed boundry asthefoll owingfive-point scheme:

/ (v-n)udS = ClUw(i, j)ui—1,; + C[Ue(d, j)uir1,; + C[Up(4, j)us,
re;

+ ClU]s(4, j)ui j—1 + CIUIN(E, )i 11,

[26]
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must verify the foll owing condtions :

C[U}P(Zaj) =0, [274]
C[U}E(Z’]) = _C[U}W(Z + 17j)7 (274
ClUN(i, j) = —C[U]s(i, j + 1). [27c]

The central discretization o the MAC method trivially verifies these condtions on
uniform meshes. Other popuar discretizations, such as discretizaions of upwind
type, are known to violate this condtion, resulting in adding artificial viscosity to
the scheme.

Skew-symmetric discretizations that verify condtions [27] are now well-
establi shed methods for high-fidelity ssimulation o turbulent flows. Morinishi et al.
(1998 have build symmetry preserving high-order finite-diff erence formulas on uni-
form cartesian grids, and appli ed them to the LES of turbulent channel flow. Recently,
Verstappen et al. (2003 have propaosed a skew-symmetric discretization for the DNS
of channel flow that enforces condtions[27] on norruniform Cartesian meshes. This
discretization will be the building Hock of the LS-STAG discretization o the con-
vedive term in the aut-cels. For the Cartesian control volume €2} ; of Figure 1, the
skew-symmetric discretization consists in writing the convedive term as the net flux
throughits four elementary faces:

/ (v-n)udSz—/ (v-e@-)udy+/ (v-ez)udy
Tl iy riy
— / (U~ey)udx+/ (v-ey)ude,
Ut T35UTH

[28]

Eadh of these terms are discretized with the help of the discrete massfluxes [11], for
examplefor the eat face:

/ (- ep)udy = “ﬁ%ue [29]
s

where ue is a charaderistic value of u on FZ’f, which has to be obtained by interpo-
lation o the discrete velocity unknavns. As observed by Verstappen et al. (2003 ,
the only posdble way to verify the skew-symmetric condtions [27] isto use central
interpolation with equal weighting :
Wiy + Uit1,j
5 .

Analogots interpalations are obtained on the other faces, for example on the south
face:

[30]

Ue =

Vi i Ui i
/ (v-ey)udr = L’é Lus + LHQ’J L us, [31
rse Urs®

i+1,j
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with us = (u, ;-1 +u; ;) /2. Now, by using the property of locd conservativity of the
fluxes throughfluid faces:

/ (v-em)udy:/ (v-e;)udy, [32a]

FTL.‘,}W F;‘fl,j

/ (v-ey)udr = / (v-ey)ude, [324
L LA

one gets, after identification with [26], the foll owing coefficients of the discretization :

ClO)p(i, ) = drin™ + i +17, [334]
ClUw(i,j) = —iﬂi—l,j - %ﬂi,jv ClUJe(i,j) = %Ei,j + %E‘H,j, (330
ClU)s(4,§) = —3Vij—1 — $Vit1,5-1,  C[UIN(E, J) = §Uij + $0it1,5,

which verifies the antisymmetry condtions [27] when the discrete continuity equation
isverified in §2; ; and Q;41 ;. Any type of interpolation aher than [30], for example
an upwind dscretizaion, would violate theses condtions.

In the aut-cdls, the skew-symmetric discretization gven by [26], [33] must be
modified in order to take into acourt the boundry condtions on the immersed
boundxry. This discretization would prove to be more complicaed to build than for
the presaure gradient, becaise we could na obtain a unique formula which would
be valid for any type of cut cdls: instead, the discretization shoud be anstructed
in ead of the half generic control volumes of Figure 3 such as the skew-symmetry
condtion[22] be verified for any combinations of these half control volumes.

Let us consider the case of the control volume 2 ; of Figure 2, whase north solid

boundary F'il”f ury ; isbuilt from two halves of trapezidal cut-cells. For this
control volume, the discretization o the convedive term must take the form :

[, @ myuds = O uiss + COVl ussrs + TG sy
Iy

+C[Ts(i, j)ui -1 + SO,

[34]

whereC[U]n (3, §) is discarded sincethe velocity unknawvn u; ;41 doesnot exist in the
fluid damain. The skew-symmetry condtion[22] reads for this control volume :

ClUlp(i,5) =0, C[UJe(i,j) = —C[U)w(i + 1, 5)- [35]
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The discretizaion that verifies these condtions is obtained by decomposing the
boundxry of the control volume & in Equation [7], and writing the convedive term as
the net flux throughead of these faces:

/ (v-n)udS:—/ (v~em)udy+/ (v-ez)udy
%5 ey

u,e
l—‘i,j

_/e W (v.ey)de—’_/lbe ib,w (vnlb)UdS
FS Ff+1 j r FL+1 j
[36]

The fluxes through ead of the fluid faces are given by Egs. {)29 [31]] and [32],
whereas the fluxes through ead half of solid faceF' € and I . are discretized

1+1,7
Separately as:
dSNUI:’J 1 1,.ib 37
Fib)e(v " )U B) (2“%J+2uz) (378
‘ NUiikjrl,j 1 1,.ib
F'bw (U nl_._lj)uds 9 (5 7J+2ul+1j) [37q

it1,j

In these expressons, the terms underlined orce @ntribute to the diagoral coeffi-
cient C[U]p(i, j)u;,;, in order to recover the expresson o the discrete continity in
Q; j and ;1 ;j, whereas the termswhich are twiceunderlined contribute to the source
term S'b ¢. Asaresult, the discretization o the convedive term in this control volume
isalso glven by [33], with the exception that :

b —ib
. 1,0 Uiy
C[U]N(Zaj) = 07 S:,E)‘j = 5( 2’J ulzb] + ;LJ ulitjrl,j)' [38]

The antisymmetry condtions[35] isthus verified, and we may consider that the source
term S'b u; ; that arises in the kinetic energy budget [24] correspondb to a discrete

approximation o the term [,|v|*> v - n/2 dS written onthe solid boundry F'if’je

v ; of the control volume.

For the other types of half control volumes, the expresson d the skew symmetric
convedive flux onthe solid boundry is given in Figure 3, whil e the flux acossfluid
facesis given by the usual central formulag e.g. [29] and[3]].

Discretization o the viscous terms
For the z—momentum Equation [2a], the viscous terms written in control volume
QO reads:

/ Vu-ndS = @ex-nd5+ Ou -ndS. [39
. ry, O Ty, dy
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We am to discretizing these terms in the aut-cdls auch that the simplicity of the 5-
point structure of the MAC method be preserved. In this resped, we had to make a
distinction between the discretization o the normal stressflux [i.. du/dz e, - ndS

andthe shea stressflux [, du/dy e, - ndS inthe aut-cdls.

For the normal stressflux, a geometry-based formulawould consist in writing this
term as the net flux throughthe eat I} and west I} faces, and then discretize eab
of these terms with a diff erential qudlent for example

ou Ui i — Wi .4
A uW 1,7 7 ,]. 4
/Fuw o e, -ndS = P An [40]

with the areaAy yet to be defined. All our effortsin thisdiredion gave disappant-
ingresultsin termsof numericd acarragy. Thereasonisthat the LS-STAG meshisnot
admissble in the sense of Eymard et al. (2000 for the normal stresses : the line join-
ingthelocation o u;_, ; andw; ; isnot orthogoral to thefacel““JW in the trapezoidal
cdl Q; ; of Figure 2. This feaure is also observed for the other types of cut-cdls
(seeFigure 3 (a) and (c)), and has the consequenceto render approximation [40] non
consistent and thus to yield large numericd errors.

In order to improve the aonsistency of this term, and to retain the simplicity of
a 5-paint stencil, we use the fad that the discretization o the normal stresses and
presaure shoud be mnsistent, as dated abowve, and thus the normal stressflux shall be
discretized with an expresson simil ar to the presaure gradient [2549] :

> [41]

Thediscretization hesto be completed with adifferential quatient for Ju/0z|, ;. This
gudtient is constructed by requiring that Green's theorem :

Ou Ov

V)

ou

e, -ndS =0 Ay; (‘9“

ox

ou
0z

y ox i+1.j

be valid at the discrete level in a aut-cdl, sinceit is trivialy verified by the MAC
methodin a Cartesian cdl. After a straightforward discretizaion o the integrals and
comparison with the cntinuity Equation[12], one gets:

ou

U 0. . _ QU . . U _ Au ib
gu ~ ai,j U, 5 ei—l,j Ui—1,5 + (97:—1,]' 01 ) ;s
Ox i

g ) g 43
Vij/Ay; 43

This expresson is valid for any type of cut-cdls, and reduces to the usualy finite-
differencequdient for a Cartesian fluid cdl.

In contrast, the discretization o the shea stressfrq 8u/8y e, - ndS is much
simpler because the LS-STAG mesh is admissble in the y diredion for this term.
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Thus, we can write it asthe net flux throughthe north and south faces, for example far
from the immersed boundaxy :

O ndS = / @dx—/ 0 o, [44)
Ty, 8y rieuryy, | dy T3%,ursy dy

it+1,j

and the differentiation of the interpalation pdynomial of u(x;, -) inthe verticd direc
tionleasto finite diff erence-like formula, for example :

- um

Ui j
(400, m 401 B (45

2 T
i,j z qu]+1 Ayt + 2 ” Ay]

for the flux onthe north face This formulais valid if w; ;41 is present in the fluid
domain, i.e if 6},.,; > 0: thisisthe cae of the Cartesian cél of Figure 1 (b), and
the aut-cdlsin Figure 3 (a) et (b).

In the cese where the north faceis slid and thus u; ;41 does not exist (case
where 0, > 0, for the aut-cells of Fig . 3 (c)-(f)), the formula takes into acourt
the boundary condtions in the fashion o the Ghaost Fluid Method for elli ptic equa-
tions (Gibouet al., 2002 :

/l 8Ud %(A |be+A ib,w )u( 7"yllbj)7ui~,j
Flb eUFIbW

4
ay H—l,_] 19u ij ’ [ 6]

i+1,j

where the integration areas Az'™® and Afﬁﬁvlv are defined in Figure 3 for ead type
of cut-cdl. Asfor the d|scret|zat|on o the other fluxes of the Navier-Stokes equations,
Formulae[45] and[46] yields the usual discretizations of the original MAC methodin
aregular fluid cdl.

2.5. Time stepping method and solution of the linear systems

Thetimeintegration o the diff erential algebraic system[16] and[17] isperformed
with a semi-implicit projedion method based onthe AB / BDF 2 scheme. This pro-
jedion scheme is defined by the foll owing two steps :

~74 n n—1 —n o
M gA:U Loc@ U — e

1 ~ .
—-D'p" — ol = —gibmtl 147
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where U isaprediction o thevelocity at timet,, 1 = (n + 1)At, then:

3. U -T . .
MR DI P =0, [484]
pU LT Z 0. [485

Numericd tests by Botella (2002 showsthat this shemeis O(At?) acaurate for both
velocity and presaure.

The projedion step [48] leads to solving following Poisson equation for the pres-
sure potential & = 2A¢(P*TL — Pn) /3

A =DU + T, A= DM DT, [49]

whichisasymmetric linea system whose 5-point stencil reals:

2
AE(ivj) :Ma AW(ivj):AE(i_laj)a [508]
2Vij+2Visr
AN(i,j) = M, As(i,j) = An(, 5 — 1), [504
3Vig+3Vign
Ap(i, j) = —Ae(i, j) — Aw(i, j) — An(i, J) — As(i, j). [50c]

In the case of a Cartesian fluid cdl, the usual presaure gquation of the MAC methodis
recvered. We mention that the presaure Equation [49] is valid in the whole compu-
tational domain, but the solutionin the fluid domain is totally decouded from the one
in the solid damain. More predsely, the linea system in thefluid cdls hasarank ore
deficiency, while in the solid cdl s the system reads:

0 x (I)i,j = O, [51]

showing that the presaureis defined upto a diff erent additive constant in ead damain.
In order to alleviate these indeterminades in acual computations, we add to the di-
agorel coefficient Ap(i, ) asmall red constant e whose magnitude has the order of
the madhine rounddf level, and we solve [49] in the whole computational domain : it
amourts in letting the computer rounddf sets the abitrary presaure levels. With this
technique borrowed from Yedkel et al. (1999, the presaure equationis olved simul-
taneously in bah fluid and solid damains with any iterative solver for elli ptic equa-
tions on Cartesian grids, where no modifications are needed for taking the immersed
boundxry into acourt. In the computations we present in the following sedion, we
have used the bladk-box multigrid/BiCGSTAB solver of van Kan et al. (2000, and
we typicdly observed that the presaure gquation was lved in 2-3 iterations.
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-5 0

(a (b)
Figure 4. Geometry and computationd domain for the Taylor-Couette flow. (a) : the
fluid domain € is confined between two concentric cylinders I'y and I'; of center
(xc, yc), radius Ry and Ry = 4R; respedivey, where only the inner cylinder T,
moves with the angdar vdocity w. (b) : the LS-STAG meshfor R; = 1 and N = 50
cdlsin each diredion

o

3. Numerical results
3.1. Taylor-Couette flow

First, the spatial acaracy of the LS-STAG method is assessed on the Taylor-
Couette flow between two concentric circular cylinders, as described in Figure 4 (a).
The flow dynamics is governed by the Taylor Number Ta, which isthe ratio between
the centrifugal force and the viscousforce:

o SR R 52

v2

where v is the kinematic viscosity of the fluid. Below the stability threshold Ta; =
1712, the flow is dealy, stable and puely orthoradial, and the analyticd solutionis
given by e.g. Guyonet al. (2007).

In order to buld the level-set function ¢(x,y) that represents the fluid domain
Q, we have used the Constructive Sdid Geometry (CSG) method for constructing
complex domains out of basic geometries auch as circles, hyperplanes, spheres, etc.,
which are sufficiently simple for having an analyticd expresson for their level-set
function (Hart, 1996 Osher et al., 2003. The bodean CSG operations on besic ge-
ometries duch asintersedion, union a complementary part can then be expressed as
algebraic operations on their level-set functions (Osher et al., 2003. For example,
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let 2, and 25 be the inner region o cylindersT'; and I's, whaose level-set functioniis
respedively :

$1(z,y) = Ri—r, [534
¢a(x,y) = Ro—r. [534

Then, the fluid damain of the Taylor-Couette geometry can be onstructed as (s =
02\, anditslevel-set functionis smply ¢(x, y) = max (¢p2(z, y), —d1(x,y)).

The computational domain isasquare of sidelength 10R;, covered with auniform
mesh of IV square computational cdls of sizeh in ead diredion (seeFigure 4 (b)).
The center of the concentric ¢ylindersis st at 2. = 0.013, y. = 0.023 dightly off
the center (x = 0, y = 0) of the computational domain, such asit never corresponds
to a corner or centroid of a computational cdl. Thus, the numericd error we measure
are free of any superconvergence dfets, since the natural symmetries of the meshes
and the computational solution are broken. For the flow at Ta = 1000, we have
compared the results of the LS-STAG method with the so-cdled staircase method,
which correspondsto a stepwise goproximation o complex geometries with Cartesian
cdls. Thislast methodis easily obtained from our numericd code by impasing the
cdl facefradionratios to be equal to 1 in the aut-cdls, whil e the discretization in the
Cartesian cdlsisunchanged. We will seethat even thoughthe aut-cdl s represent only
asmall fradion o the computational cdls, these modifications will gredly affedsthe
numerica solutionin the whde fluid damain.

10° : . : - 10°
107} M ek 100F
104 104
) E)
ui- -
10°% 10°%
4 Staircase 4 4 Staircase
10 ¢ ®LS-STAG | 10 } ! . e LS-STAG
---1% order slope] ---1% order slop
_g| 7 2" order slope _g| L 2" order slopi
10 -1 0 10 = -1 0
10 10 10 10 10 10
h h
@ (b)

Figure 5. L, norm of the aror for the streamwise vdocity v versus grid size h =
1081 (a) : on90% of the fluid damain, (b) : onthe whole fluid damain
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Figure 6. Pointwise aror profiles alongthe horizontal axisy = 0.023 for the v ve-
locity

For assesdng the acwracy of both methods, We have measured the L, spatial
error of the u Cartesian comporent of the velocity upto the aut-cdls, ie:

Ba(u) = jmax
2,7

wij — uex(i, Y5 + 305 895)], [54
Figure 5 (a) shows the atror for the velocity measured on90% of the fluid cdls away
fromtheimmersed boundries. The LS-STAG method yields asecond-order acaracy,
much better than the first-order acaracy of the staircase method When the aror of
the LS-STAG methodis measured onthe whole computational domain (Figure 5 (b)),
the L, error is dightly higher, showing that maximal error occurs in the vicinity
of the aut-cdls, and the order of acasracy drops to being superlinea only. Thisis
certainly an effed of the piecevise constant approximation of the normal stresses and
the presaurein the aut-cdls. Figure 6 showsthe pointwise aror of the velocity at mesh
pointsaongthe horizontal radius, for « € [R;, Rs]. Firstly, we observe that the aude
treament of theimmersed boundriesfor the staircase method pdl utesthe solutionin
the whole fluid damain, whereas the pointwise aror of the LS-STAG methodis much
lower, most notably intheinner fluid region. Finally, we mentionthat asimilar trendis
observed for the L, error of the presaure: the L, error shows snd ader acaracy
for the LS-STAG method away from the aut-cdls, whil e the staircase methodis only
first order.

3.2. Flow past a circular cylinder
The robustnessof the LS-STAG method and its ability to compute unsteady flows

at higher Reynadds number is now evaluated onthe flow past a drcular cylinder in a
freestrean. The Reynalds number is based onthe freestream velocity U, and the di-
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slip boundary

——
D i.

inflow boundary

outflow boundary

slip boundary

) S

Xu Xg

@

Figure 7. (a) : Computationd domain and (b) : grid for the flow past a circular
cylinder

Figure8. (a) : vorticity contours andstreamlines around acircular cylinder at Re =
40, on M4 mesh. At (b) : close up o the mesh in the vicinity of the cylinder

ameter D of the domain. The flow configurationis described in Figure 7 (8). Inal our
simulations, the upstream boundry is st at the distance X, = 8D from the obstade,
the outflow boundxry at distance X4 = 15D, and the blockage ratio D /A is equal to
1/12. Our previous gudies (Cheny et al., 2007) have shown that this computational
domain was afficiently wide for obtaining results independent of the domain size. In
order to make agrid refinement study, we used a sequence of honuniform meshes
summarized in Table 1. All these meshes uses asimilar block uniform grid of cdl size
h/D inthewake of the g/linder, as shawn in Figure 7 (b). Our simulations with mesh
M4 were foundto give acarrate results for the range of Reynadds number [40 — 1000]
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we mnsidered. The other meshes range from very coarse (mesh M1, used for the
steady flow at Re = 40) to extremely fine (mesh M5 and M6). These last two meshes
are mainly used for validating the results obtained on coarser meshes. For comparing
our results, we have seleded well -establi shed numericd investigations conducted with
boundry fitted methods (Henderson, 1997 Bergmann et al., 2007 He et al., 2000,
IBM (Linnick et al., 2005 and cut-cdl methods (Mittal et al., 2008. Experimental
results are taken from the monogaph by Zdravkovich (2003.

Table 1. Sdient properties of the meshes used for the drcular cylinder flow. The
percentage of the various type of cdls with resped to their total number is given in
brackes

Type of cdls
Mesh N, xN, h/D  Number Cartesian Solid Cut-cdls
of cdls cdls cdls
M1 36 x 34 0.32 1224 120898.7%) 4 (0.3%) 12 (1.0%)

M2  74x65 016 4810  476799.1%) 19(0.4%)  24(0.5%)
M3 150 x 130 0.08 19500  1935@q99.2%)  100(0.5%)  50(0.3%)
M4 300260 0.04 78000  7746Q99.3%)  440(0.6%)  100(0.1%)
M5 550 x 350 0.0l 192500 184452958%) 7644(4.0%)  404(0.2%)
M6  825x 524 0.007 432300 414332958%) 17364(4.0%) 604(0.2%)

First, we considered the stealy flow at Re = 40. Figure 8 shows the streamlines
and varticity contours obtained onmesh M4. For producing these figures, the vorticity
at cut-cdl cornersis computed by wsing the diff erence formulaefor the shea stress
(Equation [46] for example). As e in Figure 8 (b), we may naticethe defledion o
the streamlines aroundthe ¢ylinder body, showing that theimmersed bodyis corredly
taken into acount by the LS-STAG method The acaracgy of the computations is
asesd by computing the drag coefficient Cp andthe length of theredrculation bub
ble Ly/D. The force mefficient is computed by dredly approximating the surface
integrals of the stresstensor on the immersed boundxry, and wsing formulae[41] and
[44] for computing the normal and shea stresses respedively. Table 2 compares the
results of the staircase and LS-STAG methodagainst established results from theliter-
ature (where the drag coefficient istypicaly in therange [1.50 — 1.54]). The staircase
method gves very inacalrate results on the marser meshes (no redrculation zone is
observed onmesh M1), whereas the LS-STAG method gves accetable results for all
meshes, giving asymptoticaly the values L, = 2.30D and Cp = 1.51.

Unsteady flows at Re = 100, 200, and 1000 have been computed onthe M4 and
M5 meshes. For bregking the symmetry of the flow and efficiently triggering the vor-
tex shedding, we use as initial condtion a discontinuots flow field equal to U, in
the upper half of the domain, and Qin the lower half. The flow reades an asymptot-
icdly periodic state & tU,,/D = 50, then we starts computing the force wefficients
at ead time step until ¢ = 350. The Strouhal number S is computed as the first
harmonic of the power spedrum of the lift coefficient, with a frequency resolution
of £1.67 x 1072 sincethe length of the time signal is equal to 300 units. Tables 3
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Table 2. Results for the flow at Re = 40 obtained onthe various meshes of Table 1,
and comparison with established experimental and computationd results from the
literature

Lw/D Ch

LS-STAG staircase | LS-STAG  staircase
M1 1.715 Q000 | 1.599 1185
M2 2.095 1319 | 1.547 1402
M3 2.219 2041 | 1551 1545
M4 2.300 2101 | 1.500 1527
M5 2.299 2226 | 1.508 1559
Experiments (Zdravkovich, 2003 - 1.48 — 1.70
Bergmannet al. (2007 2.26 1.682
Henderson (1997 — 1.545
Heet al. (2000 — 1.505
Linnick et al. (2005 223 154
Mittal et al. (2008 - 1.53

Figure 9. Vorticity contours in the wake of the cylinder at Re = 1000, computed by
the LS-STAG method onthe M5 mesh.

and 4 gves slient results computed with the LS-STAG and staircase method On the
M4 mesh for Re = 100 and 200 and onthe M5 mesh for Re = 1000, the LS-STAG
method gves excdlent agreement with the pullished results. It is aso guite remark-
able to observe that the staircase method gves marginally acceptable results, even for
Re = 1000. Thisis certainly due to the fad that the staircase method inherits the
conservation and stability properties of the LS-STAG method, and orly the treament
of theimmersed boundry differs.
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Table 3. Comparison d time averaged drag coefficient Cp and correspondng ascil -
lation amplitude £ ACp with establi shed results from the literature

Re 100 200 1000
M3 1.3524+£0.008 1.350£0.037 0.979 £ 0.055
M4 1.322 £0.009 1.3324+0.044 1.493 £ 0.227
M5 1.317£0.009 1.327+£0.045 1.530 £ 0.229
M6 1.314 £0.009 1.324 +0.044 1.524 £0.246
M4 staircase 1.323+£0.009 1.346 £0.044 1.610=£0.198
Experiments (Zdravkovich, 2003 1.21 - 141 — —
Bergmannet al. (2007) 1.410 1390 1505
Henderson (1997 1.350 1341 1509
Heet al. (2000 1.353 1356 1519
Linnick et al. (2005 1.34 £ 0.009 1.34 £ 0.044 —

Mittal et al. (2008 1.35 — 145

Table 4. Comparison o Strouhd number & with establi shed results from the litera-
ture.

Re 100 200 1000
M3 0.170 0200 0260
M4 0.170 Q200 Q247
M5 0.170 0200 0241
M6 0.170 0.200 0.241
M4, staircase 0.177 Q207 Q251
Experiments (Zdravkovich, 2003  0.16 — 0.17 — —

Bergmannet al. (2007) 0.166 Q199 0235
Henderson (1997 0.164 Q197 0237
Heet al. (2000 0.167 Q198 0239

4. Concluding remarks

In this paper, we have developed and analyzed a nowvel IB/cut-cdl methodfor in-
compresshble viscous flows cdled the LS-STAG method The immersed boundry is
implicitly represented by itslevel set, which enables usto cdculate dficiently the ge-
ometry parameters of the aut-cdls. The discretization in the aut-cdls has been built
by requiring that total kinetic energy is conserved at the discrete level. The LS-STAG
discretization preserves the 5-point Cartesian structure of the stencil, resulting in a
highly computationally efficient method, and the computations of benchmark flows
have shown that the methodis a promising kernel for the design and analysis of com-
plex CFD systems.
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Thiswork isaso ore of thefirst attempt towards rigourously addressng someim-
portant isaues for IB computations, such as the conservation o global flow properties
(total mass momentum and kinetic energy) in IB computations, and the consistent
implementation of boundxry condtions at the immersed boundry. Due to page lim-
itations, we did na include in this paper the proafs of the nservation o total mass
and momentum by the LS-STAG method These isaues, as well as novel applicaions
of the LS-STAG method for flows in complex moving geometries, will be discussed
in aforthcoming paper.
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