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ABSTRACT. This paper concerns the development of a new Cartesian grid / immersed boundary 
(IB) method for the computation of incompressible viscous flows in irregular geometries. In 
IB methods, the computational grid is not aligned with the irregular boundary, and of upmost 
importance for accuracy and stability is the discretization in cells which are “cut" by the 
boundary. In this paper, we present an IB method (the LS-STAG method) based on the 
Cartesian MAC method where the irregular boundary is represented by its level-set function. 
This implicit representation of the immersed boundary enables us to discretize efficiently the 
fluxes in the cut-cells by imposing the strict conservation of total kinetic energy at the discrete 
level. The accuracy and robustness of our method are assessed on benchmark flows. 

RÉSUMÉ. Nous présentons une nouvelle méthode cartésienne de type « frontière immergée » 
(immersed boundary, ou méthode IB) pour les écoulements visqueux incompressibles en 
géométries irrégulières, qui est telle que la grille de calcul n’est pas alignée avec la frontière 
de la géométrie. Notre méthode IB, appellée LS-STAG, utilise une fonction level-set pour 
représenter les frontières irrégulières. Cette représentation implicite de la frontière nous 
permet de discrétiser efficacement les flux dans les cellules cartésiennes coupées en imposant 
que le schéma numérique conserve l’énergie cinétique totale au sens discret. La précision et 
la robustesse de la méthode sont évaluées pour des écoulements canoniques. 
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1. Introduction

Much attention has recently been devoted to the extension of Cartesian grid flow
solvers to complex geometries by immersed boundary (IB) methods (seeMittal et al.
(2005) for a recent review). In these methods, the irregular boundary is not aligned
with the computational grid, and the treatment of thecut-cells, cellsof irregular shape
which areformed bythe intersection of theCartesian cellsby the immersed boundary,
remains an important issue. Indeed, the discretization in these cut-cells should be
designed such that : (a) the global stabilit y and accuracy of the original Cartesian
methodare not severely diminished and (b) the high computational efficiency of the
structured solver is preserved.

Two major classes of IB methods can be distinguished onthe basis of their treat-
ment of cut-cells. Classical IB methods such as the momentum forcing method in-
troduced by Fadlun et al. (2000), use afinite volume/difference structured solver in
Cartesian cells away from the irregular boundary, and discard the discretization of
flow equations in the cut-cells. Instead, special interpolations are used for setting the
value of the dependent variables in the latter cells. Thus, strict conservation of quan-
tities such as mass, momentum or kinetic energy is not observed near the irregular
boundary. The most severe manifestations of these shortcomings is the occurrenceof
non-divergencefreevelocitiesor unphysical oscill ationsof thepressure in thevicinity
of the immersed boundary. Numerous revisions of these interpolations are still pro-
posed for improving the accuracy and consistency of this classof IB methods (Kang
et al., 2004; Muldoonet al., 2008).

A second classof IB methods (also called cut-cell methods or simply Cartesian
grid methods (Ye et al., 1999; Dröge et al., 2005; Chung, 2006; Mittal et al., 2008)
aims for actually discretizing the flow equations in cut-cells. The discretization in
the cut-cells is usually performed by ad hoc treatments which have more in common
with the techniques used on curvili near or unstructured body-conformal grids than
Cartesian techniques. Most notable is the cell merging technique used by Ye et al.
(1999) and Chung(2006) that merges a cut-cell with a neighboring Cartesian cell to
form anew polygonal cell with morethan four neighbors. Thediscretizationstencil i n
this newly formed cell l oses thus the 5-point structure (in 2D) of Cartesian methods.
Such treatments of the cut-cells generate anon negligible bookkeeping to discretize
theflow equations andactually solve them, and it is difficult to evaluate the impact of
these treatments on the computational cost of the flow simulations.

The purpose of this article is to present a new IB method for incompressible vis-
cous flows which takes the best aspects of both classes of IB methods. This method,
called the LS-STAG method, is based on the symmetry preserving finite-volume
method byVerstappen et al. (2003), which has the abilit y to preserve on non-uniform
staggered Cartesian grids the conservation properties (for total mass, momentum and
kinetic energy) of the original MAC method (Harlow et al., 1965). The LS-STAG
method has the following distinctive features :
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− The immersed boundary is implicitly represented by its signed distance func-
tion, also known asthe level-set function(Osher et al., 2003). Level-set methodswere
devised by Osher et al. (1988) for the solution of computational physics problems
involving dynamic interfaces. So far for incompressible flows, the main application
areas of level set methods have been the computation of two-phase flows (Sussman
et al., 1994). In the present paper, the level-set function enables us to easily com-
pute all relevant geometry parameters of the computational cells, reducing thus the
bookkeeping associated to the handling of complex geometries.

− In contrast to classical IB methods, flow variables are actually computed in the
cut-cells, and not interpolated. Furthermore, the LS-STAG method has the abilit y to
discretize the fluxes in Cartesian and cut-cells in a consistent and unified fashion :
there is no need for deriving an ad hoc treatment for the cut-cells, which would be
totally disconnected from the basic MAC discretization used in the Cartesian cells.

− For building our discretization, we have required the strict conservation of to-
tal kinetic energy in the whole fluid domain, which is a crucial property for ob-
taining physically realistic numerical solutions (Morinishi et al., 1998; Verstappen
et al., 2003). To achieve thisproperty up to the cut-cells, wehad to precisely take into
account the terms acting onthe immersed boundary in the global conservation equa-
tions, at both continuous and discrete levels. As a result, the convective and pressure
fluxeshavebeen unambiguously determined by theserequirements, and theboundary
conditions at the immersed boundary have been incorporated into these fluxes with a
consistent manner.

− From the algorithmic point of view, oneof themain consequences is that theLS-
STAG discretization preserves the 5-point structure of theoriginal Cartesian method.
This property allowed the use of an efficient black box multigrid solver for structured
grids (van Kan et al., 2000), where no ad hoc modifications had to be undertaken for
taking account of the immersed boundary.

The paper is organized as follows. In Section 2, we first recall the notations and
salient properties of the staggered Cartesian mesh and then we present the LS-STAG
mesh, its extension for the handling of immersed boundaries. Next, we will present
discretization of the continuity equation, whose consistency in both cut- andCartesian
cells isa crucial point for buildingan energy preserving numerical methodfor incom-
pressible flows. In the next subsections, we will i mpose kinetic energy conservation
upon our numerical scheme for completely characterizing the discrete pressure and
convective fluxes in the cut-cells. We will complete the spatial discretization with a
discretization of the viscous fluxes in the cut-cells that will preserve the simplicity of
the 5-point stencil of Cartesian methods. Finally, Section 3 is devoted to numerical
tests on canonical flows at low to moderate Reynolds number for assessing the accu-
racy and robustnessof the LS-STAG method : the Couette Taylor flow and the flow
past a circular cylinder.
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2. Preliminaries and description of the LS-STAG method in complex geometries

In the following, we consider discretizing the Navier-Stokes equations with the
finite-volumemethodin arectangular domainΩ, whereΓ is its surface. After integra-
tion by parts of these equations in Ω (or in any of its closed subdomains), the integral
form of the continuity equation reads :

∫

Γ

v · n dS = 0, [1]

wherev = (u, v) is the velocity, and the integral form of the momentum equations in
thex andy directions is respectively :

d

dt

∫

Ω

u dV +

∫

Γ

(v · n) u dS +

∫

Γ

p ex · n dS −
1

Re

∫

Γ

∇u · n dS = 0,

[2a]

d

dt

∫

Ω

v dV +

∫

Γ

(v · n) v dS +

∫

Γ

pey · n dS −
1

Re

∫

Γ

∇v · n dS = 0,

[2b]

wherep is the pressure and Re is the Reynolds number.

2.1. The staggered MAC mesh for Cartesian geometries

The Cartesian method onwhich our IB methodis based is the second-order finite
volume discretization of Verstappen et al. (2003), which has the abilit y to preserve
on non-uniform Cartesian cells the conservation properties (for total mass and ki-
netic energy) of the original MAC method ona uniform staggered grid (Harlow et
al., 1965). The staggered arrangement of the unknowns in a Cartesian cell i s repre-
sented in Figure1. Therectangular computational Ω ispartitioned into Cartesian cells
Ωi,j =

]
xi−1 , xi

[
×
]
yj−1 , yj

[
, whose volume is Vi,j = ∆xi∆yj and center is

x
c
ij = (xc

i , yc
j). ThesurfaceΓi,j of cell Ωi,j is subdivided into four elementary plane

faces as :

Γi,j = Γe
i,j ∪ Γw

i,j ∪ Γn
i,j ∪ Γs

i,j , [3]

by using the usual compassnotations (Patankar, 1980). Cell Ωi,j is used as a control
volumefor discretizing the continuity Equation [1], whereas thestaggered cell Ωu

i,j =]
xc

i , xc
i+1

[
×
]
yj−1 , yj

[
is the control volume for thex-momentum Equation [2a].

For subdividing the surfaceΓu
i,j of this control volume, we first decompose the north

and south faces of Ωi,j as Γn
i,j = Γn,w

i,j ∪ Γn,e
i,j andΓs

i,j = Γs,w
i,j ∪ Γs,e

i,j respectively, and
then write :

Γu
i,j = Γu,w

i,j ∪ Γu,e
i,j ∪

(
Γs,e

i,j ∪ Γs,w
i+1,j

)
∪
(
Γn,e

i,j ∪ Γn,w
i+1,j

)
. [4]

An analogous decomposition holds for the faces of the control volume Ωv
i,j , which is

used for discretizing the y-momentum Equation [2b]. These notations will be useful
for describing the LS-STAG mesh.
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Figure 1. Staggered arrangement of the variables for (a) : a Cartesian cell Ωi,j , and
representation of control volumes for (b) : ui,j and (c) : vi,j . The control volumes
Ωu

i,j ∈ Ωi,j ∪Ωi+1,j andΩv
i,j ∈ Ωi,j ∪Ωi,j+1 are to be completed with their comple-

mentary part in Ωi+1,j andΩi,j+1 respectively

2.2. The LS-STAG mesh for irregular geometries

We consider now an irregular solid domain Ωib which is embedded in the com-
putational domain Ω, such that Ωf = Ω \Ωib represents the fluid domain where the
Navier-Stokesequationsare to bediscretized. To keep track of the irregular boundary
Γib, we employ a signed distance function φ(x) (i.e. , the level set function (Osher
et al., 2003)) such that φ(x) is negative in the fluid regionΩf , φ(x) is positive in the
solid region Ωib, and such that the boundary Γib corresponds to the zero level-set of
this function, i.e. :

φ(x) ≡





−∆, x ∈ Ωf ,
0, x ∈ Γib,

+∆, x ∈ Ωib,
[5]

where ∆ represents the distance between x and the nearest point on the immersed
boundary.
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Figure 2. Staggered arrangement of the variables near the trapezoidal cut-cell Ωi,j

on the LS-STAG mesh

This leads to the modification of the MAC mesh that is described in Figure 2, and
that will be subsequently referred to as the LS-STAG mesh. In each cut-cell Ωi,j , the
immersed boundary is represented bya linesegment whose extremitiesaredefined by
linear interpolation of thevariableφi,j , which takes thevalueof the level-set function
φ(xi, yj) at the upper right corner of the cell . We use notations similar to the Carte-
sian method for the faces of the cut-cells. For example in Figure 2, the faces of the
trapezoidal cut-cell Ωi,j are denoted :

Γi,j = Γw
i,j ∪ Γe

i,j ∪ Γs
i,j ∪ Γib

i,j , [6]

where Γib
i,j represents the solid north faceof the cut-cell . As it will be justified later,

the velocity unknowns are exactly located in the middle of the fluid part of the faces.
In Figure 2, the discrete pressure pi,j is located at the intersection of the velocity lo-
cations. This location is used for visualization purpose only, and will never be used
in the discretization. In effect, we will find out in Section 2.4 that the discrete pres-
sure is piecewise constant in each cut-cell , as in some mixed finite element methods
(e.g. Pironneau (1989)), andthusdoesnot need to beprecisely located in the cut-cells.

As observed in Figure 2, there are three basic types of cut-cells : trapezoidal
cells such as Ωi,j or Ωi+1,j , triangular cells (i.e. , Ωi−1,j+1) and pentagonal cells
(i.e. , Ωi−1,j). The discretization of the momentum equations will be performed in
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Figure 3. Basic types of half control volume for the velocity unknown ui,j inside the
cut-cell Ωi,j , and relevant quantities used in the LS-STAG discretization. The dia-
monds (�) denote the locations of the discretization of the velocity boundary condi-
tions
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the staggered control volumes Ωu
i,j and Ωv

i,j , whose shape has to be adapted to each
type of cut-cells. For example in Figure 2, the faces of the control volumeΩu

i,j read :

Γu
i,j = Γu,w

i,j ∪ Γu,e
i,j ∪

(
Γs,e

i,j ∪ Γs,w
i+1,j

)
∪
(
Γib,e

i,j ∪ Γib,w
i+1,j

)
, [7]

where the solid faces Γib,e
i,j ∪ Γib,w

i+1,j are formed with two halves of the solid faceof

the neighboring trapezoidal cut-cellsΓib,e
i,j ⊂ Γib

i,j and Γib,w
i+1,j ⊂ Γib

i+1,j . For the other
type of cut-cells, these control volumes will be constructed from the six halves of
generic control volumes that we represent in Figure 3 1. In this figure, the irregular
shape of the staggered control volumes is given for representation purpose only, and
their geometric parameters, such as their actual volume or shape of the vertical faces
Γu,w

i,j andΓu,e
i,j arenever used bytheLS-STAG discretization: instead, wewill employ

arguments based on the strict conservation of global quantities of the flow, such as
total massand kinetic energy, for discretizing the Navier-Stokes equations in the cut-
cells. More precisely, we will built i n the next section a discretization for each of the
half control volumesof Figure3, such that any combination of thesehalves that forms
a control volume Ωu

i,j yields a consistent discretization of the momentum equations,
with the aforementioned global conservation properties.

However, theLS-STAG methodreliesonasharp representation of thegeometry of
the cut-cellsΩi,j . In thisrespect, the level-set functionwill proveto be avery efficient
tool for calculating the geometric parameters of a cut-cell, such as its volume or the
projected areas of its faces. A quantity that will be extensively used for calculating
theseparameters is thefluid portion of the facesof cell Ωi,j . For example in Figure2,
by using one-dimensional li near interpolation of φ(xi, y) for y ∈ [yj−1, yj ], we cal-
culatethelength yib

i,j −yj−1 of theportion of faceΓe
i,j that belongsto thefluid domain

as :

yib
i,j − yj−1 = θ u

i,j ∆yj , with θ u
i,j =

φi,j−1

φi,j−1 − φi,j

since φ(xi, y
ib
i,j) = 0.

The scalar quantities θ u
i,j and θ v

i,j , which take values in
[
0, 1
]
, will subsequently be

called the cell -face fraction ratios. They represent the fluid portion of the east and
north faces Γe

i,j and Γn
i,j respectively. They will be extensively used for detecting if

the discrete velocities ui,j and vi,j belong to the fluid domain, and for discretizing
thesurface and volumeintegrals in theNavier-StokesEquations [1]-[2]. The cell -face
fractionratiosalso appear in the analytic expression of thevolumeVi,j of the cut-cells
given in Figure 3.

1. Note that the re-entrant corner of a Cartesian mesh is a particular caseof pentagonal cell (c)
when φi,j = 0, and that Case (f) (which corresponds to φi−1,j−1 = φi−1,j = φi,j = 0 and
φi,j−1 < 0) correspondsto theparticular caseof asalient corner. Only thedefinition of the cell
volumedistinguishesthe latter cell from thelimiting caseof triangle (e) defined byφi−1,j−1 =

φi,j = 0, φi−1,j > 0 andφi,j−1 < 0. Only the definition of the cell volume distinguishes the
latter cell from the limiting case of triangle (e) defined by φi−1,j−1 = φi,j = 0, φi−1,j > 0

andφi,j−1 < 0.
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2.3. Discretization of the continuity equation

As in the Cartesian method of Verstappen et al. (2003), the starting point of the
LS-STAG discretization concerns the massconservation law [1] in cell Ωi,j , which is
represented by Equation [1]. For any fluid cell (cut-cell or Cartesian), we denote its
facesasΓi,j = Γw

i,j ∪Γe
i,j ∪Γs

i,j ∪Γn
i,j ∪Γib

i,j , and decompose the continuity equation
as the net massflux througheach of these faces :

ṁi, j ≡ −ui−1,j + ui,j − vi,j−1 + vi,j + U
ib
i,j = 0. [8]

In thisequation, U
ib
i,j ≡

∫
Γib

i,j

v
ib ·nib

i,j dS denotesthemassflow throughthesolid part

of the cell boundary. This quantity may be nonzero for non homogeneous boundary
conditions only. The massflow throughthe fluid part of the faces is denoted with a
bar : for example, the flow throughfaceΓe

i,j of Figure 2 is :

ui,j ≡

∫

Γe
i,j

v · ex dS =

∫ yib
i,j

yj−1

u(xi, y) dy. [9]

In order to easily discretize this integral, we first locate the discrete unknown ui,j in
the middle of the fluid part of the face as :

ui,j ≡ u(xi, yj−1 + 1

2
θ u

i,j ∆yj). [10]

Then, by using midpoint quadrature, we obtain :

ui,j
∼= θ u

i,j ∆yjui,j , [11]

and following analogous discretizations for the other faces, the discrete continuity
equation reads :

ṁi, j ≡ ∆yj

(
θ u

i,j ui,j − θ u
i−1,j ui−1,j

)
+ ∆xi

(
θ v

i,j vi,j − θ v
i,j−1 vi,j−1

)

+ U
ib
i,j = 0. [12]

We now turn to the discretization of the boundary term as :

U
ib
i,j

∼= uib
i,j [nx∆S]ibi,j + vib

i,j [ny∆S]ibi,j , [13]

where [nx∆S]ibi,j and [ny∆S]ibi,j aretheprojected areasof thesolid faceof the cut-cell
in the horizontal and vertical directions respectively, and velocity v

ib
i,j = (uib

i,j , vib
i,j)

represents an approximation of thevelocity on thesolid boundary Γib
i,j of the cut-cell .

This last term is calculated with the trapezoidal rule, for example in Figure 2 :

v
ib
i,j =

1

2
v(xi, y

ib
i,j) +

1

2
v(xi−1, y

ib
i−1,j), [14]
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where the velocity datum at the intersection points between the solid boundary and
the cut-cells is given by the boundary conditions of the continuous problem. The
projected areas are readily calculated from the cell -facefraction ratios as :

[nx∆S]ibi,j = ( θ u
i−1,j − θ u

i,j )∆yj , [ny∆S]ibi,j = ( θ v
i,j−1 − θ v

i,j )∆xi.

[15]

We mention that this discretization of the continuity equation is valid for any type
of cut-cells, and in the particular case of a Cartesian fluid cell ( such as the cell -face
fractionratiosare equal to0 or 1 only), Equation[12] reducesto thediscrete continuity
equation of the original MAC method.

In the following, it will be useful to write the discrete continuity equation in its
matrix form :

DU + U
ib

= 0, [16]

where each line (i, j) of this system corresponds to Equation [12] written in cell Ωi,j ,

and the vectors U and U
ib

contains the velocity unknowns (ui,j , vi,j) and the dis-
cretization of the boundary terms respectively.

2.4. Energy preserving discretization of the momentum equations

Now, we turn to the discretization of the momentum equations [2], whose semi-
discrete matrix representation reads :

M
dU

dt
+ C[U ]U + GP −

1

Re
KU + S ib,c −

1

Re
S ib,v = 0, [17]

where the diagonal massmatrix M is build from the volume of the fluid cells, matrix
C[U ] represents the discretization of the convective fluxes, G is the discrete pressure
gradient, K represents the viscous term, S ib,c and S ib,v are sourceterms arising from
the boundary conditions of the convective and viscous termsrespectively.

The discretization of these terms should preserve the discrete counterpart of the
conservation of the kinetic energy Ec(t) = 1

2

∫
Ωf v

2 dV when the viscosity vanishes.
The conservation equation for Ec(t) is obtained from the Navier-Stokes equation by
multiplying the momentum Equation [2] with v and integrating in the whole fluid
domain. After integration by partsof thevolumic integrals, thisconservationequation
reads

dEc

dt
=

∫

Ωf

[ ( |v|
2

2

+p
)
∇· v−

|v|

Re

2 ]
dV −

∫

Γib

( |v|
2

2

+p−
∇v

Re

)
v·n dS. [18]

Thanks to the continuity equation, the only term remaining in the volume integral in-
volves the viscous stresses, and expresses the lossof energy by viscous dissipation.
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The non-vanishing terms in the surfaceintegrals show that the pressure and convec-
tive terms only influence the kinetic energy budget by their action at the immersed
boundary.

In order to build the discrete counterpart of [18], we first discretize the kinetic
energy Ec(t) with the trapezoidal rule in each fluid cell Ωi,j :

Ec(t) ∼= Eh
c (t) =

1

2
UTMU +

1

2
U ib,TMibU ib, [19]

whereM is the diagonal massmatrix that appears in the discrete momentum Equa-
tion [17], and U ib,TMibU ib is the contribution of the boundary conditions, which are
assumed to be steady. For each line (i, j) of the discrete system [17], the trapezoidal
rulegivesthevalueof thediagonal coefficient of themassmatrix in thehorizontal and
vertical directions :

[Mx]P (i, j) =
1

2
Vi,j +

1

2
Vi+1,j , [My]P (i, j) =

1

2
Vi,j +

1

2
Vi,j+1. [20]

These expressions show that, in the cut-cellsat least, themassmatrix for ui,j andvi,j

is not constructed from the actual areas of Ωu
i,j et Ωv

i,j .

The conservation equation for Eh
c (t) is obtained after time-differentiation of [19],

then by using the discrete momentum Equation [17] we finally obtain :

dEh
c

dt
= −UT C[U ]T + C[U ]

2
U−P TGTU−UT KT + K

2Re
U−UT

(
S ib,c−

1

Re
S ib,v

)
.

[21]

In order to obtain an expression similar to [18], the viscous term −UT(KT + K)U
should mimic the viscous dissipation of the kinetic energy budget, and thus should
always be strictly negative. This feature is obtained as soonas the matrix KT + K is
positive definite. For a finite-volume method, this is obtained as soonas the discrete
viscous flux is stable and consistent (Eymard et al., 2000). Note that the symmetry of
K is not required. If , in addition, we impose that the discretization of the convective
terms leads to a skew-symmetric matrix :

C[U ] = −C[U ]T, [22]

andthat, asin thefinite element method, thepressuregradient isdual to thedivergence
operator (seeEquation [16]) :

G = −DT, [23]

wefinally observethat theboundary termsonly affectsthekinetic energy budget when
the viscosity vanishes (Re→ +∞) :

dEh
c

dt
= −P TU

ib
− UTS ib,c. [24]
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Discretization of the pressure gradient

In the above equation, the term P TU
ib

represents thediscretization of thepressure
term

∫
Γib pv · n dS in Equation [18], and condition [23] allows us to completely

determine the discret pressure gradient in control volumes Ωu
i,j and Ωv

i,j from the
discrete divergenceoperator [12] :

∫

Γu
i,j

pex · ndS ∼= [GxP ]i,j = θ u
i,j ∆yj (pi+1,j − pi,j) , [25a]

∫

Γv
i,j

pey · ndS ∼= [GyP ]i,j = θ v
i,j ∆xi (pi,j+1 − pi,j) . [25b]

These formulae are valid for any type of fluid cells, and in the particular case of
Cartesian fluid cells(such that the cell -facefractionratiosare equal to 1), onerecovers
the finite-differencegradient of the MAC method:

[GxP ]i,j =
pi+1,j − pi,j

1

2
∆xi+1 + 1

2
∆xi

[Mx]P (i, j),

where [Mx]P (i, j) = ( 1

2
∆xi+1 + 1

2
∆xi)∆yj for the Cartesian control volumeΩu

i,j .

In the cut-cells however, it is not possible to interpret Formulas [25] as finite-
difference quotients for pi,j located at the centroids of the cut-cells. Instead, the
LS-STAG discretization has much in common with the P1 nonconforming/P0 finite
element method, where the pressure is approximated with a piecewise constant poly-
nomial with degrees of freedom at the elements centroid (Pironneau, 1989). As a
consequence, pi,j is a valid approximation of the pressure anywhere inside cut-cell
Ωi,j , even onits solid face. Note that an equivalenceof thisassumption in aCartesian
mesh is that the pressure gradient is zero at solid boundaries. In the next section, we
shall observe that the normal viscous stresses are discretized similarly.

Discretization of the convectivefluxes

For the x-momentum Equation [2a], the skew-symmetry property [22] of C[U ]
imposes uponthe discretization of the convective term, that we write in a Cartesian
control volume away from theimmersed boundary asthefollowingfive-point scheme:

∫

Γu
i,j

(v · n)udS ∼= C[U ]W(i, j)ui−1,j + C[U ]E(i, j)ui+1,j + C[U ]P(i, j)ui,j

+ C[U ]S(i, j)ui,j−1 + C[U ]N(i, j)ui,j+1,

[26]
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must verify the following conditions :

C[U ]P(i, j) = 0, [27a]

C[U ]E(i, j) = −C[U ]W(i + 1, j), [27b]

C[U ]N(i, j) = −C[U ]S(i, j + 1). [27c]

The central discretization of the MAC method trivially verifies these conditions on
uniform meshes. Other popular discretizations, such as discretizations of upwind
type, are known to violate this condition, resulting in adding artificial viscosity to
the scheme.

Skew-symmetric discretizations that verify conditions [27] are now well -
established methods for high-fidelity simulation of turbulent flows. Morinishi et al.
(1998) have build symmetry preserving high-order finite-differenceformulas on uni-
form cartesian grids, andapplied them to theLESof turbulent channel flow. Recently,
Verstappen et al. (2003) have proposed a skew-symmetric discretization for the DNS
of channel flow that enforces conditions [27] on non-uniform Cartesian meshes. This
discretization will be the building block of the LS-STAG discretization of the con-
vective term in the cut-cells. For the Cartesian control volume Ωu

i,j of Figure 1, the
skew-symmetric discretization consists in writing the convective term as the net flux
throughits four elementary faces :

∫

Γu
i,j

(v · n)u dS = −

∫

Γ
u,w
i,j

(v · ex)udy +

∫

Γ
u,e
i,j

(v · ex)u dy

−

∫

Γ
s,e
i,j

∪Γ
s,w
i+1,j

(v · ey)u dx +

∫

Γ
n,e
i,j

∪Γ
n,w
i+1,j

(v · ey)u dx,

[28]

Each of these terms are discretized with the help of the discrete massfluxes [11], for
example for the east face:

∫

Γ
u,e
i,j

(v · ex) udy ∼=
ui,j + ui+1,j

2
ue, [29]

where ue is a characteristic value of u on Γu,e
i,j , which has to be obtained by interpo-

lation of the discrete velocity unknowns. As observed by Verstappen et al. (2003) ,
the only possible way to verify the skew-symmetric conditions [27] is to use central
interpolation with equal weighting :

ue =
ui,j + ui+1,j

2
. [30]

Analogous interpolations are obtained on the other faces, for example on the south
face:

∫

Γ
s,e
i,j

∪Γ
s,w
i+1,j

(v · ey)u dx ∼=
vi,j−1

2
us +

vi+1,j−1

2
us, [31]
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with us = (ui,j−1 +ui,j)/2. Now, by using theproperty of local conservativity of the
fluxes throughfluid faces :

∫

Γ
u,w
i,j

(v · ex)u dy =

∫

Γ
u,e
i−1,j

(v · ex)u dy, [32a]

∫

Γ
n,e
i,j

(v · ey)u dx =

∫

Γ
s,e
i,j+1

(v · ey)u dx, [32b]

onegets, after identificationwith [26], thefollowingcoefficientsof thediscretization:

C[U ]P(i, j) = 1

4
ṁi, j + 1

4
ṁi+1, j , [33a]

C[U ]W(i, j) = − 1

4
ui−1,j −

1

4
ui,j , C[U ]E(i, j) = 1

4
ui,j + 1

4
ui+1,j , [33b]

C[U ]S(i, j) = −1

4
vi,j−1 −

1

4
vi+1,j−1, C[U ]N(i, j) = 1

4
vi,j + 1

4
vi+1,j ,

[33c]

which verifiesthe antisymmetry conditions[27] when thediscrete continuity equation
is verified in Ωi,j and Ωi+1,j . Any type of interpolation other than [30], for example
an upwind discretization, would violate theses conditions.

In the cut-cells, the skew-symmetric discretization given by [26], [33] must be
modified in order to take into account the boundary conditions on the immersed
boundary. This discretization would prove to be more complicated to build than for
the pressure gradient, because we could not obtain a unique formula which would
be valid for any type of cut cells : instead, the discretization should be constructed
in each of the half generic control volumes of Figure 3 such as the skew-symmetry
condition [22] be verified for any combinations of these half control volumes.

Let us consider the case of the control volumeΩu
i,j of Figure 2, whose north solid

boundary Γib,e
i,j ∪ Γib,w

i+1,j is built from two halves of trapezoidal cut-cells. For this
control volume, the discretization of the convective term must take the form :

∫

Γu
i,j

(v · n)u dS ∼= C[U ]W(i, j)ui−1,j + C[U ]E(i, j)ui+1,j + C[U ]P(i, j)ui,j

+ C[U ]S(i, j)ui,j−1 + S ib,c
i,j ,

[34]

whereC[U ]N(i, j) isdiscarded sincethevelocity unknownui,j+1 doesnot exist in the
fluid domain. The skew-symmetry condition [22] reads for this control volume :

C[U ]P(i, j) = 0, C[U ]E(i, j) = −C[U ]W(i + 1, j). [35]
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The discretization that verifies these conditions is obtained by decomposing the
boundary of the control volume as in Equation [7], andwriting the convective term as
the net flux througheach of these faces :

∫

Γu
i,j

(v · n)udS = −

∫

Γ
u,w
i,j

(v · ex) udy +

∫

Γ
u,e
i,j

(v · ex)u dy

−

∫

Γ
s,e
i,j

∪Γ
s,w
i+1,j

(v · ey)u dx +

∫

Γ
ib,e
i,j

∪Γ
ib,w
i+1,j

(v · nib)u dS.

[36]

The fluxes through each of the fluid faces are given by Eqs. [29], [31] and [32],
whereas the fluxes through each half of solid faceΓib,e

i,j and Γib,w
i+1,j are discretized

separately as :

∫

Γ
ib,e
i,j

(v · nib
i,j)u dS ∼=

U
ib
i,j

2

(
1

2
ui,j + 1

2
uib

i,j

)
, [37a]

∫

Γ
ib,w
i+1,j

(v · nib
i+1,j)u dS ∼=

U
ib
i+1,j

2

(
1

2
ui,j + 1

2
uib

i+1,j

)
. [37b]

In these expressions, the terms underlined once contribute to the diagonal coeffi-
cient C[U ]P(i, j)ui,j , in order to recover the expression of the discrete continuity in
Ωi,j andΩi+1,j , whereasthetermswhich aretwiceunderlined contributeto thesource
term S ib,c

i,j . Asa result, thediscretization of the convective term in thiscontrol volume
is also given by [33], with the exception that :

C[U ]N(i, j) = 0, S ib
i,j =

1

2

( U
ib
i,j

2
uib

i,j +
U

ib
i+1,j

2
uib

i+1,j

)
. [38]

The antisymmetry conditions[35] isthusverified, andwemay consider that thesource
term S ib

i,jui,j that arises in the kinetic energy budget [24] corresponds to a discrete

approximation of the term
∫
Γib|v|

2
v · n/2 dS written on the solid boundary Γib,e

i,j ∪

Γib,w
i+1,j of the control volume.

For the other types of half control volumes, the expression of the skew symmetric
convective flux onthe solid boundary is given in Figure 3, while the flux acrossfluid
faces is given by the usual central formulae, e.g. [29] and [31].

Discretization of the viscous terms

For thex−momentum Equation [2a], the viscous terms written in control volume
Ωu

i,j reads :
∫

Γu
i,j

∇u · ndS =

∫

Γu
i,j

∂u

∂x
ex · ndS +

∫

Γu
i,j

∂u

∂y
ey · ndS. [39]
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We aim to discretizing these terms in the cut-cells such that the simplicity of the 5-
point structure of the MAC method be preserved. In this respect, we had to make a
distinction between the discretization of the normal stressflux

∫
Γu

i,j

∂u/∂x ex · ndS

and the shear stressflux
∫
Γu

i,j

∂u/∂y ey · ndS in the cut-cells.

For thenormal stressflux, ageometry-based formulawould consist in writing this
term asthenet flux throughthe east Γu,e

i,j andwest Γu,w
i,j faces, andthen discretize each

of these terms with a differential quotient, for example :
∫

Γ
u,w
i,j

∂u

∂x
ex · ndS ∼= ∆yu,w

i,j

ui,j − ui−1,j

∆xi

. [40]

with the area∆yu,w
i,j yet to bedefined. All our efforts in thisdirection gavedisappoint-

ingresultsin termsof numerical accuracy. Thereasonisthat theLS-STAG mesh isnot
admissible in the sense of Eymard et al. (2000) for the normal stresses : the line join-
ing the location of ui−1,j andui,j isnot orthogonal to the faceΓu,w

i,j in the trapezoidal
cell Ωi,j of Figure 2. This feature is also observed for the other types of cut-cells
(seeFigure 3 (a) and (c)), and has the consequenceto render approximation [40] non
consistent and thus to yield large numerical errors.

In order to improve the consistency of this term, and to retain the simplicity of
a 5-point stencil , we use the fact that the discretization of the normal stresses and
pressureshould be consistent, as stated above, and thus thenormal stressflux shall be
discretized with an expression similar to the pressure gradient [25a] :

∫

Γu
i,j

∂u

∂x
ex · n dS ∼= θ u

i,j ∆yj

(
∂u

∂x

∣∣∣∣
i+1,j

−
∂u

∂x

∣∣∣∣
i,j

)
. [41]

Thediscretization hasto be completed with adifferential quotient for ∂u/∂x|i,j . This
quotient is constructed by requiring that Green’s theorem :

∫

Ωi,j

(
∂u

∂x
+

∂v

∂y

)
dV =

∫

Γi,j

v · n dS, [42]

be valid at the discrete level in a cut-cell , since it is trivially verified by the MAC
methodin a Cartesian cell . After a straightforward discretization of the integrals and
comparison with the continuity Equation [12], one gets :

∂u

∂x

∣∣∣∣
i,j

∼=
θ u

i,j ui,j − θ u
i−1,j ui−1, j + ( θ u

i−1,j − θ u
i,j )uib

i,j

Vij/∆yj

. [43]

This expression is valid for any type of cut-cells, and reduces to the usually finite-
differencequotient for a Cartesian fluid cell .

In contrast, the discretization of the shear stress
∫
Γu

i,j

∂u/∂y ey · ndS is much

simpler because the LS-STAG mesh is admissible in the y direction for this term.
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Thus, we can write it as thenet flux throughthenorth andsouth faces, for example far
from the immersed boundary :

∫

Γu
i,j

∂u

∂y
ey · ndS =

∫

Γ
n,e
i,j

∪Γ
n,w
i+1,j

∂u

∂y
dx −

∫

Γ
s,e
i,j

∪Γ
s,w
i+1,j

∂u

∂y
dx, [44]

and thedifferentiation of the interpolation polynomial of u(xi, ·) in thevertical direc-
tion leads to finite difference-like formula, for example :

∫

Γ
n,e
i,j

∪Γ
n,w
i+1,j

∂u

∂y
dx ∼=

(
1

2
θ v

i,j ∆xi + 1

2
θ v

i+1,j ∆xi+1)
ui,j+1 − ui,j

1

2
θ u

i,j+1 ∆yj+1 + 1

2
θ u

i,j ∆yj

, [45]

for the flux on the north face. This formula is valid if ui,j+1 is present in the fluid
domain, i.e. if θu

i,j+1 > 0 : this is the case of the Cartesian cell of Figure 1 (b), and
the cut-cells in Figure 3 (a) et (b).

In the case where the north face is solid and thus ui,j+1 does not exist (case
where θu

i,j+1 > 0, for the cut-cells of Fig . 3 (c)-(f)), the formula takes into account
the boundary conditions in the fashion of the Ghost Fluid Method for elli ptic equa-
tions (Gibouet al., 2002) :

∫

Γ
ib,e
i,j

∪Γ
ib,w
i+1,j

∂u

∂y
dx ∼=

(
∆xib,e

i,j + ∆xib,w
i+1,j

)u(xi, y
ib
i,j) − ui, j

1

2
θ u

i,j ∆yj

, [46]

where the integration areas ∆xib,e
i,j and ∆xib,w

i+1,j are defined in Figure 3 for each type
of cut-cell . Asfor thediscretization of theother fluxesof theNavier-Stokesequations,
Formulae[45] and[46] yields theusual discretizationsof theoriginal MAC methodin
a regular fluid cell .

2.5. Time stepping method and solution of the linear systems

Thetimeintegration of thedifferential algebraic system [16] and[17] isperformed
with a semi-implicit projection method based onthe AB / BDF 2 scheme. This pro-
jection scheme is defined by the following two steps :

M
3Ũ − 4Un + Un−1

2∆t
+ 2 C[U

n
]Un − C[U

n−1
]Un−1

− DTPn −
1

Re
KŨ = −S ib,n+1, [47]
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where Ũ is a prediction of the velocity at time tn+1 = (n + 1)∆t, then :

3

2
M

Un+1 − Ũ

∆t
−DT

(
Pn+1 − Pn

)
= 0, [48a]

DUn+1 + U
ib,n+1

= 0. [48b]

Numerical testsby Botella (2002) showsthat this schemeisO(∆t2) accurate for both
velocity and pressure.

The projection step [48] leads to solving following Poissonequation for the pres-
sure potential Φ = 2∆t(Pn+1 − Pn)/3 :

AΦ = DŨ + U
ib,n+1

, A ≡ −DM−1DT, [49]

which is a symmetric linear system whose 5-point stencil reads :

AE(i, j) =

(
θu

i,j∆yj

)2
1

2
Vi,j + 1

2
Vi+1,j

, AW(i, j) = AE(i − 1, j), [50a]

AN(i, j) =

(
θv

i,j∆xi

)2
1

2
Vi,j + 1

2
Vi,j+1

, AS(i, j) = AN(i, j − 1), [50b]

AP(i, j) = −AE(i, j) − AW(i, j) − AN(i, j) − AS(i, j). [50c]

In the caseof aCartesian fluid cell , theusual pressure equation of theMAC methodis
recovered. We mention that the pressure Equation [49] is valid in the whole compu-
tational domain, but thesolution in thefluid domain is totally decoupled from theone
in the solid domain. Moreprecisely, the linear system in thefluid cells has a rank one
deficiency, while in the solid cells the system reads :

0 × Φi,j = 0, [51]

showingthat thepressure isdefined upto adifferent additive constant in each domain.
In order to alleviate these indeterminacies in actual computations, we add to the di-
agonal coefficient AP(i, j) a small real constant ǫ whose magnitude has the order of
themachine roundoff level, andwesolve [49] in thewhole computational domain : it
amounts in letting the computer roundoff sets the arbitrary pressure levels. With this
technique borrowed from Yeckel et al. (1999), the pressure equation is solved simul-
taneously in both fluid and solid domains with any iterative solver for elli ptic equa-
tions on Cartesian grids, where no modifications are needed for taking the immersed
boundary into account. In the computations we present in the following section, we
have used the black-box multigrid/BiCGSTAB solver of van Kan et al. (2000), and
we typically observed that the pressure equation was solved in 2-3 iterations.
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(a)

-5 0 5-5

0

5

(b)
Figure 4. Geometry andcomputational domain for the Taylor-Couette flow. (a) : the
fluid domain Ωf is confined between two concentric cylinders Γ1 and Γ2 of center
(xc, yc), radius R1 and R2 = 4R1 respectively, where only the inner cylinder Γ1

moves with the angular velocity ω. (b) : the LS-STAG mesh for R1 = 1 andN = 50
cells in each direction

3. Numerical results

3.1. Taylor-Couette flow

First, the spatial accuracy of the LS-STAG method is assessed on the Taylor-
Couette flow between two concentric circular cylinders, as described in Figure 4 (a).
The flow dynamics is governed by the Taylor Number Ta, which is the ratio between
the centrifugal force and the viscous force:

Ta =
ω2
(

R1+R2

2

)
(R2 − R1)

3

ν2
, [52]

where ν is the kinematic viscosity of the fluid. Below the stabilit y threshold Tac =
1712, the flow is steady, stable and purely orthoradial, and the analytical solution is
given bye.g. Guyonet al. (2001).

In order to build the level-set function φ(x, y) that represents the fluid domain
Ωf , we have used the Constructive Solid Geometry (CSG) method for constructing
complex domains out of basic geometries such as circles, hyperplanes, spheres, etc.,
which are sufficiently simple for having an analytical expression for their level-set
function (Hart, 1996; Osher et al., 2003). The boolean CSG operations on basic ge-
ometries such as intersection, union or complementary part can then be expressed as
algebraic operations on their level-set functions (Osher et al., 2003). For example,
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let Ω1 and Ω2 be the inner region of cylindersΓ1 and Γ2, whose level-set function is
respectively :

φ1(x, y) = R1 − r, [53a]

φ2(x, y) = R2 − r. [53b]

Then, the fluid domain of the Taylor-Couette geometry can be constructed as Ωf =
Ω2\Ω1, and its level-set function is simply φ(x, y) = max (φ2(x, y),−φ1(x, y)).

The computational domain isasquareof sidelength10R1, covered with auniform
mesh of N square computational cells of sizeh in each direction (seeFigure 4 (b)).
The center of the concentric cylinders is set at xc = 0.013, yc = 0.023 slightly off
the center (x = 0, y = 0) of the computational domain, such as it never corresponds
to a corner or centroid of a computational cell . Thus, the numerical error we measure
are freeof any superconvergence effets, since the natural symmetries of the meshes
and the computational solution are broken. For the flow at Ta = 1000, we have
compared the results of the LS-STAG method with the so-called staircase method,
which correspondsto astepwise approximation of complex geometrieswith Cartesian
cells. This last method is easily obtained from our numerical code by imposing the
cell facefraction ratios to be equal to 1 in the cut-cells, while the discretization in the
Cartesian cells isunchanged. Wewill seethat even thoughthe cut-cells represent only
asmall fraction of the computational cells, thesemodificationswill greatly affects the
numerical solution in the whole fluid domain.
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Figure 5. L∞ norm of the error for the streamwise velocity u versus grid size h =
10R1

N
. (a) : on90% of the fluid domain, (b) : on the whole fluid domain
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Figure 6. Pointwise error profiles along the horizontal axis y = 0.023 for the v ve-
locity

For assessing the accuracy of both methods, We have measured the L∞ spatial
error of theu Cartesian component of the velocity up to the cut-cells, ie :

Eh(u) = max
CVsΩ

u
i,j

|ui,j − uex(xi, yj + 1

2
θu

i,j∆yj)|, [54]

Figure 5 (a) shows the error for the velocity measured on90% of the fluid cells away
from theimmersed boundaries. TheLS-STAG method yieldsasecond-order accuracy,
much better than the first-order accuracy of the staircase method. When the error of
theLS-STAG methodismeasured onthewhole computational domain (Figure5 (b)),
the L∞ error is slightly higher, showing that maximal error occurs in the vicinity
of the cut-cells, and the order of accuracy drops to being superlinear only. This is
certainly an effect of thepiecewise constant approximation of thenormal stressesand
thepressurein the cut-cells. Figure6 showsthepointwise error of thevelocity at mesh
pointsalongthehorizontal radius, for x ∈ [R1, R2]. Firstly, weobserve that the crude
treatment of the immersed boundaries for thestaircasemethod pollutes thesolution in
thewholefluid domain, whereas thepointwise error of theLS-STAG methodismuch
lower, most notably in theinner fluid region. Finally, wementionthat asimilar trendis
observed for theL∞ error of thepressure : theL∞ error shows second order accuracy
for the LS-STAG methodaway from the cut-cells, while the staircase methodis only
first order.

3.2. Flow past a circular cylinder

The robustnessof the LS-STAG methodand its abilit y to compute unsteady flows
at higher Reynolds number is now evaluated onthe flow past a circular cylinder in a
freestream. TheReynoldsnumber isbased onthe freestream velocity U∞ andthedi-
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(a) (a)

Figure 7. (a) : Computational domain and (b) : grid for the flow past a circular
cylinder

(a) (b)

Figure 8. (a) : vorticity contours andstreamlines around acircular cylinder at Re =
40, onM4 mesh. At (b) : close up of the mesh in the vicinity of the cylinder

ameter D of thedomain. Theflow configuration isdescribed in Figure7 (a). In all our
simulations, the upstream boundary is set at the distanceXu = 8D from the obstacle,
the outflow boundary at distanceXd = 15D, and the blockage ratio D/A is equal to
1/12. Our previous studies (Cheny et al., 2007) have shown that this computational
domain was sufficiently wide for obtaining results independent of thedomain size. In
order to make agrid refinement study, we used a sequence of non-uniform meshes
summarized in Table1. All thesemeshesusesasimilar block uniform grid of cell size
h/D in thewakeof the cylinder, as shown in Figure7 (b). Our simulationswith mesh
M4 were foundto give accurate results for the rangeof Reynoldsnumber [40− 1000]
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we considered. The other meshes range from very coarse (mesh M1, used for the
steady flow at Re = 40) to extremely fine (mesh M5 and M6). These last two meshes
are mainly used for validating the results obtained oncoarser meshes. For comparing
our results, wehaveselected well -established numerical investigationsconducted with
boundary fitted methods (Henderson, 1997; Bergmann et al., 2007; He et al., 2000),
IBM (Linnick et al., 2005) and cut-cell methods (Mittal et al., 2008). Experimental
results are taken from the monograph byZdravkovich (2003).

Table 1. Salient properties of the meshes used for the circular cylinder flow. The
percentage of the various type of cells with respect to their total number is given in
brackets

Type of cells
Mesh Nx × Ny h/D Number Cartesian Solid Cut-cells

of cells cells cells
M1 36 × 34 0.32 1224 1208(98.7%) 4 (0.3%) 12 (1.0%)
M2 74 × 65 0.16 4810 4767(99.1%) 19 (0.4%) 24 (0.5%)
M3 150 × 130 0.08 19500 19350(99.2%) 100(0.5%) 50 (0.3%)
M4 300 × 260 0.04 78000 77460(99.3%) 440(0.6%) 100(0.1%)
M5 550 × 350 0.01 192500 184452(95.8%) 7644(4.0%) 404(0.2%)
M6 825 × 524 0.007 432300 414332(95.8%) 17364(4.0%) 604(0.2%)

First, we considered the steady flow at Re = 40. Figure 8 shows the streamlines
and vorticity contoursobtained onmesh M4. For producingthesefigures, thevorticity
at cut-cell corners is computed by using the difference formulaefor the shear stress
(Equation [46] for example). As seen in Figure 8 (b), we may noticethe deflection of
thestreamlinesaroundthe cylinder body, showingthat the immersed bodyiscorrectly
taken into account by the LS-STAG method. The accuracy of the computations is
assessed bycomputingthedrag coefficient CD andthe length of therecirculation bub-
ble Lw/D. The force coefficient is computed by directly approximating the surface
integrals of the stresstensor on the immersed boundary, and using formulae[41] and
[44] for computing the normal and shear stresses respectively. Table 2 compares the
resultsof thestaircase andLS-STAG methodagainst established results from theliter-
ature (where thedrag coefficient is typically in the range [1.50− 1.54]). Thestaircase
method gives very inaccurate results on the coarser meshes (no recirculation zone is
observed onmesh M1), whereas theLS-STAG method givesacceptable results for all
meshes, giving asymptotically the valuesLw = 2.30D andCD = 1.51.

Unsteady flows at Re = 100, 200, and 1000 have been computed onthe M4 and
M5 meshes. For breaking the symmetry of the flow and efficiently triggering the vor-
tex shedding, we use as initial condition a discontinuous flow field equal to U∞ in
the upper half of the domain, and 0in the lower half. The flow reaches an asymptot-
ically periodic state at tU∞/D = 50, then we starts computing the force coefficients
at each time step until t = 350. The Strouhal number St is computed as the first
harmonic of the power spectrum of the li ft coefficient, with a frequency resolution
of ±1.67 × 10−3 since the length of the time signal is equal to 300 units. Tables 3
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Table 2. Results for the flow at Re = 40 obtained on the various meshes of Table 1,
and comparison with established experimental and computational results from the
literature

Lw/D CD

LS-STAG staircase LS-STAG staircase
M1 1.715 0.000 1.599 1.185
M2 2.095 1.319 1.547 1.402
M3 2.219 2.041 1.551 1.545
M4 2.300 2.101 1.500 1.527
M5 2.299 2.226 1.508 1.559
Experiments (Zdravkovich, 2003) − 1.48 − 1.70
Bergmannet al. (2007) 2.26 1.682
Henderson (1997) − 1.545
Heet al. (2000) − 1.505
Linnick et al. (2005) 2.23 1.54
Mittal et al. (2008) − 1.53

Figure 9. Vorticity contours in the wakeof the cylinder at Re = 1000, computed by
the LS-STAG method onthe M5 mesh.

and 4 gives salient results computed with the LS-STAG and staircase method. On the
M4 mesh for Re = 100 and 200 and onthe M5 mesh for Re = 1000, the LS-STAG
method gives excellent agreement with the published results. It is also quite remark-
able to observe that thestaircasemethod givesmarginally acceptable results, even for
Re = 1000. This is certainly due to the fact that the staircase method inherits the
conservation and stabilit y properties of the LS-STAG method, and only the treatment
of the immersed boundary differs.
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Table 3. Comparison of time averaged drag coefficient CD andcorresponding oscil -
lation amplitude±∆CD with established results from the literature

Re 100 200 1000
M3 1.352 ± 0.008 1.350 ± 0.037 0.979 ± 0.055

M4 1.322 ± 0.009 1.332 ± 0.044 1.493 ± 0.227

M5 1.317 ± 0.009 1.327 ± 0.045 1.530 ± 0.229

M6 1.314 ± 0.009 1.324 ± 0.044 1.524 ± 0.246

M4 staircase 1.323 ± 0.009 1.346 ± 0.044 1.610 ± 0.198

Experiments (Zdravkovich, 2003) 1.21 − 1.41 − −

Bergmannet al. (2007) 1.410 1.390 1.505
Henderson (1997) 1.350 1.341 1.509
Heet al. (2000) 1.353 1.356 1.519
Linnick et al. (2005) 1.34 ± 0.009 1.34 ± 0.044 −

Mittal et al. (2008) 1.35 − 1.45

Table 4. Comparison of Strouhal number St with established results from the litera-
ture.

Re 100 200 1000
M3 0.170 0.200 0.260
M4 0.170 0.200 0.247
M5 0.170 0.200 0.241
M6 0.170 0.200 0.241
M4, staircase 0.177 0.207 0.251
Experiments (Zdravkovich, 2003) 0.16 − 0.17 − −

Bergmannet al. (2007) 0.166 0.199 0.235
Henderson (1997) 0.164 0.197 0.237
Heet al. (2000) 0.167 0.198 0.239

4. Concluding remarks

In this paper, we have developed and analyzed a novel IB/cut-cell methodfor in-
compressible viscous flows called the LS-STAG method. The immersed boundary is
implicitly represented by its level set, which enables us to calculate efficiently the ge-
ometry parameters of the cut-cells. The discretization in the cut-cells has been built
by requiring that total kinetic energy is conserved at the discrete level. The LS-STAG
discretization preserves the 5-point Cartesian structure of the stencil , resulting in a
highly computationally efficient method, and the computations of benchmark flows
have shown that the methodis a promising kernel for the design and analysis of com-
plex CFD systems.
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Thiswork isalso oneof thefirst attempt towards rigourously addressingsomeim-
portant issues for IB computations, such as the conservation of global flow properties
(total mass, momentum and kinetic energy) in IB computations, and the consistent
implementation of boundary conditions at the immersed boundary. Due to page lim-
itations, we did not include in this paper the proofs of the conservation of total mass
and momentum by the LS-STAG method. These issues, as well as novel applications
of the LS-STAG method for flows in complex moving geometries, will be discussed
in a forthcoming paper.
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