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ABSTRACT. The goal of this paper is to develop a parallel algorithm for the direct solution of large 
sparse linear systems and integrate it into domain decomposition methods. The computational 
effort for these linear systems, often encountered in numerical simulation of structural 
mechanics problems by finite element codes, is very significant in terms of run-time and memory 
requirements.In this paper, a two-level parallelism is exploited. The exploitation of the lower 
level of parallelism is based on the development of a parallel direct solver with a nested 
dissection algorithm and to introduce it into the FETI methods. This direct solver has the 
advantage of handling zero-energy modes in floating structures automatically and properly. The 
upper level of parallelism is a coarse-grain parallelism between substructures of FETI. Some 
numerical tests are carried out to evaluate the performance of the direct solver. 

RÉSUMÉ. Le but de ce papier est de mettre au point un algorithme parallèle pour la résolution 
directe de grands systèmes linéaires creux et l’intégrer dans les méthodes de décomposition 
de domaine. Ces systèmes linéaires, souvent rencontrés lors de la simulation numérique de 
problèmes de mécanique des structures par des codes de calcul par éléments finis, sont 
résolus avec des coûts très importants en temps de calcul et en espace mémoire. Dans ce 
papier, un parallélisme à deux niveaux a été exploité. L’exploitation du niveau inférieur de 
parallélisme a d’abord consisté à réaliser un solveur direct parallèle basé sur une technique 
de dissection emboîtée et à l’intégrer ensuite dans la méthode FETI. Ce solveur direct a 
l’avantage de traiter automatiquement et proprement les modes à énergie nulle dans des 
structures flottantes. Le niveau supérieur est un parallélisme efficace à gros grain entre les 
sous-structures de FETI. Des tests ont été effectués pour évaluer les performances du solveur 
direct. 
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1. Introduction

The direct resolution of large sparse linear systems has for long played a signif-
icant role in numerical simulation of many scientific computing problems, including
problems in computational mechanics of structures. In structural mechanics, the use
of finite element codes often leads to very large sparse linear systems. Solving these
linear systems is really very expensive in terms of computational time and memory
requirements.

The parallelization of these codes becomes a mandatory technique. It is able to
reduce the computational cost and thus allows to simulate in structural mechanics
large-scale models with increasingly complex constitutive material behaviour and re-
fined geometries (geometry of components, level of detail of microstructure models).
Thedomain decompositionmethods are anatural way to parallelizethese codes. One
of the most commonly used method is FETI method1 (Farhat et al., 1994). It is a
non-overlapping domain decomposition method based on a "dual approach" which
consists to introduce continuity condition at the interfaces between subdomains. The
FETI method hasthe advantageof beingrobust andwell suitedto theproblems studied
in structural mechanics. However, studiescarried out on largenumerical tests (tensof
milli ons of unknowns) showed that the effectivenessof thismethodis decreasing be-
yondanumber of subdomains (a few hundred). If wewant to split l arge-scalemodels
in a reasonable number of subdomains, we will be faced with very large local sys-
tems. Moreover, with the evolution of microprocessor technology in terms of power,
we are witnessing the birth of new massively multi -core architectures. The essential
interest andstrength of multi -coresolutions is to enable thesimultaneousexecution of
a task by core. Someparallel algorithmsandsoftware can take full advantageof these
massively multi -core systems.

It is in thiscontext that this studywaspresented. It consiststo implement aparallel
algorithm for thedirect solution of largesparse linear systemsand integrate it into do-
main decomposition methods. A two-level parallelism is exploited. The exploitation
of the lower level of parallelism is based, as first step, on a development of a paral-
lel direct solver. We propose to use the technique of nested dissection for finding an
elimination ordering in solving sparse systems (George, 1973), (George et al., 1981),
(Charrier et al., 1989). This technique is well suited for parallel computing because
it enables to reorder the linear system matrix and divide the factorization in as many
steps as levels of dissection algorithm. As a secondstep, weintroducethe parallel di-
rect solver into FETI methods(Farhat et al., 2000), (Gosselet et al., 2006). Thisdirect
solver, based onmulti -threading parallelism, allowsusto doaparallel local resolution
in FETI and hasthe advantageof handlingzero-energy modesin floatingsubstructures
automatically and properly. The highest level is a coarse-grain parallelism between
substructures of FETI. The iterative method used in solving FETI interfaceproblem
is adapted to the direct solver for improving the parallel efficiency at this level. We
evaluate the performance (CPU and elapsed execution time required to perform the

1. Finite Element Tearing and Interconnecting.
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factorization and, forward and backward substitution phasis) of the direct solver and
compare it to a very effective linear solver: DSCPack solver2 (Raghavan, 2001). To
this end, large computational mechanics problems are performed with the Zebulon
finite element analysis code, which is a solver for nonlinear mechanical problems de-
veloped jointly by ONERA3, ENSMP and NW Numerics (Seattle, USA). This code
has been parallelized with the FETI methods. In addition, the code uses in sequential
a direct solver to factorizethe linear systems.

The rest of the paper is structured as follows. In the next section we describe the
various stepsin thedevelopment of theparallel sparsedirect solver. Therefore, wefirst
present in details theproposed nested dissectionalgorithm. Next, weshow how to use
this technique for numerical factorization and solution phasis. In the case of presence
of floating substructures, we describe the computation of the zero-energy modes. In
Section 3, we evaluate the performance of the parallel direct solver and compare it
to other direct solvers in Zebulon FEA code. We conclude in Section 4 with a few
teachings for future steps after this study.

2. Parallel sparse direct solver

In this section, we develop a parallel sparse direct solver using a direct method
based onan LU factorization of the sparse linear system matrix. The matrix can be
symmetric or unsymmetric. In the case of a factorization of singular linear systems, a
strategy is used to handle automatically and properly zero-energy modes. The abilit y
of asolver to detect singularities isessential in domain decompositionmethodsfor the
operator itself or to build automatically optimal preconditioners. This solver consists
of threemajor steps to resolve large sparse linear systems by direct method:

– The analysis step which computesareorderingandsymbolic factorization of the
matrix. The reordering techniques are used to minimize fill -in entries of the matrix
during the numerical factorization and to exhibit as many independent calculations
as possible. In this direct solver, a nested dissection reordering method is used. The
choiceto use essentially nested dissectionmethod provided fromthefact that thistech-
nique allows at first, more parallelism in the factorization than those using minimum
degreetechniques (Tinney et al., 1967), but more importantly, it often producesbetter
results. This analysis step produces an ordering matrix and an assembly tree(or su-
pernodal eliminationtree). Thisassembly treeis then used to carry out thesubsequent
steps.

– The numerical step determines the lower and upper triangular factors of thema-
trix according to the assembly treethat was previously produced.

– The third step is the solution phasis. Here, the numerical solution of the system
is obtained by solving the lower and upper triangular systems resulting from factor-
ization (forward elimination and backward substitution).

2. Domain Separator Codes Package.
3. French AerospaceLab.
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2.1. Nested dissection

Thenested dissectiontechniqueisoneof themost attractivemethodsfor findingan
elimination ordering in solving sparse linear systems. This technique orders, with the
help of separators, the graph vertices (or mesh nodes) associated to the sparse system
to be factorized. A graphG(V, E) of a matrix consists of a set of verticesV and a set
of edges E connecting the vertices. Each vertex of the graph represents an unknown
of thesparsesystem. Andaseparator isasmall set of verticeswhose removal divides
the rest of the graph or subgraph into two disjoint components. Different levels of
separators are used to order the vertices. Lower level nodesare ordered before upper
level ones. Note that hereby a"level" wemean aset of separators in thesamelevel of
dissection.

2.1.1. Principle

The nested dissection approach is based on a recursive bisection of the graph of
the matrix M to be factorized. A first bisection is performed by selecting a set of
vertices forming a separator. This separator is then removed from the original graph,
and this generates to it a partition into two unconnected subgraphs G1 and G2. The
separator is chosen so that its size is as small as possible and that the sizes of the
two subgraphs delimited are equivalent. Each of the two subgraphs is then bisected
recursively following the same principle, until subgraphs are successively generated
sizesufficiently small .

To ill ustrate this nested dissection method, we consider a sparse linear system
Mx = b, where the structure of M is presented in Figure 1(a). The graph (or mesh
nodes) representing the matrix M is shown in Figure 1(b). We assume that we have a
recursive sub-structuring of the mesh nodes (unknowns) into four subdomains repre-
sented in Figure 2.

(a) Structureof matrix M (b) Graph or mesh nodes

Figure 1. Example of sparse system
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Figure 2. Recursivesub-structuring by bisection

Our nested dissection approach consists in ordering the unknowns of the sparse
linear system in blocks. We start with the inner subdomains nodes and then we fin-
ish with the separators of the graph. The diagonal blocks MIiIi

located at level 0
correspondto the subdomains I1, I2, I3 and I4 of the sub-structuring. The diagonal
blocksMΓl

j
Γl

j
, located at theother levels l (l > 0) correspondto theseparatorsΓ1

1, Γ1
2

and Γ2
1. The extra-diagonal blocks MIiΓ

l
j

and MΓl
j
Ii

correspondto the connections

between the unknowns in subdomain Ii and those belonging to the separator Γl
j , and

the extra-diagonal blocksMΓl
i
Γm

j
(l 6= m) correspondto the connections between the

unknowns in separator Γl
i and the those in separator Γm

j (seeFigure 3).

Figure 3. Reordered Matrix M
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The nested dissection uses a "divide and conquer" approach and thus, it makes
it this algorithm easily to parallelize. It generates balanced supernodal elimination
trees whose supernodes are sets of unknowns (seeFigure 4). These trees reflect the
dependency of unknownsduringeliminationandthereforemakeseasier the execution
of the parallel numerical factorization of the reordered matrix M .

Figure 4. Supernodal elimination tree

2.1.2. Construction of assembly trees

An assembly treeisasupernodal eliminationtreewhere, oneach node, we classify
the unknowns into a set of internal unknowns and a set of interfaceunknowns.

– Theinternal unknownsaretheonesthat do not belongto theseparator of aparent
node in the tree.

– The interfaceunknowns are exactly the ones that will become separator un-
knowns ona parent node.

An important aspect of the assembly treesisthat they only define apartial ordering
for the factorization. These trees are used to carry out the numerical and the solution
phasis of the sparse linear systems. We have two approaches to build assembly trees.

In the first approach, we first partition the global finite element mesh into a set of
sub-meshes, and then dispatch unknowns (degrees of freedom) into the sub-meshes
according to their element ownership. So we get a decomposition of the initial mesh
into subdomains (sets of unknowns). The local matrix associated with the subdomain
Ii will not have the same structure as the global matrix. An example of decomposi-
tion is shown in Figure 5(a) and Figure 5(b). In this approach, the mesh partitioning
is managed by the METIS partitioner (Karypis et al., 1995), which does not support
all the history on the partition. We use agenetic algorithm (Bui et al., 1996) to build
directly an assembly treethat contains all the history on the partition. This genetic
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algorithm starts with a population constituted by the subdomains Ii of the decompo-
sition.

(a) Subdomains (b) A local matrix structure

Figure 5. Decomposition into four subdomains

Figure 6. Assembly tree

The secondapproach is based ona recursive bisection of the original graph using
amodified METISpartitioner which does support all thehistory onthepartition. This
recursive bisection generates a supernodal elimination tree. We use the supernodal
elimination tree to construct a assembly tree. For each node Ii (resp. Γl

j) in the
assembly tree, its internal unknowns are those unknowns on the subdomain Ii (resp.
separator Γl

j) defined in the supernodal elimination tree (Figure 4). The interface
unknowns are the ones that will become separator unknowns on a parent node. To
find the interfaceunknownsof anodeIi (resp. Γl

j) of the assembly tree, wesearch all
thedependencies between his internal unknowns and thoseof hisancestors (nodeson
thehigher levels). For agiven internal unknownni in Ii, if there isadependency with
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a internal unknown nj of a ancestor, then nj is an interfaceunknown of Ii (resp. Γl
j).

At the end of the research, we get an assembly tree as is ill ustrated in Figure 6. Our
choiceis focused onthis secondapproach because in it we already have all thehistory
on the recursive sub-structuring of the graph (supernodal elimination tree). It allows
a faster construction of an assembly tree. In this secondapproach, the separators are
smaller than those obtained in the first approach. This produces a better result at the
numerical factorization and the solution phasis.

2.2. Numerical phasis

An important step for implementing the direct solver is the numerical phasis. It
consists to determine implicitly the lower and upper triangular factors of the sparse
matrix system M . We first proceed to the static condensation on the separator un-
knowns, and then go onto the numerical factorization of M .

2.2.1. Static condensation

The static condensation computes a local system for each node in the assem-
bly tree. The first step consists in eliminating the internal unknowns in each sub-
domain Ii of the tree. The elimination of the internal unknowns is equivalent to
computing the local Schur complements or contributions MΓl

j
Ii

MIiIi

−1MIiΓ
l
j

and

MΓl
j
Ii

MIiIi

−1MIiΓ
m
k

in each subdomain Ii. The diagonal blocks SΓl
j
Γl

j
and the

extra-diagonal blocks SΓl
j
Γm

k
and SΓm

k
Γl

j
in the higher levels will t hen be created by

assembling the lower level Schur complements (l andm > 0).

(a) Assembly process (b) Contributions computing

Figure 7. Assembly andcomputational process: ill ustration for I1
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In Figure7(a) andFigure7(b), thisfirst step is ill ustrated for subdomain I1. Then,
we show how the processto assembly and compute the local Schur complements is
performed.

The second step consists in eliminating, level by level, the internal unknowns in
each nodeΓl

j in thehigher levelsl of thetree(l > 0). The eliminationstartsat thelevel
1 and, at each level, the processis the same as in the first step. We first perform an
Gaussian elimination onthe diagonal blocks SΓl

j
Γl

j
created in the first step and then,

we compute the contribution blocksSΓm
k

Γl
j
SΓl

j
Γl

j

−1SΓl
j
Γm

k
andSΓm

k
Γl

j
SΓl

j
Γl

j

−1SΓl
j
Γn

p

in each node Γl
j . The diagonal blocks SΓm

k
Γm

k
and the extra-diagonal blocks SΓm

k
Γn

p

andSΓn
p Γm

k
in the following levels are updated (m andn > l).

A standard assembling algorithm applied to the blocksSΓm
k

Γn
p

previously created
gives the global Schur complement S. The assembly algorithm is done step by step.
Theses blocks are fully populated because each contribution block is a dense matrix.
However, theglobal Schur complement is sparse and isnever assembled explicitly. In
order to compute efficiently each local Schur complement, we can usetheBLASlevel
3 routines (Dongarraet al., 1990) based on block computations.

S =





SΓ1

1
Γ1

1
0 SΓ1

1
Γ2

1

0 SΓ1

2
Γ1

2
SΓ1

2
Γ2

1

SΓ2

1
Γ1

1
SΓ2

1
Γ1

2
SΓ2

1
Γ2

1



 [1]

For the example given in Section 2.1, the global Schur complement of M is given
by equation [1]. For the first step of the algorithm, we have at level 1:
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−
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−

4
∑

i=3

MΓ1

2
Ii

MIiIi

−1MIiΓ
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−
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At the root (level 2), we have:

SΓ2

1
Γ2

1
= MΓ2

1
Γ2

1
−

4
∑

i=1

MΓ2

1
Ii

MIiIi

−1MIiΓ
2

1

Thenext step of the algorithm correspondsto the elimination of internal unknowns
in each nodeΓ1

j located at level 1 of the assembly tree. Werepeat thesameprocessto
assemble the global Schur complement at level 2 of the tree(root). Then, we have:

SΓ2

1
Γ2

1
= SΓ2

1
Γ2

1
−

2
∑

j=1

SΓ2

1
Γ1

j
SΓ1

j
Γ1

j

−1SΓ1

j
Γ2

1

2.2.2. Numerical factorization

The numerical factorization is performed by computing implicitly the lower tri-
angular factor L and the upper triangular factor U of the sparse matrix system M

using an assembly tree. We first perform a sparseLU factorization of MIiIi
for each

substructure Ii in the form LIiIi
UIiIi

. Next, we perform a dense LU factorization
of SΓl

j
Γl

j
for each separator Γl

j in the form LΓl
j
Γl

j
UΓl

j
Γl

j
. Dimensions of the diagonal

blocksMIiIi
andSΓl

j
Γl

j
areoften small . A skylineor frontal solver isused to factorize

them beacause these solvers are more efficient. During the factorization, the elimina-
tion of internal unknowns in each node can bedone, as soonas those in children have
been treated.

For the example of Section 2.1, we can write the triangular matrix L and U in
the following forms. The structure of these triangular matrix is similar to that of M

described in Figure 3.

L =





















MI1I1

0 MI2I2

0 0 MI3I3

0 0 0 MI4I4

MΓ1

1
I1

MΓ1

1
I2

0 0 SΓ1

1
Γ1

1

0 0 MΓ1

2
I3

MΓ1

2
I4

0 SΓ1

2
Γ1

2

MΓ2

1
I1

MΓ2

1
I2

MΓ2

1
I3

MΓ2

1
I4

SΓ2

1
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1
SΓ2

1
Γ1

2
SΓ2

1
Γ2

1
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U =























I 0 0 0 M−1
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1
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2.3. Resolution of triangular systems

Thesolution of thesystemMx = b isdetermined bysolvingthetriangular systems
Ly = b and Ux = y. Here L and U are obtained from the numerical factorization of
the sparse matrix M . For the example in Section 2.1, the solution of these triangular
systems is guided byan assembly tree and carried out in threephasis:

– a forward elimination phasis, which solves the local systems MIiIi
yIi

=
(LIiIi

UIiIi
)yIi

= bIi
(i = 1, 2, 3 and 4) and updates the terms bΓl

j
of the right-hand

side b:





bΓ1

1

bΓ1

2

bΓ2

1



 =





bΓ1

1

bΓ1

2

bΓ2

1



 −











MΓ1

1
I1

yI1
+ MΓ1

1
I2

yI2

MΓ1

2
I3

yI3
+ MΓ1

2
I4

yI4

4
∑

i=1

MΓ2

1
Ii

yIi











[2]

– a solution phasis of the condensed problem on interface, where SΓl
j
Γl

j
=

LΓl
j
Γl

j
UΓl

j
Γl

j
. This phasis is carried out level by level:





SΓ1

1
Γ1

1
0 0

0 SΓ1

2
Γ1

2
0

SΓ2

1
Γ1

1
SΓ2

1
Γ1

2
SΓ2

1
Γ2

1











I 0 S−1

Γ1

1
Γ1

1

SΓ1

1
Γ2

1

0 I S−1

Γ1

2
Γ1

2

SΓ1

2
Γ2

1

0 0 I











xΓ1

1

xΓ1

2

xΓ2

1
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bΓ1

1

bΓ1

2

bΓ2

1





[3]
– a backward substitution phasis, which computes the local solutions:









xI1

xI2

xI3

xI4









=









yI1

yI2

yI3

yI4









−









M−1

I1I1
MI1Γ

1

1
xΓ1

1
+ M−1

I1I1
MI1Γ

2

1
xΓ2

1

M−1

I2I2
MI2Γ

1

1
xΓ1

1
+ M−1

I2I2
MI2Γ

2

1
xΓ2

1

M−1

I3I3
MI3Γ

1

2
xΓ1

2
+ M−1

I3I3
MI3Γ

2

1
xΓ2

1

M−1

I4I4
MI4Γ

1

2
xΓ1

2
+ M−1

I4I4
MI4Γ

2

1
xΓ2

1









[4]

2.4. Taking into account singular linear systems

There aremany sequential or parallel direct solvers, but no or few can detect auto-
matically and properly zero-energy modes for singular linear systems. Our goal is to
implement a direct solver, which handles automatically and properly singularities in
caseof presenceof zero-energy modesin thefloatingsubstructures. Thesemovements
can have ageometrical or physical origin, or appear when splitti ng the structure into
substructures. The approach for computing the zero-energy modes consists in detect-
ingzero pivotsduring thenumerical factorization of M . The computationstartsat the
leaves of the assembly tree and progresses up to the root. First, we check if near zero
pivots appear when factorizing each local matrix MIiIi

at level 0. If we founda near
zero pivot at the kth row and column, then we block the degreeof freedom k. The
blocking is to set to zero the kth row of MIiIi

(resp. MIiΓ
l
j
) and the kth column of
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MIiIi
(resp. MΓl

j
Ii

). The diagonal entrieMIiIi
(k, k) is set to one. Next, we proceed

with the higher levels (l > 0) following the same process. Then, the diagonal block
SΓl

j
Γl

j
of nodeΓl

j is factorized. If anear zero pivot is foundat itspth row andcolumn,

theunknown p isblocked. Thepth row of SΓl
j
Γl

j
(resp. SΓl

j
Γm

i
) and thepth column of

SΓl
j
Γl

j
(resp. SΓm

i
Γl

j
) are set to zero. The diagonal entrieSΓl

j
Γl

j
(p, p) is set to one.

At the end of the factorization, we obtain a list SingV als containing nsing near
zero pivots, which are candidatesto be zero-energy modesof theglobal matrix M . In-
deed, some zero pivotsencountered when wefactorizethelocal matrix MIiIi

could be
undesirable effects caused by the recursive sub-structuring of the graph. To compute
the zero-energy modes, wefirst condense theglobal system onthesingular unknowns
of SingV als to obtain a small Schur complement Ss. Then, we perform an Gaussan
eliminationwith full pivoting onSs andcheck if zero pivotsarefound. If wedon’t find
zero pivots, then the matrix M is non-singular. If we find a number e of zero pivots
(0 < e < nsing), then these pivots are the actual zero-energy modes and we unblock
thensing − e degreesof freedom which wereblocked during the factorization of M .
A basis of M null -spaceis built using itse corresponding rows and columns.

Finally, we find the general solution of the sparse linear system Mx = b in the
form x = M+b + Nα, whereα ∈ R

e is a vector of e arbitrary entries and the vector
M+b is a particular solution of the linear system.

2.5. Direct solver parallelization

The "divide and conquer" strategy of the nested dissection technique leads to a
high-level parallelism. Theparallelization of thedirect solver isdonein anatural way.
Given that there are no dependencies on internal unknowns belonging to different
nodes located at the same level on the tree, we treat these nodes at the same time on
separate sets of cores. The approach selected for parallelizing the solver consists to
usemulti -threading technology based onmulti -tasks, which worksonshared memory
nodes. POSIX threads and a OpenMP threading software (Intel MKL) are used to
implement multi -threads in thestatic condensation phasis, thenumerical factorization
and the solution of triangular systems. We also use amixed programming model for
taking advantage of the benefits of both models POSIX threads and OpenMP in the
numerical factorization.

3. Performance evaluation

The performance of a direct solver can be evaluated in different ways. Here, we
use the CPU and Elapsed time required to perform analysis, numerical and solution
phasis with the implemented direct solver. We compare its sequential performance
with other direct solvers in Zebulon finite element analysis code and we analyse its
performancein ZebulonFEA parallel code. For the evaluation, wesimulate3-D linear
elasticity problems. The followingsequential testswereperformed onabi-processors
Intel Quad-Core Xeon X5460 64-bit machine, with 32GB of memory and 3.16 GHz
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frequency. the parallel tests were performed on a Linux cluster with 51 machines
(bi-processors AMD Opteron 64-bit with a memory of 2 to 16GB).

3.1. Sequential performance analysis

For analysing our Dissection solver performance, we first compare its the CPU
execution times with other ones. Next, we evaluate the CPU times required to per-
form forward elimination and backward substitution for solving linear systems with
multiple right-hand sides.

Table 1 shows the CPU execution times for some direct solvers available in Ze-
bulon FEA code. DSCPack is a direct solver based on an approach similar to the
principleof nested dissection but, it doesn’t take into account singular linear systems.
On theother side, SparseDirect andFrontal are two other direct solvers that take into
account singularities of these systems.

Table 1. CPU execution time (sec.)
`

`
`

`
`

`
`

`
`

`
`

`
Solvers

Problems size
107811 206763 397953

DSCPack 45.41 154.2 557.8
Dissection 67.17 207.9 776.2

Sparse Direct 871.7 3292 +10440
Frontal 2185 9972 ***

On theresults in Table1, weobservethat theperformanceof DSCPack areslightly
better than our Dissection solver. But we should not be ashamed of this fact since
DSCPack solver can’t handlethe zero-energy modesin thefloatingsubstructures. And
that’s where the solver that we have implemented becomes more profitable for FETI
methods than other existing solvers in Zebulon FEA code.

Dissection solver can be used for solving linear systems with multiple right-hand
sides. In Table 2, we show the performance of forward and backward substitution
phasis for aproblem with 206763 degreesof freedom. Thenumber of right handsides
(Nrhs) ranges from 1 to 2000.

Table 2. Forward and backward substitution time (sec.)
X

X
X

X
X

X
X

X
X
X

Solvers
Nrhs

1 50 100 150 2000

DSCPack 1.246 62.32 124.6 186.9 249.3
Dissection 2.627 58.47 114.9 172.7 231.1

The analysisof thesesresultsallowsto seethat wehavegood performancewith the
new Dissectionsolver in the forward and backward substitution phasis. Thiscould be
of great interest for improving for solving the FETI interfaceproblem, where several
forward and backward substitutionsareperformed successively to satisfy the continu-
ity of the solution acrossthe interfaces between subdomains.
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3.2. Parallel performance analysis

We analyze the performance obtained for solving a large-scale linear elasticity
problem with 397953 degrees of freedom. In Figure 8, we present the elapsed execu-
tion time for the parallel versions implemented. These parallel versions are:

– a multi -threads versionwith POSIX threads;

– a version usingan OpenMP threadingsoftware;

– a mixed versionwith POSIX threads and OpenMP.

For thisproblem, we achieve aoptimum gain factor of about 2.5 in execution time
when the number of threads is equal to 4.
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Figure 8. Elapsed execution time

Dissection solver has been choosen as local solver in FETI methods implemented
in Zebulon FEA parallel code. Some parallel tests were performed. Our tests are
linear elasticity problems. Theglobal problem sizegrows linearly with thenumber of
subdomains (seeFigure 9).
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The results are presented in Figure 11 and Figure 12. An analysis of these results
shows that it’s easy to get high performanceby solving much larger problems. When
thenumber of subdomainsgrowsthe communicationtimeincreasestoo, thuslowering
FETI performance. In this example, it means that the subdomain sizes (around 20000
dof, seeFigure 10) are too low. The execution time (min or max) required to obtain
local solutions is small compared to the communication time. The result is clear: we
must usebigger subdomainsandaparallel version of theDissectionsolver for getting
high performance. All these tests are done without multi -threading.
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4. Conclusion

In this paper, we have implemented a parallel direct solver based on a multi -
threading technology and using a nested dissection reordering method, which leads
to a high-level parallelism. This solver has been integrated into FETI methods and
it handles automatically and properly zero-energy modes in floating substructures.
Large-scale mechanical problems have been simulated with Zebulon finite element
analysis parallel code and we have got good numerical performance results with the
help of our direct solver.

In this paper, we limited the study to the exploitation of the lower level of paral-
lelism. Our future work aims to improve the iterative method used in solving FETI
interfaceproblem using the direct solver we developed for achieving maximum per-
formancein ZebuLon FEA parallel code.
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