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ABSTRACT. The goal of this paper is to develop a parallel algorithm for the direct solution of large
sparse linear systems and integrate it into domain decomposition methods. The computational
effort for these linear systems, often encountered in numerical simulation of structural
mechanics problems by finite element codes, is very significant in terms of run-time and memory
requirements.In this paper, a two-level parallelism is exploited. The exploitation of the lower
level of parallelism is based on the development of a parallel direct solver with a nested
dissection algorithm and to introduce it into the FETI methods. This direct solver has the
advantage of handling zero-energy modes in floating structures automatically and properly. The
upper level of parallelism is a coarse-grain parallelism between substructures of FETI. Some
numerical tests are carried out to evaluate the performance of the direct solver.

RESUME. Le but de ce papier est de mettre au point un algorithme paralléle pour la résolution
directe de grands systémes linéaires creux et l'intégrer dans les méthodes de décomposition
de domaine. Ces systémes linéaires, souvent rencontrés lors de la simulation numérique de
problemes de mécanique des structures par des codes de calcul par éléments finis, sont
résolus avec des coiits trés importants en temps de calcul et en espace mémoire. Dans ce
papier, un parallélisme a deux niveaux a été exploité. L exploitation du niveau inférieur de
parallélisme a d’abord consisté a réaliser un solveur direct paralléle basé sur une technique
de dissection emboitée et a l'intégrer ensuite dans la méthode FETI. Ce solveur direct a
l’avantage de traiter automatiquement et proprement les modes a énergie nulle dans des
structures flottantes. Le niveau supérieur est un parallélisme efficace a gros grain entre les
sous-structures de FETI. Des tests ont été effectués pour évaluer les performances du solveur
direct.
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1. Introduction

The dired resolution o large sparse linea systems has for long dayed a signif-
icant role in numericd simulation o many scientific computing problems, including
problems in computational mecdhanics of structures. In structural medanics, the use
of finite dement codes often leads to very large sparse linea systems. Solving these
linea systems is redly very expensive in terms of computational time and memory
reguirements.

The parallelization o these mdes becomes a mandatory technique. It is able to
reduce the computational cost and thus allows to simulate in structural medchanics
large-scde models with increasingly complex constitutive material behaviour and re-
fined geometries (geometry of comporents, level of detail of microstructure models).
The domain decompasition methods are anatural way to parallelizethese mdes. One
of the most commonly used method is FETI method' (Farhat et al., 1994. It is a
nonoverlapping damain decomposition method kased on a "dual approach” which
consists to introduce @ntinuity condtion at the interfaces between subdamains. The
FETI method hasthe advantage of beingrobust andwell suitedto the problems gudied
in structural medhanics. However, studies carried ou onlarge numericd tests (tens of
milli ons of unknawns) showed that the df edivenessof thismethodis deaeasing be-
yondanumber of subdamains (afew hunded). If we want to split | arge-scde models
in a reasonable number of subdamains, we will be faceal with very large locd sys-
tems. Moreover, with the evolution o microprocessor techndogy in terms of power,
we ae witnessng the birth of new massvely multi-core achitedures. The esential
interest and strength of multi-core solutions is to enable the simultaneous exeaution o
atask by core. Some parall el algorithms and software can take full advantage of these
massvely multi-core systems.

Itisinthiscontext that this sudywas presented. It consiststo implement aparall el
algorithm for the dired solution o large sparse linea systems and integrate it into do-
main decompaosition methods. A two-level parallelism is exploited. The exploitation
of the lower level of parallelism is based, as first step, on a development of a paral-
lel dired solver. We propose to use the technique of nested dssedion for finding an
elimination ardering in solving sparse systems (George, 1973, (George et al., 1987,
(Charrier et al., 1989. This technique is well suited for parallel computing because
it enables to reorder the linea system matrix and dvide the fadorization in as many
steps as levels of dissedion algorithm. As a secondstep, weintroducethe parall el di-
red solver into FETI methods (Farhat et al., 2000, (Gos<let et al., 2009. Thisdired
solver, based onmulti -threading perall elism, allows usto doa parall el locd resolution
in FETI and hasthe advantage of handli ng zero-energy modesin floating substructures
automaticdly and properly. The highest level is a marse-grain parallelism between
substructures of FETI. The iterative method wsed in solving FETI interfaceproblem
is adapted to the dired solver for improving the parallel efficiency at this level. We
evaluate the performance (CPU and elapsed exeaution time required to perform the

1. Finite Element Teaing and Interconreding.
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fadorizaion and, forward and badkward substitution phesis) of the dired solver and
compare it to a very effedive linea solver: DSCPadk solver? (Raghavan, 2001). To
this end, large computational mechanics problems are performed with the Zebulon
finite dement analysis code, which is a solver for norlinea mecanicd problems de-
veloped jointly by ONERA3, ENSMP and NW Numerics (Sedtle, USA). This code
has been parall €lized with the FETI methods. In addition, the code uses in sequential
adired solver to fadorizethe linea systems.

The rest of the paper is dructured as follows. In the next sedion we describe the
various depsin the development of the parall el sparse dired solver. Therefore, wefirst
present in detail s the proposed nested dissedion algorithm. Next, we show how to use
this technique for numericd fadorization and solution ptesis. In the cae of presence
of floating substructures, we describe the computation o the zeo-energy modes. In
Sedion 3 we evaluate the performance of the parallel dired solver and compare it
to other dired solvers in Zebulon FEA code. We oconclude in Sedion 4 with a few
teadings for future steps after this sudy.

2. Parallel sparsedirect solver

In this dion, we develop a paralel sparse dired solver using a dired method
based onan LU fadorizaion d the sparse linea system matrix. The matrix can be
symmetric or unsymmetric. In the case of afadorizaion d snguar linea systems, a
strategy is used to handle automaticaly and properly zero-energy modes. The ability
of asolver to deted singuaritiesis essential in domain decompaosition methods for the
operator itself or to buld automaticaly optimal precondtioners. This Dlver consists
of threemagjor steps to resolve large sparse linea systems by dired method

— The analysis gep which computes a reordering and symbali c fadorizaion o the
matrix. The reordering techniques are used to minimize fill-in entries of the matrix
during the numericd fadorization and to exhibit as many independent cdculations
as possble. In this dired solver, a nested dissedion reordering methodis used. The
choiceto use esentialy nested disedion method provided from thefad that thistech-
nique dlows at first, more parall elism in the fadorizaion than thase using minimum
degreetechniques (Tinney et al., 1967), but more importantly, it often produces better
results. This analysis gep produces an ordering matrix and an aseembly tree (or su-
pernoddl eliminationtred. Thisassembly treeisthen used to carry out the subsequent
steps.

— The numericd step determines the lower and upger trianguar fadors of the ma-
trix acording to the assmbly treethat was previously produced.

— The third step is the solution phesis. Here, the numericd solution o the system

is obtained by solving the lower and upger trianguar systems resulting from facor-
izaion (forward elimination and backward substitution).

2. Domain Separator Codes Padkage.
3. French Aerospacel ab.
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2.1. Nested dissection

The nested dissediontechniqueisone of the most attradive methodsfor findingan
elimination ardering in solving sparse linea systems. This technique orders, with the
help of separators, the graph vertices (or mesh nodes) asociated to the sparse system
to befadorized. A graph G(V, E) of amatrix consists of a set of verticesV and a set
of edges E' conreding the vertices. Each vertex of the graph represents an unknavn
of the sparse system. And a separator is asmall set of vertices whose removal divides
the rest of the graph o subgaph into two disjoint comporents. Different levels of
separators are used to order the vertices. Lower level nodes are ordered before upper
level ones. Note that here by a"level" we mean a set of separatorsin the same level of
disedion.

2.1.1. Principle

The nested disedion approacd is based on a reaursive bisedion d the graph o
the matrix M to be fadorized. A first bisedion is performed by seleding a set of
vertices forming a separator. This sparator is then removed from the original graph,
and this generates to it a partition into two unconreded subgaphs G; and G2. The
separator is chosen so that its dzeis as gnall as possble and that the sizes of the
two subgaphs delimited are equivalent. Each of the two subgaphs is then hiseded
reaursively following the same principle, until subgraphs are successvely generated
size sufficiently small.

To illustrate this nested disedion method, we wnsider a parse linea system
Mz = b, where the structure of M is presented in Figure 1(a). The graph (or mesh
nodes) representing the matrix M is shown in Figure 1(b). We assume that we have a
reaursive sub-structuring o the mesh nodes (unknavns) into four subdamains repre-
sented in Figure 2.
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(a) Structure of matrix M

Figure 1. Example of sparse system

O graph vertices
(b) Graph a mesh nodes
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O internal unknowns O séparators

Figure 2. Reaursive sub-structuring by bisedion

Our nested dissedion approach consists in ordering the unknowns of the sparse
linea system in blocks. We start with the inner subdamains nodes and then we fin-
ish with the separators of the graph. The diagoral blocks M, ;, locaed at level 0
correspondto the subdamains I, I, I3 and I of the sub-structuring. The diagoral
blocks M. 1, located at the other levelsi (I > 0) correspondto the separatorsT'{, I'3
and . The extra-diagoral blocks M« and My ;. correspondto the conredions
between the unknavns in subdamain I; and thase belongng to the separator T, and
the extra-diagoral blocks M. (I # m) correspondto the conredions between the

unknawns in separator I't and the those in separator ' (seeFigure 3).

level 0 level 1 level 2

Figure 3. Reordered Matrix M
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The nested dissedion wses a "divide and conquer" approach and thus, it makes
it this algorithm easily to parallelize It generates balanced supernodal elimination
trees whose supernodes are sets of unknowns (seeFigure 4). These trees refled the
dependency of unknavns during eli mination and therefore makes easier the exeaution
of the parallel numericd fadorizaion d the reordered matrix M.

root @—®‘@ level 2 v

Figure4. Sugrnodd eiminationtree

2.1.2. Construction of assmbly trees

Anasembly treeisasupernoda eliminationtreewhere, onead node, we dassfy
the unknovnsinto a set of internal unknowvns and a set of interfaceunknawns.

— Theinternal unknavns arethe onesthat do na belongto the separator of a parent
nocein thetree

— The interface unknovns are exadly the ones that will become separator un-
knowns on a parent noce.

Animportant asped of the asembly treesisthat they only define apartial ordering
for the fadorization. These trees are used to carry out the numericd and the solution
phasis of the sparse linea systems. We have two approadies to build assembly trees.

In the first approach, we first partition the global finite dement mesh into a set of
sub-meshes, and then dispatch unknavns (degrees of freedom) into the sub-meshes
acording to their element ownership. So we get a decompasition o the initial mesh
into subdamains (sets of unknavns). The locd matrix associated with the subdamain
I; will nat have the same structure &s the global matrix. An example of decomposi-
tionis shown in Figure 5(a) and Figure 5(b). In this approad, the mesh partitioning
is managed by the METIS partitioner (Karypis et al., 1999, which dces nat suppat
al the history on the partition. We use agenetic dgorithm (Bui et al., 1996 to buld
direaly an asembly treethat contains al the history on the partition. This genetic
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algorithm starts with a popuation constituted by the subdamains I; of the decompo-
sition.

L2 L o] N |
SOROON. 1.
O © @ O 06 --E--
cer ot Mm uGe
O—0—@ @ ® H B8
I1 I3 Local
Q internal unknowns Q separators non-zero coefficients
(a) Subdamains (b) A locd matrix structure

Figure 5. Decompasition into four subdamains

root @—l : )—l: level 2 ¥

O internal unknowns O interface unknowns

Figure 6. Assembly tree

The second approach is based onareaursive bisedion o the original graph using
amodified METI S partitioner which does suppat all the history onthe partition. This
reaursive bisedion generates a supernoda elimination tree We use the supernocel
elimination tree to construct a assmbly tree For ead nock I; (resp. Fé) in the
asembly tree its internal unknovns are those unknavns on the subdamain I; (resp.
separator Fé-) defined in the supernodal elimination tree (Figure 4). The interface
unknawns are the ones that will bemme separator unknavns on a parent node. To
find the interfaceunknavns of anoce I; (resp. Fé) of the ssmbly tree we search all
the dependencies between hisinternal unknovns and those of his ancestors (nodes on
the higher levels). For agiven internal unknavn n; in I;, if thereis a dependency with
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ainternal unknavn n; of a ancestor, then n; is an interfaceunknavn of I; (resp. Fé-).
At the end o the reseach, we get an assembly tree & isill ustrated in Figure 6. Our
choiceisfocused onthis sscondapproach becausein it we dready have dl the history
on the reaursive sub-structuring o the graph (supernodal iminationtreg. It allows
afaster construction o an asembly tree In this sscond approad, the separators are
smaller than those oltained in the first approach. This prodices a better result at the
numericd fadorizaion and the solution plesis.

2.2. Numerical phasis

An important step for implementing the dired solver is the numericd phasis. It
consists to determine implicitly the lower and upper trianguar fadors of the sparse
matrix system M. We first proceel to the static condensation onthe separator un-
knowns, and then go onto the numericd fadorizaion o M.

2.2.1. Satic condensation

The static condensation computes a locd system for ead nock in the ssem-
bly tree The first step consists in eliminating the internal unknawvns in ead sub-
domain I; of the tree The dimination o the internal unknowvns is equivalent to
computing the locd Schur complements or contributions MFz M, 1, ‘lM, rt and
MFZ M, 1, MI T in ead subdamain 7;. The diagorel blocks Srz rt and the
extra—dlagoral blocks Srz e and SFmF: in the higher levels will then be qeded by
assembling the lower level Schur complements (l andm > 0).

27 12 Root
2
Root 7
12|

-1
562712 MF?LMI.I. MI.F?

5

6
Father , Father
7 -1
12 MI':I,MI,I, MI,r:

-1
M. M, "M,

0 0156 2 MI'fI,MI,I:lMI,F}
1 \
5
6 Child
2 Local matrix Child
(@) Asembly process (b) Contributions computing

Figure 7. Assembly and computationd process ill ustration for Iy
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In Figure 7(a) and Figure 7(b), thisfirst step isill ustrated for subdamain 7. Then,
we show how the processto assembly and compute the locd Schur complements is
performed.

The second step consists in eliminating, level by level, the internal unknowvns in
eadh noché- inthe higher levelsi of thetree(l > 0). The dimination starts at the level
1 and, at ead level, the processis the same & in the first step. We first perform an
Gausdan elimination onthe diagorel blocks SFE-FE- creaed in the first step and then,

we compute the contribution Hocks Sty rt sz rt *1SF1 e and Sy rt sz rt ’1SF1 T

in eah nock Fl The diagoral blocks Sl"mr‘m and the e(tra-d|agoml blocks Sr‘mr‘n
and Spnpm in the followinglevels are updated (mandn > 1).

A standard assembling algorithm applied to the blocks Srprn previously creaed
gives the global Schur complement S. The assmbly algorlthm is dore step by step.
Theses blocks are fully popuated becaise ead contribution Hock is a dense matrix.
However, the global Schur complement is gparse andis never assembled explicitly. In
order to compute dficiently ead locd Schur complement, we can usethe BLAS level
3routines (Dongarraet al., 1990 based on Hock computations.

Srirt - 0 Spirs
S=1 0 Smry Smir [1]
Srzrt Srery  Srers

For the example given in Sedion 2.1, the global Schur complement of M isgiven
by equation [1]. For thefirst step of the dgorithm, we have & level 1:

2
-1
Srirt = Mrip: — E My, My, My

=1
2

Srirs = Mripe — Y Mpyy My~ My
2

Srert = Mrapy — > Mpay My, My,
i=1

and

4
_ _ -1
Sriry = Mrir; E My, My, My,ry

=3
4

_ -1
Srirz = Mrirz — E My, My, My,re
i=3
1
_ -1
Srery = Mrapy — Y Mp2p My~ My
i=3
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At theroat (level 2), we have:

4
— -1
Spers = Myaps — Y Mryoy My~ My
i=1

The next step of the dgorithm correspondsto the dimination o internal unknowvns
in eat nocke F1 located at level 1 of the asembly tree We reped the same processto
asemble the gIobaI Schur complement at level 2 of the tree(roat). Then, we have:

2
— —1
Srers = Spapz — > SreriSriry Srirs

j=1
2.2.2. Numerical factorization

The numericd fadorization is performed by computing implicitly the lower tri-
anguar fador L and the upper trianguar fador U of the sparse matrix system M
using an asembly tree We first perform asparse LU fadorization o M, ;, for eah
substructure I; in the form Ly, ;,Uy,;,. Next, we perform a dense LU fadorizaion
of SFL rt for ead separator Fl in the form LFL rt UFz ri- Dimensions of the diagorel
bIocksMI 7, and SFLFL areoften small. A slwlmeor frontal solver is used to fadorize
them beacaise these solvers are more dficient. During the fadorizaion, the dimina-
tion o internal unknovnsin ead noce ca be dore, as ©onasthaose in children have
been treaed.

For the example of Sedion 21, we can write the trianguar matrix L and U in
the following forms. The structure of these trianguar matrix is smilar to that of M
described in Figure 3.

M,
0 M1212
0 0 My,
L= 0 0 0 M, 1,
Mrpiy, Mpi, 0 0 Spir:
0 0  Mry, Mry, 0 St
Mr2y, Myzp, Mrzp,  Mrzp, Sreri Srery Srers
and
I 00 0 M ;M 0 M;l}lM,1F2
-1 —
I 0 0 MI212M121"% _10 ]\/[IZIZMIZI‘Q
I O O Mlj{jMIsFé MldldMIJ
U: I 0 MI4I4MI4F% M[4[4MI4F2
I 0 Sljlplsl"%l"f
I SrllrlsFéff
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2.3. Resolution of triangular systems

Thesolution o thesystem Mz = bisdetermined by solvingthetrianguar systems
Ly =bandUzx = y. Here L and U are obtained from the numericd fadorizaion of
the sparse matrix M. For the example in Sedion 2.1, the solution o these trianguar
systemsis guided by an assembly tree and carried ou in threephasis:

—a forward elimination phesis, which solves the locd systems M, ,y;, =
(L1,,Ur1)yr, = br, (i = 1, 2, 3 and 4) and updites the terms by of the right-hand
Sideb:

My, yr, + Mrig,yi,

br% bF% MFéIsyIB + MF§I4y[4
br\% = br‘% - 4 [2]
br2 brs z Mrz2r,y1;

i=1

—a solution presis of the condensed problem on interfacg where Sy =
Lr;r;Urg.rg.- Thisphasisis caried out level by level:

—1
Spirt 0 0 10 Srilr}SF%Ff Try br:
0 Smrp 0 0 I SpipaSryrs ary | = | by
SF%F% SF%F; Srfrf 0 0 I Lr2 bra

(3]

— abacdkward substitution phesis, which computes the locd solutions:

—1 —1
'Ill yll MIl{lMllrixF% +M11{1M11F%xrf
T, | _ | Y My, Myryery + My, My, r2 a2 4]
- - —1 —1
N Yi1s M1313M131“§x1“§ + MI3I3MI3F%JZF%
—1 -1
xl4 ZUI4 MI4I4‘Z\/[I4F%$F% + MI4I4MI4F%‘(EF%

2.4. Takinginto account singular linear systems

There ae many sequential or parallel dired solvers, but no o few can deted auto-
maticdly and properly zero-energy modes for singuar linea systems. Our goal isto
implement a dired solver, which handes automaticaly and properly singuarities in
case of presenceof zero-energy modesin the floating substructures. These movements
can have ageometricd or physicd origin, or appea when splitti ng the structure into
substructures. The goproach for computing the zeo-energy modes consists in deted-
ing zero pivots during the numericd fadorizaion o M. The computation starts at the
leaves of the asmbly tree and progresses up to the roat. First, we ched if nea zero
pivots appea when fadorizing ead locd matrix M, , at level 0. If we foundanea
zero pivot at the k" row and column, then we block the degree of freedom k. The
blocking is to set to zero the k** row of M;,;, (resp. Mlirj) and the k" column of
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M, ;, (resp. My ;). The diagorel entrie My, 7, (k, k) is <t to ore. Next, we proceed
with the higher levels (I > 0) following the same process Then, the diagoral block
Spi Of node Fg isfactorized. If anea zero pivot isfoundat itsp*” row and column,

the unknown p is blocked. The p*”* row of Spip: (resp. Spipm) andthe p”* column of
Sripi (resp. Spmpi) are set to zero. The diagordl entrie S (p, p) is St to ore.

At the end o the fadorizaion, we obtain alist SingV als containing nsing nea
zero pivots, which are candidates to be zeo-energy modes of the global matrix M. In-
dedl, some zeo pivots encourtered when we fadorizetheloca matrix M, ;, could be
undesirable dfeds caused by the reaursive sub-structuring o the graph. To compute
the zeo-energy modes, we first condense the global system onthe singuar unknavns
of SingVals to oktain asmall Schur complement S,. Then, we perform an Gaussan
eliminationwith full pivoting onS; andchedk if zero pivotsarefound If wedorit find
Zero pivots, then the matrix M is nonsingdar. If we find a number e of zero pivots
(0 < e < nsing), then these pivots are the atua zero-energy modes and we unlock
the nsing — e degrees of freedom which were blocked during the factorizaion of M.
A basisof M null-spaceis built usingits e correspondng rows and columns.

Finally, we find the general solution o the sparse linea sysem Mx = b in the
formz = M*b+ Na, where o € R¢ isavedor of e arbitrary entries and the vedor
MTbisaparticular solution o the linea system.

2.5. Direct solver parallelization

The "divide and conquer” strategy of the nested disedion technique leals to a
high-level paral elism. The parallelization o the dired solver isdorein anatural way.
Given that there ae no dependencies on internal unknavns beongng to different
nodes located at the same level on the tree we trea these nodes at the same time on
separate sets of cores. The gproac seleded for paral elizing the solver consists to
use multi-threading techndogy based onmulti -tasks, which works on shared memory
nodes. POSIX threads and a OpenMP threading software (Intel MKL) are used to
implement multi-threads in the static condensation phesis, the numericd fadorizaion
and the solution o trianguar systems. We dso use amixed programming model for
taking advantage of the benefits of both models POSIX threads and OpenMP in the
numericd fadorization.

3. Performance evaluation

The performance of a dired solver can be evaluated in diff erent ways. Here, we
use the CPU and Elapsed time required to perform analysis, numericd and solution
phasis with the implemented dired solver. We compare its squential performance
with other dired solversin Zebulon finite dement analysis code and we anayse its
performancein Zebulon FEA parall el code. For the evaluation, we simulate 3-D linea
elasticity problems. The foll owing sequential tests were performed ona bi-procesors
Intel Quad-Core Xeon X5460 64bit madcine, with 32 GB of memory and 316 GHz
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frequency. the parallel tests were performed on a Linux clugter with 51 machines
(bi-processors AMD Opteron 64bit with amemory of 2 to 16 GB).

3.1. Seguential performance analysis

For analysing ou Dissdion solver performance, we first compare its the CPU
exeaution times with other ones. Next, we evaluate the CPU times required to per-
form forward elimination and backward substitution for solving linea systems with
multi ple right-hand sides.

Table 1 shows the CPU exeaution times for some dired solvers available in Ze-
bulon FEA code. DSCPadc is a dired solver based on an approach similar to the
principle of nested dissdion bu, it doesn’t take into acourt singuar linea systems.
On the other side, Sparse Dired and Frontal are two other dired solvers that take into
acourt singuariti es of these systems.

Table 1. CPU exeattiontime (sec)

Problems sze | 1 47611| 206763| 397953
Solvers
DSCPack 4541 | 1542 | 5578
Dissdion 67.17 2079 7762
Sparse Dired 8717 | 3292 | +10440
Frontal 2185 | 9972 | ==

Ontheresultsin Table 1, we observe that the performance of DSCPack are slightly
better than our Dissedion solver. But we shoud na be asshamed of this fad since
DSCPad solver can’t hand e the zeo-energy modesin the floating substructures. And
that’s where the solver that we have implemented becomes more profitable for FETI
methods than other existing solversin Zebulon FEA code.

Dissdion solver can be used for solving linea systems with multi ple right-hand
sides. In Table 2, we show the performance of forward and badward substitution
phasisfor aproblem with 206763 dgrees of freedom. The number of right hand sides
(Nrhs) ranges from 1 to 2000.

Table 2. Forward and bakward substitution time (sec)

Nrhs | 50 | 100 | 150 | 2000

Solvers
DSCPack 1.046 | 6232 | 1246 | 1869 | 2493
Dissdion 2627 | 5847 | 1149 | 1727 | 2311

The analysis of thesesresults all owsto seethat we have good performancewith the
new Disedion solver in the forward and badkward substitution phesis. This could be
of grea interest for improving for solving the FETI interfaceproblem, where several
forward and badkward substitutions are performed successvely to satisfy the continu-
ity of the solution acossthe interfaces between subdamains.
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3.2. Parallel performance analysis

We analyze the performance obtained for solving a large-scde linea €elasticity
problem with 397953 dgrees of freedom. In Figure 8, we present the dapsed exew-
tiontime for the parallel versionsimplemented. These pardlel versions are:

—amulti-threads version with POSIX threads;
—aversion using an OpenMP threading software;
—amixed versionwith POSI X threads and OpenMP.

For this problem, we adieve aoptimum gain fador of abou 2.5 in exeautiontime

when the number of threadsis equal to 4.

8008

Elapsed time (sec.)

T T
Pthreads version
OpenMP version -

Mixed version

%
o]

L
1 2

Figure 8. Elapsed exeationtime

Disedion solver has been chocsen aslocd solver in FETI methods implemented
in Zebulon FEA paralel code. Some parallel tests were performed. Our tests are
linea elasticity problems. The global problem size grows linealy with the number of

subdamains (seeFigure 9).
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Figure 10. Sze per subdamain

The results are presented in Figure 11 and Figure 12. An analysis of these results
shows that it's easy to get high performance by solving much larger problems. When
the number of subdamains growsthe communicaiontimeincreasestoo, thuslowering
FETI performance In this example, it means that the subdanain sizes (around 20000
dof, seeFigure 10) are too low. The exeaution time (min or max) required to oktain
locd solutionsis anall compared to the communicaiontime. The result is clea: we
must use bigger subdamains and a parall €l version o the Dissdion solver for getting
high performance All these tests are dore withou multi -threading.
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4, Conclusion

In this paper, we have implemented a parallel dired solver based on a multi-
threading techndogy and wsing a nested disedion reordering method, which leads
to a high-level paralelism. This slver has been integrated into FETI methods and
it handes automaticdly and properly zero-energy modes in floating substructures.
Large-scde mechanicd problems have been simulated with Zebulon finite dement
analysis parallel code and we have got good numerica performance results with the
help of our dired solver.

In this paper, we limited the study to the exploitation o the lower level of paral-
lelism. Our future work aims to improve the iterative method wsed in solving FETI
interfaceproblem using the direa solver we developed for achieving maximum per-
formancein ZebuLon FEA parallel code.
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