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ABSTRACT. We study the influence of the Reynolds number on the Ahmed body flow for the 
subcritical incidence . =25°. Large Eddy Simulations (LES) have been performed at low 
Reynolds number Re=8322, in agreement with the experiments of Spohn and Gillieron 
(2002), for the configuration used by Lienhart et al. (2002) at Re=768000. Our simulations, 
based on a spectral Chebyshev collocation-Galerkin Fourier method, have been carried out 
with a parallel multi-domain solver. The LES capability is implemented by a Spectral 
Vanishing Viscosity (SVV) technique. The results globally point out that the topology of the 
flow is essentially determined by the body geometry. 

RÉSUMÉ. Nous étudions l’influence du nombre de Reynolds sur l’écoulement autour du corps 
d’Ahmed pour l’incidence sous-critique . = 25°. Des simulations des grandes échelles (LES) 
sont présentées à bas nombre de Reynolds Re = 8322, conformément aux expérimentations de 
Spohn et Gillieron (2002), dans la configuration utilisée par Lienhart et al. (2002) à 
Re = 768000. Nos simulations, utilisant une méthode d’ordre élevé de type collocation 
Chebyshev-Galerkin Fourier, sont réalisées à l’aide un solveur multidomaine parallélisé. La 
LES est introduite par une technique de viscosité spectrale évanescente (SVV). Les résultats 
montrent que la topologie globale de l’écoulement est essentiellement déterminée par la 
géométrie du corps. 
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1. Introduction

The understanding and the control of flows over vehicle models is of major im-
portance, e.g. to improve fuel consumption or resolvestabilit y problems. TheAhmed
body, firstly introduced by Ahmed et al. (1984), constitutes a simplified reference car
model commonly used in the automotive industry. In spite of the relative simplicity
of the geometry of this bluff body, the flow developing aroundappears fully turbu-
lent andcomplex (strongtime-dependence, recirculationzones, thin boundary layers).
Then, rare are themethodsand themodelsable to correctly describe thisflow. Conse-
quently, thisgeometry is subject to large academical studiesandconstitutesatest case
for the computational fluid dynamic (CFD) models.

The pioneer experimental study, whose aim was to evaluate the influence of the
rear part of the body onthe aerodynamic coefficients, has pointed out a critical inci-
dence angle (α = 30˚) for which the topology of the flow dramatically changes. For
sub-critical incidences(α < 30˚) theflow ontheslant back of thevehicle iscontrolled
by two strong contra-rotative vortices forcing the fluid to stay attached or confining
a partial recirculation onthe slant. At the difference, for over-critical incidences, the
two traili ng vorticesarenomorestrongenoughandconsequently thefluid detachesat
the leadingedge of the slant and only reattaches in the near wake.

Within the framework of two European benchmarks, ERCOFTAC (seeManceau
andBonnet (2000)) andDFG-CNRSprogram (LESfor complexflows), theCFD com-
munity has found an interest in computing the flow over the Ahmed body for two
characteristic slant angles, α = 25˚ andα = 35˚, at Reynolds number Re = 768000
(whereRe isdefined from thebulk velocity U∞ andtheAhmed body height h). At the
moment of the 9th and 10th ERCOFTAC Workshops on Refined Turbulence Mode-
ling, many numerical RANS-methodologies (for only one LES) have been tested and
compared to thereference experimental resultsof Lienhart et al. (2002) with different
accuracy levels. If all themethodsagreed with thereferenceresultsfor theover-critical
angle, largedivergencesarereported for thesub-critical incidencein the10th ERCOF-
TAC Workshops report of Menter (seeManceau and Bonnet, (2000)). Efforts are still
madetoday to improve andtest existent turbulencemodelsontheAhmed body but the
last RANS attempts still failed for the incidenceα = 25˚, as reported in Guilmineau
(2007). In this spirit, hybrid approaches have been tested on the Ahmed bodyconfi-
guration as Detached-Eddy Simulation (DES), Menter and Kuntz (2003), Kapadia et
al. (2003), but small differences in separation prediction (and possibly reattachment)
remain. More recently, an original LatticeBoltzmann method, Fares (2006), has allo-
wed to recover the expected topology of themean flow despiteslight discrepanciesare
still observed onturbulencestatisticsprofilesin thesymmetry plane. Hopefully, recent
LES results, Hinterberger et al. (2004), Minguez et al. (2008) at Re = 768000 and
Krajnovic andDavidson(2004), at Re = 200000 provided at least aglobal agreement
with the experimental observations of Lienhart et al. (2002), which is very encoura-
ging for the LES approach.
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Thepresent numerical studyfocusesontheinfluenceof theReynoldsnumber. The
LEShasbeen performed usingahighly accuratespectral method, efficiently stabili zed
by a spectral vanishing viscosity (SVV) technique. The SVV stabili zation provides
LESsolutionsthat convergeto theDNS(Direct Numerical Simulation) solution of the
Navier-Stokes equations when increasing the SVV threshold and moreover preserves
the spectral accuracy for smooth solutions. For α = 25˚, we investigate the influence
of theReynoldsnumber onthetopology of theflow by providingresultsatRe = 8322,
in agreement with the experimental work of Spohnand Gilli eron (1999). Beyondthe
qualitativeobservations, weprovidequantitative resultsandcomparisonswith former
results obtained at Re = 768000 with the same methodology, see Minguez et al.
(2008).

2. Physical and mathematical model

The geometry of the car model conforms with the experiments of Lienhart et
al. (2002). TheAhmed body, of length l = 1044mm, height h = 288mm, widthw =
389mm and of slant incidenceα = 25o, is placed at d = 50mm from the ground,
as presented in Figure 1. The fluid domain is constituted of a tunnel of rectangular
section, 1370mm×1000mm (in thez-spanwise andy-vertical directions), spreading
on 4 lengths l of the bluff body, which is located at the distance l from the inlet. In
agreement with the experiments of Spohnand Gilli eron (2002) the Reynolds number
is taken equal to Re = 8322 (inlet velocity 0.1m/s ≤ U∞ ≤ 0.3m/s, body height
h = 81mm and water kinematic viscosity ν ≈ 10−6 m2/s in the experiments).

Figure 1. Schematic of the computational domain with physical characteristics

The flow is governed by the incompressible three-dimensional Navier-Stokes
equations written in primitive variables, and made dimensionless using the Ahmed
body height h and the imposed inlet velocity U∞ as characteristic scales for length
and velocity, respectively. Hereafter, all the quantities are thus dimensionless. The
boundary and initial conditions associated to the governing equation are the follo-
wing. At the initial time, the fluid is at rest. Boundary conditions are only required
for the velocity : They are of no slip type at the ground(y = 0) and aroundthe bluff
body. The upper part of the domain (y = 3.47) is treated as a freeslip surface, as
e.g. proposed for the10th ERCOFTAC Workshops on Refined TurbulenceModeling
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(seeManceau and Bonnet (2000)), and periodicity is assumed in the spanwise direc-
tion. Inlet and outlet boundary conditions are more tricky. At the inlet, the velocity
is constant in time and show a stiff variation to vanish at the ground. At the outlet
convective boundary conditions at the mean flow velocity are applied.

3. Numerical model

For the paper to be self contained, this Section briefly describes the numerical
method. More details may be foundelsewhere, especially in Minguezet al. (2007).

3.1. Spatial and time approximation

The numerical method is based on a multi -domain Chebyshev-Fourier approxi-
mation. In the streamwise direction, the computational domain is decomposed in non
overlappingsub-domainsof different lengthsdepending ontheflow region. The conti-
nuity of the solution at the sub-domain interfaces is ensured by using an influence
matrix technique, as in Sabbah and Pasquetti (1998). In each sub-domain, a colloca-
tion Chebyshev method is used in the vertical and streamwise directions whereas a
Fourier-Galerkin methodis used in the spanwise periodic direction.

The Gauss-Lobatto-Chebyshev (GLC) mesh is especially adapted when boundary
layersoccur at theboundary of the computational domain, sinceGLC pointsaccumu-
late at the end-points of the reference interval (−1, 1). Consequently, to take care of
the boundary layers which develop aroundthe bluff body, we use amapping to accu-
mulate grid-points at the roof of the car model in the vertical y-direction, seeFigure
2. In the streamwise x-direction we use the natural refinement of the GLC points by
locatingsub-domain interfacesprecisely at thefront andrear partsof theAhmed body,
cf. Figure 2. Moreover, a sub-domain interface also coincides with the beginning of
the slant in order to correctly describe the flow at the detachment line.

Figure 2. Mesh grid aroundthe Ahmed body
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Thediscretization in time isbased ona fractional step method. Globally 2nd order
accurate it makes use of the following threesteps, as detailed in Cousin and Pasquetti
(2004) and references herein :

– An explicit transport step, based on an Operator Integration Factor (OIF) semi
Lagrangian method and a 4th order Runge-Kutta scheme to handle the non-linear
convective term.

– An implicit diffusion step, to handle the linear viscous term. Time derivatives
of the velocity components are approximated at the resolution time tn+1 with second
order backward differences and the pressure is expressed at time tn, using the
so-called Goda scheme, to obtain a provisional velocity.

– A projection step, to obtain a divergence freevelocity field. It is based on an
unique grid “PN − PN−2” approximation, so that no boundary conditions are requi-
red for thepressure. It is indeed aDarcy typeproblem rather than aPoisson onewhich
is solved at this step. In our implementation, thePN − PN−2 approximation, where
thepolynomial degreefor thepressureistwo degreeslessthan for thevelocity compo-
nents, has been extended to the case of our multi -domain approximation : Unknown
values of the pressure are considered at all the inner grid-points, including the sub-
domain interfacepoints.

3.2. Spectral vanishing viscosity methodology for LES

In the frame of spectral approximations, which are much lessdiffusive than
low order ones, high-Reynolds number flows are difficult to compute. The accumu-
lation of energy in the high spatial frequency range generally leads to a divergence
of the computations. As a solution, a spectral vanishing viscosity (SVV) technique is
proposed asan efficient stabili zationmethod of ahighly accuratespectral approxima-
tion. It consists in modifying the Navier-Stokes equations, by introducing a viscous
term acting only on the highest resolved-frequencies, to obtain a new set of equa-
tions more amenable to approximate the exact solution. Contrarily to many stabili za-
tion techniques, that generally destroy the spectral accuracy of the algorithm, seee.g.
Guermond(2004), SVV possesses the property of preserving the spectral accuracy.

First introduced by Tadmor (1989) to solve non-linear hyperbolic equations, typi-
cally theBurgersequation, usingstandard Fourier spectral methods, theSVV method
for theLES(SVV-LES) of incompressibleturbulent flowshasalready shown itseffec-
tivenessthrough different works, seee.g. Karamanos and Karniadakis (2000), Kirby
and Karniadakis (2002), Pasquetti (2006-a) and more recently Severacet al. (2007).

In our implementation, the SVV term is introduced in the Navier-Stokes equa-
tions througha new viscous term ∆SV V , so that the numerical approximation, say
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(uN , pN−2), solves (in the collocation Chebyshev-Galerkin Fourier sense) the semi-
discrete system :

∂tuN + uN .∇uN = −∇pN−2 + ν∆SV V uN [1]

∇ · uN = 0 [2]

with ν for the inverse of the Reynolds number and where∆SV V is defined as :

∆SV V ≡ ∇ · SN∇ [3]

and whereSN is the diagonal operator :

SN = diag{Si
Ni

}, Si
Ni

= 1 +
εiNi

ν
Qi

Ni
[4]

with the subscript i to denote the i-direction (we use here xi for x, y and z) and
where appear the amplitude coefficient and spectral viscosity operator, ǫN and QN

in 1D, as introduced in the periodic case (Fourier approximation) by Tadmor (1989)
and in thenon-periodic case(Legendre approximation) by Maday et al. (1993). Let us
recall that ǫN is usually aO(1/N) coefficient and the operator QN acts on the upper
part of the Fourier, Legendre or Chebyshev spectrum of the spectral approximation :
With e.g. ϕk for the Legendre polynomial of degreek, if v =

∑

∞

k=0
v̂kϕk, then

QN (v) =
∑N

k=0
Q̂kv̂kϕk, with 1 ≥ Q̂k > 0 if k > mN and Q̂k = 0 if k ≤ mN ,

with e.g. mN =
√
N . In practice we use the formula introduced by Maday et al.

(1993), Q̂k = exp(−(k − N)2/(k − mN )2) if k > mN . As mentioned earlier, to
refine the mesh aroundthe bluff body a mapping is required. Since the polynomial
approximation holds in the reference domain, say Ω̂, with the mapping f : Ω̂ → Ω,
the operator SN is defined as follows :

SN (∇u) ≡ SN (∇̂û)G [5]

whereG is the Jacobian matrix of f−1 and û = u ◦ f .
The practical implementation of the operator ∆SV V is based on the introduction

of SVV modified differentiation matrices. From the previous definitions of SN and
∆SV V we indeed have :

[∆SV V u]i = [∇ · SN (∇u)]i =
∑

j

∂j(∂̃jui) [6]

where ∂̃j = (1 + ν−1ǫNj
Qj

Nj
) ∂j .

The first theoretical works of Tadmor (1989) have pointed out admissible ranges
for theSVV-parameters. Additionally, in theLESframethesevaluesmust correspond
to a compromise between the accuracy of the SVV solution and the stabilit y of the
numerical scheme. In thepresent study, out of theboundary layersdevelopingaround
the bluff body, the SVV parameters have been chosen isotropic independently of the
spatial (x, y, z) directions as : ǫ = 1/N andmN =

√
N .
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3.3. Obstacle modeling

The Ahmed Body is modeled using a volume penalization methodwhich consists
in introducing an additional term canceling (approximately) the velocity field in the
volume of the obstacle. The main advantage of such a technique is that complex geo-
metries may be considered with simple meshes, so that very efficient solvers can be
used. Using the standard volume penalization method, the Navier-Stokes equations
are penalized as follow :

∂tuN + uN · ∇uN = −∇pN−2 + ν∆SV V uN − Cχ(x)uN [7]

whereC isapenalizationconstant andχ(x) the characteristic function of theobstacle,
equal to 1 inside the bluff bodyand 0elsewhere.

Thisapproach hasmotivated a lot of numerical aswell theoretical studies, see e.g.
Angot et al. (1999) or Khadraet al. (2000). Themain problem is that thepenalty term
may induce astabilit y problem, if handled explicitly, or ill conditioned systems of
equations, if handled implicitly. To overcome this difficulty, the pseudo-penalization
method described in Pasquetti et al. (2008) is implemented. To introduce this tech-
nique, let us restart from the Navier-Stokes system (momentum and continuity equa-
tions) and assume that the linear diffusive term is treated implicitly, whereas the non-
linear convectiveterm istreated explicitly. Then thefollowingsemi-discrete equations
must be solved at each time-step :

ν∆SV V u
n+1

N − α

τ
u
n+1

N −∇pn+1

N−2
= f

n+1 in Ω [8]

∇ · un+1

N = 0 [9]

where n is the time index, τ the time-step and α a scheme dependent coefficient
(α=3/2 for a second-order backward finite differencescheme). The pair (un

N , pnN−2)
is the numerical approximation of (u, p) at time tn and f

n+1 is an easily identifiable
sourceterm, which also depends on the time scheme.

Theobstacle, defined bythe characteristic functionχ, beingembedded in the com-
putational domainΩ thepseudo-penalizationmethodconsists in solving :

ν∆SV V u
n+1

N − α

τ
u
n+1

N −∇pn+1

N−2
= (1− χ̄)fn+1 in Ω [10]

∇ · un+1

N = 0 [11]

where χ̄ is a regularized characteristic function, in practiceobtained from local ave-
rage of the functionχ and allowing to weaken the expected Gibbs phenomenon. Ho-
wever, asdetailed in Minguezet al. (2008), for fully turbulent flowsbetter resultsmay
be obtained without regularization, i.e. χ̄ ≡ χ, and numerical tests have shown that,
due to the SVV, noGibbs phenomenonimpairs the solution.
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3.4. Near-wall correction

At very highReynoldsnumber, boundary layersdevelopingaroundthebluff body
become too thin to be resolved at a reasonable computational cost. Consequently,
sincethe last decade large effort are made to develop near-wall models. Piomelli and
Ballaras (2002) present a non-exhaustive listing of log-law traditionally used with
successwith finite volume method in some academical cases. However, in the frame
of spectral methodsand penalization techniques thenear-wall t reatment appearsasan
open and challenging problem.

In order to capture at the best the turbulent production phenomena localized in
the near-wall region, keeping the global stabilit y of the solution, we have relaxed in
the boundary layers the threshold parameter mN , in order to diminish the range of
frequencies on which the SVV acts. This near-wall correction is introduced with a
new characteristic functionχBL(x), equal to 1 in the near wall (NW) region and to 0
outside. The Navier-Stokes equations are consequently reformulated as :

∂tuN + uN · ∇uN = −∇pN−2 + ν∆SV V uN − CχuN + fBL [12]

withBL for Boundary Layer and where :

fBL = χBLν(∆
BL
SV V uN −∆SV V uN ) . [13]

The operator ∆BL
SV V is defined like∆SV V but makes use of a greater value of mN .

Note that a smaller value of ǫN is also possible to modify the influence of the
SVV terms, but would be more drastic. Moreover, in order to take into account the
strong anisotropy of the flow in this region, the distribution of grid-points in the
three directions and the stabilit y of the computation, the operator ∆BL

SV V is aniso-
tropic. Thus, the values of the parameter mN differ, depending on the direction :
mN = {2

√
Nx, 5

√

Ny, 4
√

Nz/2} in (x, y, z) directions and again εN = 1/N . The

correspondingspectral kernelsQ̂k of theSVV operator areshown in Figure3, for two
different values of mN and for N = 170.

ThefBL forceterm istreated explicitly, usingasecond order Adams-Bashforth ex-
trapolationconsistent with the accuracy of thetimediscretization. It should bementio-
ned that this explicit treatment has never induced extra numerical stabilit y constraint,
certainly due to the local effect of the term fBL.

The resolution in the near-wall region around the bluff body and at the ground
has been estimated using the wall coordinates (x+, y+, z+), which make use of the
ratio ν/uτ for referencelength. The friction velocity uτ has been calculated from the
simplified boundary layer equation (Tennekes and Lumley (1972)) :

< −u′v′ > +ν∂yU = u2
τ [14]

where y is the wall normal coordinate, U =< u > the mean streamwise velocity,
u′, v′ the fluctuations of the x and y components of the velocity, respectively. When
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Figure 3. Spectral kernel of the one-dimensional SVV operator for different values of
the threshold frequencymN , N = 170
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Figure 4. Resolution on the roof of the Ahmed body. Calculation of y+ along the
streamwise direction in the symmetry plane z = 0 at Re = 8322. Here dsvv corres-
ponds to ∂̃y

taking into account the SVV stabili zation it is however relevant to substitute to ∂y, in
[14], the SVV modified differentiation operator ∂̃y, as defined in Section 3.2.

The wall normal coordinate of the first grid point over the roof of the body are
presented in Figure4. From theSVV modified expression of uτ , oneobtainsy+ ≈ 4,
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which is not so bad. At the ground, the value of y+, not presented here but close to
0.2, indicates that the boundary layer is well resolved.

4. Computational details and performances

The solver is parallelized using the MPI library and optimized on a NEC SX8
parallel-vectorial computer. The computational domain isdecomposed in height sub-
domains in the x-streamwise direction, each of them being associated to a vectorial-
processor and discretized in N = {Nx, Ny, Nz} grid-points. Threesubdomains are
localized aroundthe Ahmed body, with one of them dedicated to the slant region, cf.
Figure 2.

Performance tests have been carried out for four meshes : N1 = {11, 61, 100},
N2 = {21, 91, 160}, N3 = {31, 131, 240}, N4 = {41, 191, 340}. Computational
costs and memory sizes are detailed in Table 1.

Table 1. Computational performances
Preprocessing time CPU time / iteration Memory Speed

N1 2.506 s 1.934 s 1.738 GB 8.332 GFlops
N2 10.065 s 3.760 s 3.261 GB 24.692 GFlops
N3 41.169 s 6.653 s 7.806 GB 49.307 GFlops
N4 178.618 s 9.695 s 19.607 GB 85.429 GFlops

The SVV-LES results presented hereafter have been obtained with the mesh N4,
i.e. with about 21.106 points. This mesh was the one used for our computations at
Re = 768000. Thestatisticshavebeen obtained after gettingafully turbulent solution
and have been then converged over the time length T = 12, with a time step of
2.10−3 (6000iterations). The referencetime being equal to h/U∞, T corresponds to
8.7.10−2s. TheCPU timewas9.695 s for onetime-step, i.e. approximately 9, 5.10−8s
per iteration and degreeof freedom. Globally, the computations have required about
150 CPU hours and the fine grid calculations about 19.6 Gigabytes of memory.

5. Results and discussion

SVV-LES results have been obtained at Re = 8322 and are compared both to the
experimental observations of Spohnand Gilli eron (1999) and to our former results at
Re = 768000 (Minguezet al. (2008)). Instantaneous and mean quantities as well as
turbulence statistics are presented in this Section. For information, the experimental
resultsof Lienhart et al. (2002) havebeen included in Figure9 and 10. They compare
favorably with the SVV-LES results, as detailed in Minguezet al. (2007).
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5.1. Flow structures

Globally, the flow structures at Re = 8322 compare well with those found at
Re = 768000. The topology of theflow is shown by using themean two-dimensional
streamlines in the symmetry planez = 0 in Figure 5.
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Figure 5. Mean two-dimensional streamlines over the body in the symmetry plane
z = 0 at Re = 8322, (a), and at Re = 768000 (Minguez et al. 2008), (b). The
geometry is stretched in vertical direction to better visualize the recirculationzones

In thefront part of thebody, theflow separatesat thebeginning of theupper panel,
at x = −3.3, andreattachesfarther, at x = −2.35 for Re = 8322 andat x = −2.6 for
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Re = 768000. The recirculation zone induces vortex shedding, as shown in Figure 6.
Similar phenomena, not visible in Figure5, occur onthelateral sides. In this front part
of the bluff body, the laminar/turbulent transition is observable in Figure 6a and 6b.
The laminar recirculation gives birth to large spanwise structures, shown by the iso-
surfaceof thepressure(Figure6a), which then achieve aturbulent transitionandform
aturbulent wake, aspointed out by the iso-surfaceof thepressurefluctuations (Figure
6b)). All these flow recirculations have been observed experimentally by Spohnand
Gilli eron (1999). As expected, at the higher viscosity the recirculation zones appear
longer (lr = 0.95 instead of lr = 0.7 on the roof) and thicker than those described
at Re = 768000 in Minguezet al. (2008). Farther behind this detachment a turbulent
boundary layer develops on the roof up to the sharp edge of theslant.

At thebeginning of theslant, again theflow partially separatesandthen reattaches
on the panel, but farther than at Re = 768000. Moreover, the recirculation bubble is
larger than at thehigher Reynoldsnumber, seeFigure5. In thespanwisedirection, the
slant-recirculation appears divided in two foci, as also observed by Spohnand Gilli e-
ron (1999) (seeFigure 6a). Along the slant, as for Re = 768000 vortical structures
reminiscent of hairpin vortices develop in the shear layer of the slant-recirculation,
seeFigure 6. This partial slant-detachment is confined by two large counter rotating
cone-like traili ng vortices coming from the two edges, between the slant and the la-
teral surfaces of the body, and spreading farther in the wake, see Figure 7a,c,e. In
addition, in the near wake helical structures roll up aroundthese traili ng vortices (see
Figure6b). With respect to thehighReynoldsflow, themean flow vortices in thewake
appear both weaker and nearer of theground, as shown by the location of thevortices
center in Figure 7e,f.

For Re = 8322, strong traili ng vortices, localized at the front part and oneach
side, developalongthebody, Figure8a. Such traili ng vortices, not really remarkable at
Re = 768000 (Figure7b,d,f), disappear quickly in thenear wake(Figure7a,c,e). The
SVV-LESresultshereslightly differ from the experiments, sincesuch traili ng vortices
are not reported by Spohnand Gili eron (2000) but may be discerned in the results
of Lienhart et al. (2002). They have also been obtained by Krajnovic and Davidson
(2001), in a LES of the flow over a shape like bus at Re = 210000.

Finally, just behind the bluff body, two contra-rotative bubbles develop within the
lower part, as shown in thesymmetry planein Figure5. Thelength of thisrecirculation
bubble, lr ≈ 0.6, is close to the one observed at Re = 768000 (see Minguez et
al. (2008), Lienhart et al. (2002)) but the lowest vortex is here of weaker intensity,
certainly due to the thicker boundary layer developing under the body(report Section
5.2).

5.2. Statistics of the turbulence

Mean quantities are presented in this Section in the symmetry plane z = 0, at
different streamwise locations over the slant and in the wake. Moreover, additional
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a

b

Figure 6. Iso-surfaceof theinstantaneouspressure(a) and of thepressurefluctuations
(b) colored by the instantaneous streamwise velocityu, Re = 8322

upstream profilesof thedimensionlessturbulent kinetic energyk (referencevalueU2
∞

)
are plotted and discussed.

At thebeginning of theroof, the laminar/turbulent transitionappears together with
the upstream detachment, as shown by Figure 9a. The recirculation phenomenon in-
volves a turbulent wake which thickens in they-direction alongthe roof.This feature
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Figure 7. Velocity field in (y, z) planes in the wake of the Ahmed body : SVV-LES
results at Re = 8322 (a,c,e) and SVV-LESresults at Re = 768000 (b,d,f), measured
at locationsx = −0.31 (a,b), x = 0 (b,c) andx = 1.34 (e,f)

seems more obvious than at high Reynolds number, certainly due to the lower mean
freestream velocity (for given fluid and bluff body). In the near wall region alongthe
roof, athin turbulent boundary layer develops, with adimensionlessturbulent intensity
weaker than at Re = 768000 but with the same thickness, seeFigure 10.

The boundary layer over the slant thickens and partially separates due to the slant
incidence. Its thickness compares to the one obtained at Re = 768000. The fluid
reattachesnear the end of theslant, at x = 0.08, i.e, farther than found byMinguezet
al. (2008) at Re = 768000, asalready mentioned in Section 5.1. Thislarger separation
moves the production of turbulencedownstream to the second half part of the panel.
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a

b

Figure 8. Iso-surfaceof the meanQ criterium colored by the mean streamwise velo-
city over the Ahmed body respectively at Re = 768000, (a), and at Re = 8322, (b).
Q is defined asQ = 1

2
(< Ω >:< Ω > − < S >:< S >), with S the symmetrical

part of ∇u andΩ its anti-symmetrical part

Moreprecisely, in thesymmetry planez = 0 only 15% of the turbulent kinetic energy
k is produced within the upper half part of the slant, against 45% in Lienhart et al.
(2002) and 30% in Minguez et al. (2007). These quantities have been obtained by
summing numerically theturbulent kinetic energy within thenear wall region over the
slant, using the basic method of rectangles.

Under theAhmed body, thelaminar/turbulent transitionappearsat about x ≈ −1.5
(Figure 9), whereas at Re = 768000 the ground boundary layer which immediately
turbulent and with a larger intensity.
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Figure 9. Profiles of turbulent kinetic energy k in the symmetry plane z = 0 over the
Ahmed body at Re = 8322 on the front part (a), on theslant andin thenear wake(b)
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Figure 10. Profiles of mean streamwise velocity over the slant andin thewake

5.3. Dissipation rate

On the contrary to implicit LES or low order LES approaches, in the frame of
the present high order SVV-LES one can clearly discern the contribution of the vis-
cous and stabili zation (subgrid) terms. It becomes then possible to provide arelevant
computation of the dissipation rateε of the turbulent kinetic energy.
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The expression of ε is deduced from the SVV stabili zed Navier-Stokes equations,
as detailed in Pasquetti (2006-b). Keeping the .̃ notation for the SVV modified diffe-
rentiation operators(cf Section 3.2), thedissipationrateof theturbulent kinetic energy
writes as :

ε = 2ν(< S : S̃ > − < S >:< S̃ >) . [15]

In this expressionS is the usual strain rate tensor, so that :

Sij = (∂iuj + ∂jui)/2 , S̃ij = (∂̃iuj + ∂̃jui)/2 . [16]
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Figure 11. Dissipationrateof theturbulent kinetic energy versusthe vertical direction
in the symmetry plane at x = 1.51 : Comparison of the viscous and global SVV
dissipation rates at Re = 8322 (a) ; Comparison of the SVV dissipation for Re =
8322 andRe = 768000 (b)

Theprofilesof thedissipation rates in thewake(seeFigure11a) are coherent with
the profiles of the turbulent kinetic energy. Indeed, the maximum of the dissipation
corresponds to the maximum of k. Moreover, the Reynolds number being lower than
in Minguez et al. (2008), despite the fact that the resolutions are the same (same
mesh) the balance viscous/global dissipation is much well -adjusted. In the present
simulation, theSVV and viscousdissipationratesareroughly in ratio 2at the location
x = 1.51, as shown in Figure 11a, and this tendency is recovered everywhere in
the wake as over the Ahmed body. On the contrary, the SVV-dissipation at Re =
768000 was in Minguezet al. (2008) two orders of magnitude larger than the viscous
one. The present low Reynolds number results are then certainly more reliable than
those obtained at the higher Reynolds number, which was not tackled with a finer
mesh for computational cost reasons. The SVV-dissipation rates at Re = 8322 and at
Re = 768000 are compared in Figure 11b. Of course, we present here dimensionless
quantities. Thereferencevaluebeingequal toU3

∞
/h, thedimensioned quantitiesmay

differ by a factor (8322/768000)3 = 1.3.10−6.
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6. Concluding remarks

The flow over a simplified car model has been computed using a SVV-LES
methodology. This investigation constitutes the first LES of Ahmed bodyflow at mo-
derate Reynolds number, Re = 8322. The results complete the ones that we obtained
at the higher Reynolds number Re = 768000, using the same mesh, i.e. with about
21.106 grid-points.

The numerical results have well recovered the topology pointed out experimen-
tally by Spohnand Gilli eron (1999) at the same Reynolds number, particularly the
slant-recirculation divided in two foci. Quantitative and qualitative comparisons, both
with the LES-results of Minguezet al. (2008) and the experimental measurements of
Lienhart et al. (2002) (for more details seeMinguezet al. (2008)) at higher Reynolds
(Re = 768000), have pointed out the weak influence of the viscosity on this flow,
sincethe topology is globally the same for the two Reynolds numbers. That confirms
the observations of Krajnovic and Davidson (2004) at Re = 200000 and shows a
stronger dependence of the flow on the geometry (α) than on the Reynolds number
(Re). As expected, the low Reynold flow shows recirculation zones of larger size and
weaker dimensionlessturbulent intensity. Finally, theresultshaveshown largevortical
structurescoming from the lower front cornersof the lateral wall andspreadingalong
the bluff bodywhich were not reported in Spohnand Gilli eron(1999).
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