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ABSTRACT. This paper deals with a comparative study of two iterative Krylov solvers (GIRKS 
and SRKS) dedicated to the solution to a sequence of large linear problems. We apply these 
two algorithms to brittle crack problems modelized with a discrete element method. We show 
that these algorithms still reduce the total number of iterations but not the total CPU time. By 
considering the specific modification of the stiffness matrix for discrete modeling, we propose 
a simple evolution of the SRK algorithm leading to a reduction of the factor time (greater 
than 2). Efficiency of the algorithm is illustrated on 2D and 3D examples of crack 
propagation. 

RÉSUMÉ. Ce papier propose une étude comparative de deux solveurs itératifs (GIRKS et SRKS) 
de type Krylov dédiés à la résolution d’une succession de grands systèmes linéaires. Nous 
appliquons ces algorithmes à des problèmes de rupture fragile traités avec un modèle aux 
éléments discrets. Nous montrons que hors du cadre des approches par décomposition de 
domaine, ces algorithmes restent performants en termes de réduction du nombre d’itérations, 
mais plus en termes de temps CPU. En considérant les modifications de la matrice de raideur 
propre au modèle discret, nous proposons une évolution simple de l’algorithme SRKS 
permettant de retrouver une réduction du temps de calcul par au minimum un facteur 2. Les 
performances de l’algorithme sont illustrées sur des exemples 2D et 3D de fissuration. 
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1. Introduction

Discrete element method(DEM) hasbeen coming back into favor duringtheselast
ten years when dealing with brittle heterogeneous material behavior (seefor example
(Van Mier et al., 2002; Potyondyet al., 2004; Yip et al., 2006; Delaplaceet al., 2007)).
Althoughthe method has been introduced threedecades ago (Cundall et al., 1979),
nowadayscomputer performance allowscomputation of structurebehavior at a repre-
sentative scale. One of the advantage of the approach is to take naturally into account
material heterogeneity, by representing randomnessof the miscrostructure. Another
one is to represent material li ke an assembly of particles rather than a continuous me-
dia, allowing realistic description of discontinuity such as a crack.

A drawback of this material description at fine scale is that a large number of
elements should be considered when performing simulations, leading to a large size
stiffnessmatrix. This point is not a real problem when dealing with high rate loading,
for which discrete element methods have areal interest to describe phenomena like
fragmentation or spalli ng : in this case, explicit time integration schemes are usually
preferred and do not required matrix inversion. On the other hand, when dealing with
low rate dynamic problems for which implicit schemes are used, a large sizesystem
resolutionshould beperformed for each timestep andcomputational time can become
discouraging. It is the same case for static problems where many successive system
resolutions are performed during loading. Different algorithms have been proposed
to address this problem. The first pragmatic method is to make a full i nversion for
the first resolution, and to use for example aShermann-Morrison formula to compute
inverse matrix for next resolutions. This method has been successfully used for large
system size, but only for 2D problems (Nukalaet al., 2005). 3D problems need a too
large amount of computer storage to be achieved. Then, all other methods are based
on iterative solvers. Note that if periodic boundary conditions are considered, high
efficiency algorithms have been proposed (Nukalaet al., 2004).

In this paper, we explore the possibilit y offered by the use of Krylov iterative sol-
vers and more precisely by two different recycling Krylov subspacestrategies : the
generalized iterative reuse of Krylov subspace(GIRKS) algorithm ((Rey, 1996; Ris-
ler et al., 2000)) and the selective reuse of Krylov subspace(SRKS) approach ((Rey
et al., 1998; Gosselet et al., 2002)). These strategies are based onthe reuse (or recy-
cling) of numerical information coming from the solution to previous linear systems.
Dedicated to the solution to a sequenceof linear system, they have been able to acce-
lerate significantly the solution to a sequence of large linear problems. Nonetheless,
theses approaches have been introduced and validated in the context of domain de-
composition method (see (Farhat et al., 1994; Gosselet et al., 2006) among other)
which operates on a reduced-sizeproblem. Beside they have been associated to a full
re-orthogonalization procedure (Gram-Schmid process) which may not be required in
other context. Hence, we first analyse the efficiency both in term of iteration number
(in our study, the iteration number means the number of iterations required to reach a
given precision) and CPU time of such recycling strategy without the use of domain
decomposition context. Besides, considering specific changes in the operators for the
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discrete element approach, asimplemodified algorithm based ontheSRKSapproach
and leading to an efficient recycling strategy is also introduced.

In thefirst part of thepaper, we introducethediscrete element model used for this
study. The elastic prediction algorithm used to solve static problem is proposed. In a
second part, we present threegeneric problems, a small -size2D tension test, a large-
size2D three-point bend test and a large-size3D tension test, used for benchmarking
thesolver. In athird part, thereferenceiterativesolver andthetwo recyclingstrategies
are introduced. Their efficiency is analyzed ona first example. A modified algorithm
based on the selective reuse of Krylov subspaces approach is then introduced. In a
final part, the efficiency of the modified algorithm is ill ustrated with two large-scale
examples.

2. Discrete model

2.1. Basic principle

We present in this part the model, based on a representation of the material as a
particle assembly. Voronoi polygons (or polyhedra in 3D) are used, which allow fast
mesh generation : (i) the particle nuclei are randomly generated in each cell of a re-
gular grid, (ii ) aVoronoi tesselation isperformed using thesenuclei. Thisgrid support
algorithm, proposed by (Moukarzel et al., 1992), simplifies applications of boundary
andloadingconditions. Particlesare considered rigid but they can overlap to reproduce
material deformation. Cohesive forcesarerepresented by beamsjoiningthe centersof
each coupleof neighbouring particles. Material elastic constantsE andν, respectively
theYoung’smodulusandthePoissoncoefficient, arerelated to beamselastic modulus
and quadratic inertia factor. Elastic modulus ischosen to bethesamefor all beams. In
the following, Euler-Bernoulli beams are considered, which are strictly equivalent to
particle interfaceforces within the framework of elasticity and small strains.

Material nonlinear behavior is obtained by considering a perfect brittle behavior
for beams(Figure1). Thischoiceisjustified when considering damagebehavior of the
studied material. The breaking criterion for beam ij, that relies particle i and particle
j, is written (Herrmannet al., 1990; D’Addetta, 2004) :

Pij =

(

εij

εcr
ij

)2

+

(

|θi − θj |
θcr

ij

)

≥ 1 [1]

εij is thebeam longitudinal strain, θi andθj arerespectively rotationsof particlei and
particle j. εcr

ij and θcr
ij are two model parameters that control the material asymmetric

behavior in tension and compression (Delaplace, 2009).
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Figure 1. A mesh sample with the representation of the brittlebehavior

2.2. Algorithms for static problems

Asmentionned in introduction, our study dealswithstaticproblems, i.e. that inertia
forces could be neglected. For the loading step k, the formulation of the problem is
reduced to the equation :

Kkuk = fk [2]

where uk is the vector containing the particle degrees of freedom (dof) and fk is the
loading vector. Kk is the global stiffnessmatrix that depends on the loading step. A
major property of this matrix is that evolution of different components is not conti-
nuous. For the chosen elastic brittle behavior, local stiffnessmatrix of each bondis
either constant (surviving bond) or null (broken bond).

Equation [2] could be solved by two algorithms when fk evolves, the monotonic
algorithm or the elastic prediction one.

2.2.1. Monotonic algorithm

This is probably themost employed algorithm. Response is computed from asuc-
cession of increasing loading steps fk, k ∈ {1, ..., nrupt} with nrupt the total number of
loading steps before rupture. During each increment, a number mk of beams can fail
if their breaking threshold is exceeded. With this algorithm, the response depends on
the incremental step. The algorithm for the step k is the following :

Step k

1) apply loading fk

2) computeuk solvingequation [2]

3) save couple (uk, fk)
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4) find themk links that verify

Pipjp ≥ 1 p ∈ {1, .., mk}

5) change stiffnessmatrix with

Kk+1 = Kk −
mk
∑

p=1

Lipjp
T Kk

ipjp
Lipjp

whereLipjp is the connectivity matrix of element ipjp.

2.2.2. Elastic prediction algorithm

Thisalgorithm could beseen asan event-driven algorithm. Loading isnot control-
led by an increasing quantity (e.g. forceor displacement) but by the decreasing of the
secant stiffness. Usually, onelink isbroken for onestep. Thiskind of control allowsto
follow snap back response, and uniquenessof solution is guaranteed in the sense that
it does not depend of a loading parameter. By considering the elastic brittle law for
bonds, we know exactly the number of changing elements in global stiffnessmatrix :
4 × n2

dof wherendof is the number of degrees of freedom for one particle.

The algorithm for breaking thekth-bondis the following one :

Step k

1) apply elastic loading fel

2) computeuel solvingequation [2]

3) computeαmin with

αmin = min
i,j∈{1,..,n}

i<j

(

1

Pij

)

4) save couple (αminu
el, αminf

el)

5) change stiffnessmatrix with

Kk+1 = Kk − Lij
T Kk

ijLij

where Lij is the connectivity matrix of the particular element ij that satisfies
step 3).

Responses obtained with these two algorithms are plotted onFigure 2. If a suf-
ficient number of steps is considered with the monotic loading algorithm, both res-
ponses are similar. Note that just the elastic-prediction algorithm is able to follow the
local instabilit y (snapback) during the loading. Furthermore, nonphysical crack path
could be obtained if the monotonic algorithm is used with a too large loading step,
as shown onFigure 3 where two cracks are obtained. Because of its better accuracy
to deal with elastic brittle behaviour, we will use the elastic-prediction algorithm for
solving next problems. Then, solution to a problem is obtained by solving nrupt-times
equation [2], with nrupt the total number of breaking bonds at global failure.
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Figure 2. Force-displacement response obtained with the two algorithms for a DCB
test on a notched specimen

Figure 3. Unphysical crackpath (left) obtained with toolargeloadingstep monotonic
algorithm, compared to theright crackpath obtained with elastic prediction algorithm

2.3. Reference problems

In order to ill ustrate easily thesolver features, wefirst introduce asimpleproblem,
called P0, withalimited size. Then, weproposetwo problems, PA andPB, withamore
realistic number of degrees of freedom to ill ustrate the performanceof the improved
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solver. The number of degrees of freedom of the two problems are close, but the first
one is solved in 2D as the second one is solved in 3D. The main initial properties of
the stiffnessmatrices are given in Table 1.

2.3.1. Tension test on asquare (problem 0)

This small -sizeproblem isasimple2D tension test onasquare, with 64× 64 par-
ticles, that corresponds to 12 288 degrees of freedom. After a first stage of distributed
damage, a macrocrack appears and propagates through the sample. The number of
systems to solvenrupt can be estimated by the expression64× n̄2D

c /2, where n̄2D
c ≈ 6

is the average number of connections per particle for a Voronoi tesselation in 2D.

2.3.2. 3-point bend test (problem A)

Figure4 shows thegeometry and loadingconditionsof this test. Thesimulation is
performed with a2D-mesh of 800×100 particles, that correspondsto240 000 degrees
of freedom. The stiffnessmatrix has a narrow band diagonal form. In this problem,
damage localizes from the beginning of the load, with a crack that propagates from
the bottom of the beam. Total failure is obtained with a short number of broken fibers
(nrupt ≈ 100 × n̄2D

c /2).

Figure 4. Geometry andloading conditions for the 3-point bend test (PA), andcrack
pattern at the end of the loading

2.3.3. Tension test on acube (problem B)

Figure5 showsthegeometry and loadingconditionsof this test : adisplacement is
applied onthe top faceof a cube. Like for P0, after afirst stageof distributed damage,
amacrocrack appears throughthesample, perpendicular to the loading direction. The
simulation isperformed with a3D-mesh of 40× 40× 40 = 64 000 particles, that cor-
responds to 384 000 degreesof freedom. Total failure isobtained with a largenumber
of broken fibers (nrupt ≈ 1600 × n̄3D

c /2, where n̄3D
c ≈ 16 is the average number of

connections per particle in 3D).
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Figure 5. Geometry and loading for the uniaxial tension test (PB), andinitiation of
the macrocrack

Table 1. Stiffnessmatrices features
number of DOF number of nonzero elements fill ratio

Problem 0 12 288 253 675 0.1680%
Problem A 240 000 5 010 095 0.008698%
Problem B 384 000 36 662 401 0.02486%

3. Solution to a sequence of linear systems : recycling strategies

Solvingaproblem with adiscretemodel consiststhen in solvingasequenceof nrupt

systemsKkuk = fk, k ∈ {1, ...nrupt} with small changes in the left handsideoperator
(herethestiffnessmatrix). Thereduction of thetotal CPU timefor thesolutionto such
a sequenceof large sparse symmetric positive definite linear systems is then a crucial
point.

We explore in this paper the possibilit y offer by two different approaches based
on the use of a krylov iterative solver (a preconditioned conjugate gradient) associa-
ted to a reuse (or a recycle) of Krylov subspaces : the generalized iterative reuse of
Krylov subspaces algorithm (GIRKS) (Rey, 1996; Risler et al., 2000) and the selec-
tive reuseof Krylov subspaces (SRKS) (Rey et al., 1998; Gosselet et al., 2002). They
are based onthe reuse of numerical information coming from the iterative solution to
previous linear systems. They have been introduced and evaluated in associationwith
domain decomposition strategies. Such an association induced two specificity : first a
significant reduction of the size of linear problems (by condensation at the interface
between subdomains) andsecondtheused of a full re-orthogonalization procedure. In
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the following, the three algorithms are introduced. Their adaptivity to the solution to
a sequenceof large linear systems are discussed and evaluated.

3.1. The reference iterative solver without recycling strategy

The preconditioned conjugate gradient is first described in Algorithm 1. For both
genericity and simplicity reasons, a standard Incomplete Cholesky Preconditioner
(ICP) is chosen. ICP allows to control easily the ratio performance/computing time
by changing its threshold ξ. It is a quite standard choice for the iterative solution to
large sparse symmetric positive definite linear systems (Saad, 2000).

Algorithm 1 PCG

1: uk
0 arbitrary

2: gk
0 = Kkuk

0 − fk

3: zk
0 = M−1gk

0

4: i ⇐ 0
5: repeat

6: ω
k
i = zk

i + γk
i−1ω

k
i−1 γk

i−1 = − (zk
i ,Kω

k
i−1

)

(Kω
k
i−1

,ωk
i−1

)

7: uk
i+1 = uk

i + αk
i ω

k
i

8: gk
i+1 = gk

i + αk
i K

k
ω

k
i αk

i = − (gk
i ,zk

i )

(Kω
k
i ,ωk

i )

9: zk
i+1 = M−1gk

i+1

10: i ⇐ i + 1
11: until convergence|gk

i+1| < 10−8|gk
0 |

The efficiency of PCG algorithm ismainly based onthe choiceof an efficient pre-
conditioner. Table2 reports theperformanceof the ICPfor different ξ for theproblem
P0. A sequence of 212 resolutions has to be performed to obtain the failure of the
sample. Althoughthe number of iterations reduces dramatically as ξ decreases, the
CPU time to compute the preconditioner becomes too important with respect to total
CPU time to solve the entire problem. This effect can be seen onthe total CPU time
to solve P0 (Table 2), and onFigure 6 where the difference of number of iterations
between ξ = 10−8 and ξ = 10−9 (visible on the bottom graph for the first solved
system) vanishes as the number of solved systems increases. The optimum is obtai-
ned for a preconditioner with a number of nonzero elements close to the number of
nonzero elements of the stiffnessmatrix. This result is satisfactory considering that
it is not reasonable to store in memory a preconditioner much larger than the initial
stiffnessmatrix, especially for large-sizeproblems. Next, the threshold ξ = 10−8 will
be chosen.

At last, another well -known point that may affect the efficiency of PCG is related
to the numerical satisfaction of the K-orthogonality of the search direction ω

k
i with

respect to previousone((Kωk
i ,ωk

j ) = 0, ∀j = 1, . . . i−1). Moreprecisely, to reduce
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Table 2. Performanceof Incomplete Cholesky preconditioner for P0

ICP threshold ξ 1.e-7 5.e-8 2.5e-8 1.e-8 5.e-9 1.e-9
Nonzero 101 582 132 715 167 980 228 813 291 409 523 943
elements
Ratio 0.400 0.523 0.662 0.902 1.15 2.07
ICP size/K size
ICP computation 8.0 9.7 11.5 14.2 17.4 29.7
CPU time (s)
Nb iterations 138 94 67 45 36 20
for 1st system
Total CPU 156 146 140 131 146 165
time (s)

numerical error on the K-orthogonality condition, a full -reorthogonalization proce-
dure can be used for the computation of vectorsω

k
i . Among various Gram-Schmid’s

procedures, one simply consists in changing Line 6 into ω
k
i = zk

i +
∑i−1

j=0 γk
j ω

k
j

with γk
j = − (zk

i ,Kω
k
j )

(Kω
k
j ,ωk

j )
. One then obtains a more robust algorithm. The drawback is

obviously an extra-cost of the algorithm.

Such procedure is typically required in the context of domain decomposition me-
thod. In our case, numerical error propagationwherenever observed. It isan important
differencewith the case we deal with. Hence, such re-orthogonalization procedure is
not required in our case and basic algorithm of PCG is always preferred in the follo-
wing.

3.2. First recycling strategy : GIRKS algorithm

This strategy is based onthe computation of correction terms for the preconditio-
ned residual zk

i+1 (Algorithm 1, line 9) by reusing the r1 vectors
{

ω
0
i

}

i=1,r1

gene-
rated during the iterative solution to the first problem. This correction can be seen as
a nonsymmetric preconditioning, leading to a potentially nonconvergent algorithm.
Hence afull re-orthogonalization of vectors ω

k
i is required (see(Risler et al., 2000)

for the full algorithm). One of the advantage of the algorithm is that the resolution
is still based onmatrix-vector products and scalar products : several routines (BLAS,
LAPACK...) can beused for optimized computations, and parallelisation of thesepro-
ducts are easily envisageable.

For problem P0 with IC(ξ=1.e-8) preconditioner, performancein termsof iteration
number of thisalgorithm iscompared to theiteration number with PCG in Figure7. As
expected, thenumber of iterationsper system decreases. The effect ismainly visiblein
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thebeginning of the loading : for example, thesecondsystemneedsonly 12 iterations
to be solved with Krylov algorithm versus 34 iterations for the PCG algorithm (the
total number of iterations to solve P0 is here8139 versus 12367 for PCG algorithm).
Furthermore, the evolution of residual (Figure 7, left curve) becomes monotonic and
ensures a better convergence. As the total number of solved systems increases, the
gain becomes less significant : changes in stiffnessmatrix transform more and more
the system to solve and Krylov correction becomes lessrelevant.

Note that improvement can be achieved byactualizingKrylovsubspaceduringthe
sequenceof linear systems. However we will not try this actualization. Indeed, in the
context where aGram-Schmid procedure isnot required for thereferencesolver, such
recycling strategy loses its interest if we consider the CPU time : iteration number
decreases, but each iteration is more costly because of (i) the computation of the cor-
rection terms (ii ) the required full re-orthogonalization procedure. The reduction in
CPU time iseffective (althoughlimited) during thefirst solved systems, but decreases
and becomesnegativefor thelast solved systems. Such problemswerenot observed in
the context of domain decompositionmethodfor mainly two reasons : first it operates
onareduced-sizeproblem andsecondare-orthogonalization procedure is required on
the referenceiterative solver.

Anyhow, at this point, the fact is that we just have considered that stiffnessma-
trix has limited changes between two successive resolutions, but we do not take into
account that theses changes are explicitly known.

3.3. Second recycling strategy : SRKS approach

The selective reuse of Krylov subspaces (Rey et al., 1998; Gosselet et al., 2002)
is the secondrecycling strategy we propose to evaluate. It is based onan Augmented
Conjugate Gradient algorithm. The key point here is that the use of a Gram-Schmid
procedure is not required and one can expect a reduction of CPU time. Furthermore
with the ACG algorithm, the projector is only used onceper iteration.

3.3.1. Augmented Conjugate Gradient with SRKSstrategy

TheAugmented conjugategradient isfirst described in theAlgorithm 2 (see(Saad
et al., 2000) among other).

Thekey point then relatesonthe choiceof thentot
dof × r1 matrix C. A natural choice

isto consider r1-Krylov space(span
{

ω
0
i , i = 1, . . . r1

}

) generated duringthesolution
to the first system.

In order to reduce the cost of the algorithm, one can limit the size of the matrix
C by reducing the number of kept vectors. Then, a natural idea (Rey et al., 1998)
is to consider a subspaceof the r1-Krylov space. Different studies have shown that
convergenceof PCG algorithm is related to convergenceof theRitz vectors (der Sluis
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Algorithm 2 Augmented CG

1: ComputeP =
[

I − C
(

CT KkC
)

−1
CT Kk

]

2: uk
0 = C

(

CT KkC
)

−1
CT fk

3: gk
0 = fk − Kkuk

0

4: zk
0 = PM−1gk

0

5: ω0 = z0

6: i ⇐ 1
7: repeat

8: uk
i = uk

i−1 + αk
i−1ω

k
i−1 αk

i−1 =
(gk

i−1
,zk

i−1
)

(Kk
ω

k
i−1

,ωk
i−1

)

9: gk
i = gk

i−1 − αk
i−1K

k
ω

k
i−1

10: zk
i = PM−1gk

i

11: ω
k
i = zk

i + βk
i ω

k
i−1 βk

i = − (zk
i ,Kk

ω
k
i−1

)

(Kk
ω

k
i−1

,ωk
i−1

)

12: i ⇐ i + 1
13: until convergence|gk

i+1| < 10−8|gk
0 |

et al., 1986; Paige et al., 1995). A judicious choice for composing the matrix C is
to keep Ritz vectors only if their associated Ritz values have a good convergence
(Gosselet et al., 2002). This choice is realized through the Algorithm 3 (note that
superscript k has been omitted in this algorithm for clarity).

Algorithm 3 Selective Reuse of Krylov Subspaces

1: DefineVp =
[

. . . , (−1)j zj

(rj ,zj)1/2
, . . .

]

06j<p

2: DefineHp = tridiag(ηj−1, ζj , ηj)06j<p

with ζ0 = 1
α0

, ζj = 1
αj

+
βj−1

αj−1

, ηj =

√
βj

αj
(η0 is not used)

andαj =
(gj ,zj)

(Kωj ,ωj)
βj = − (zj ,Kωj−1)

(Kωj−1,ωj−1)

3: Compute eigenvectorsqp and eigenvaluesθp of Hp (θ1
p ≥ . . . ≥ θp

p)

4: ComputeYp = Vpqp =
[

y1
p, . . . , yp

p

]

5: Extract Hp−1 = tridiag(ηj−1, ζj , ηj)06j<p−1 from Hp

6: Compute eigenvalues (θ1
p−1 ≥ . . . ≥ θp−1

p−1) of Hp−1

7: Keep Ritz vector qj in Krylov subspaceif associated eigenvalue verifies :

|θj
p − θj−1

p−1|
θj

p

≤ δ

In this algorithm, δ is a constant parameter that controls the number of vectors we
will kept. rδ

1, the number of kept Ritz vectors, is equal to 0 for δ = 0 or equals to
r1 if δ → ∞. With this selection, we reduce dimension of matrix C without redu-
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cing iterative solver performance (just Ritz vectors with low convergence factor are
removed).

However, as for the GIRKS algorithm, the total CPU time for this algorithm
is not reduced compared to the reference PCG one. The reason is that if the full
re-orthogonalization is no more needed with this algorithm, costly computation of
matrix-matrix product is still performed. This kind of operations are usually avoided
in iterative algorithm. Note that in the context of domain decomposition methodsuch
inefficiency in terms of CPU time were not observed mainly because of the reduced
sizeof involved vectors (related to the interfacebetween sub-domain).
In the next section, we introduce an evolution of this algorithm, based onthe known
changes of the stiffnessmatrix.

3.3.2. SRKS approach for explicit changes in the left handside operator

In the case where the changes in the left hand side operator Kk are explicit, the
cost of the matrix-matrix product can be reduced.

Let us consider that the bond ij breaks for step k. By using elastic prediction
algorithm, we can write :

CT KkC = CT (Kk−1 − Lij
T KijLij)C = CT Kk−1C − CT Lij

T KijLijC

In the last equation, CT Kk−1C is a stored r1 × r1 matrix that has been computed
during last step. CT Lij

T KijLijC needs only 2 × 2ndof × r1 operations to be compu-
ted. This last computation and the computation of the inverse of the r1 × r1-matrix
CT KkC are achieved only one time per resolution. In the same way, the r1 × ntot

dof-
matrix CT Kk can be computed by using the relation :

CT Kk = CT Kk−1 − CT Lij
T KijLij

By these considerations, the augmented conjugate gradient algorithm with SRKS
strategy recovers strong interest : iteration number decreases, and correction com-
putation is performed in a short time. A final remark concerns the storage of ma-
trices. It is not reasonable to store in the computer memory the ntot

dof × ntot
dof-matrix

[

I − C
(

CT KkC
)

−1
CT Kk

]

. The optimized storage, in terms on number of ope-

rations, is to store ntot
dof × r1-matrix C

(

CT KkC
)

−1
and the r1 × ntot

dof-matrix CT Kk.
We propose in the next part to evaluate the performanceof this algorithm on PA and
PB, both problems with a relevant number of degrees of freedom.

4. Performance of the algorithm

4.1. Problem A

For this problem, the failure of the beam is obtained after nrupt = 250 rupture of
bonds, so one has to solve 250linear systems of 240 000 dof before failure. The thre-
shold of the ICP is fixed to ξ = 10−8. For the referencePCG solver, its corresponds
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to 258iterations to solve the first system, and a total of 69077iterations for the 250
resolutions.

We present results obtained with the SRKS algorithm for different values of δ.
Figure 8 shows the number of kept Krylov vectors and the total number of iterations
ntot

it versus δ, and the total CPU time of the PCG algorithm compared to the SRKS
algorithm.

We first observe asignificant reduction of the total number of iterations, but more
interesting is that the efficiency in terms of CPU time is quite constant (a reduction
factor of 2.5) for a large range of δ ∈ [10−6, 10−10].

Figure 9 presents the evolution of number of iterations per system for both al-
gorithms with δ = 10−10. For this problem, the reduction of the total number of
iterations is really significant and iskept quasi-constant for all systems, that ensuresa
significant reduction of the total CPU time.

Table 3 gives the best results between the two algorithms (with δ = 10−10). The
total number of iterations isdivided bya factor 3.25 andthe total CPU time isdivided
by a factor 2.61. The lower factor for the total time is due to the extra-cost of each
iteration for the SRKS algorithm.

Table 3. Best results for problem PA.
time (mn) ntot

it

PCG 258iterations (first system) 133 69077
SRKS 14Ritz vectors 51 21253
Ratio 18.4 2.61 3.25

4.2. Problem B

The failure of the cube is obtained after nrupt ≈ 14000 ruptures of bonds, so one
has to solve around 14000linear systemsof 384 000 dof before failure. The threshold
of the ICP is fixed to ξ = 10−8. For the referencePCG solver, its corresponds to 253
iterations to solve the first system.

The analysisof theRitz vectorsthreshold isjust performed onthe100 first systems
(100 breaking bonds). For PCG algorithm, it corresponds to22963 iterations for these
100 systems. Like for problem A, we present results obtained with our algorithm for
different values of δ. The total number of iterationsntot

it is again lower than the22963
iterations for the PCG algorithm, and the reduction of CPU time also increases. Fi-
gure 10 shows the number of kept Krylov vectors and the total number of iterations
ntot

it versus δ, and the total CPU time of the PCG algorithm compared to the SRKS
algorithm. Here again, a large range of value for δ ∈ [10−4, 10−7] insures a stable
factor of the reduction (greater than 2) the total CPU time. Note that the optimized
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range of value for δ depends on the considered numerical problem. From our expe-
rience, avalueof δ = 10−7 isalwaysin therangeof pertinent value andcan be chosen
as a generic value if nospecific analysis is performed.

Table 4. Best results for problem PB
time (mn) ntot

it

PCG 253iterations (first system) 383 22963
SRKS 38Ritz vectors 174 8014
Ratio 14.1 2.20 2.87

Table 4 gives the bets results between the two algorithms for δ = 10−5. The total
number of iterations isdivided bya factor 2.87 and the total CPU time isdivided bya
factor 2.20.
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5. Conclusion

The discrete models, based ona representation of the material with a particle as-
sembly, arerelevant to represent cracks in material. However, the largenumber of par-
ticles that should be considered reduces their interest in terms of computation time,
especially for quasi-static problems. Then, one needs an efficient solver for an opti-
mized resolution. In this paper, we used iterative solvers based on the recycling of
Krylov subspace. For the large size systems considered in this study, we obtain as
expected a significant reduction of the iteration number. On the other hand, such stra-
tegiesarenot efficient in term of CPU time, dueto theuseof astandard preconditioner
(IC preconditioner in this study) instead of the optimal preconditioner coming from
domain decomposition method. Anyhow, in the specific context of the discrete ele-
ment approach, the explicit knowledgeof the changes in theoperator offersa low-cost
construction of the CT KkC matrix, leading to a significant reduction of the CPU
time. The main features of the algorithm are the following ones :

– The algorithm is not intrusive as it just requires the modification of the PCG
subroutine. The modifications are based onclassical matrix/vector operations.

– The over cost of the algorithm compared to a classical PCG algorithm is the
storage of a ntot

dof × rδ
1-matrix (Krylov subspace), a rδ

1 × ntot
dof-matrix (CT Kk) and a

small rδ
1 × rδ

1-marix (CT KkC).

– The total number of iterations is expected to be divided by a factor greater than
2.5, as the CPU time is expected to be divided bya factor greater than 2.
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