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ABSTRACT. This paper deals with a comparative study of two iterative Krylov solvers (GIRKS
and SRKS) dedicated to the solution to a sequence of large linear problems. We apply these
two algorithms to brittle crack problems modelized with a discrete element method. We show
that these algorithms still reduce the total number of iterations but not the total CPU time. By
considering the specific modification of the stiffness matrix for discrete modeling, we propose
a simple evolution of the SRK algorithm leading to a reduction of the factor time (greater
than 2). Efficiency of the algorithm is illustrated on 2D and 3D examples of crack
propagation.

RESUME. Ce papier propose une étude comparative de deux solveurs itératifs (GIRKS et SRKS)
de type Krylov dédiés a la résolution d’une succession de grands systemes linéaires. Nous
appliquons ces algorithmes a des problemes de rupture fragile traités avec un modéle aux
éléments discrets. Nous montrons que hors du cadre des approches par décomposition de
domaine, ces algorithmes restent performants en termes de réduction du nombre d’itérations,
mais plus en termes de temps CPU. En considérant les modifications de la matrice de raideur
propre au modéle discret, nous proposons une évolution simple de [’algorithme SRKS
permettant de retrouver une réduction du temps de calcul par au minimum un facteur 2. Les
performances de I’algorithme sont illustrées sur des exemples 2D et 3D de fissuration.
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1. Introduction

Discrete dement method (DEM) has been coming badk into favor during these last
ten years when deding with brittl e heterogeneous material behavior (seefor example
(Van Mier et al., 2002 Potyondyet al., 2004 Yip et al., 2006 Delaplaceet al., 2007).
Althoughthe method hes been introduced three decales ago (Cunddll et al., 1979,
nowadays computer performance dl ows computation o structure behavior at arepre-
sentative scde. One of the advantage of the gpproadch is to take naturally into acount
material heterogeneity, by representing randamness of the miscrostructure. Ancther
oneisto represent material li ke an assembly of particles rather than a continuows me-
dia, dlowingredistic description d discontinuity such asa aad.

A drawbadk of this material description at fine scde is that a large number of
elements shoud be mnsidered when performing simulations, leading to a large size
stiff nessmatrix. This point isnot ared problem when deding with high rate loading,
for which discrete dement methods have ared interest to describe phenomena like
fragmentation a spalling : in this case, explicit time integration schemes are usually
preferred and do na required matrix inversion. On the other hand, when deding with
low rate dynamic problems for which implicit schemes are used, a large size system
resolution shoud be performed for ead time step and computational time can become
discouraging. It is the same case for static problems where many successve system
resolutions are performed during loading. Different agorithms have been proposed
to addressthis problem. The first pragmatic method is to make afull i nversion for
thefirst resolution, and to use for example aShermann-Morrison formulato compute
inverse matrix for next resolutions. This method hes been successully used for large
system size, but only for 2D problems (Nukala et al., 2005. 3D problems need atoo
large amourt of computer storage to be adieved. Then, al other methods are based
on iterative solvers. Note that if periodic boundxry condtions are mnsidered, high
efficiency algorithms have been proposed (Nukalaet al., 2004).

In this paper, we explore the posshility offered by the use of Krylov iterative sol-
vers and more predsely by two different regycling Krylov subspacestrategies : the
generalized iterative reuse of Krylov subspace(GIRKS) algorithm ((Rey, 1996 Ris-
ler et al., 2000) and the seledive reuse of Krylov subspace(SRKS) approac ((Rey
et al., 1998 Gos<let et al., 2002). These strategies are based onthe reuse (or regy-
cling) of numericd information coming from the solution to previous linea systems.
Dedicaed to the solution to a sequence of linea system, they have been able to acce
lerate significantly the solution to a sequence of large linea problems. Nonetheless
theses approaches have been introduced and validated in the context of domain de-
composition method (see (Farhat et al., 1994 Gosslet et al., 200§ among dher)
which operates on areduced-size problem. Beside they have been associated to a fulll
re-orthogorali zaion procedure (Gram-Schmid process which may not be required in
other context. Hence, we first analyse the dficiency both in term of iteration number
(in our study, the iteration number means the number of iterations required to reat a
given predsion) and CPU time of such regycling strategy withou the use of domain
decompasition context. Besides, considering spedfic changes in the operators for the
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discrete dement approach, a simple modified algorithm based onthe SRK S approach
and leading to an efficient regycling strategy is also introduced.

In the first part of the paper, we introduce the discrete dement model used for this
study. The dastic prediction algorithm used to solve static problem is proposed. In a
second part, we present three generic problems, a small-size 2D tension test, alarge-
size 2D threepoint bend test and alarge-size 3D tension test, used for benchmarking
the solver. In athird part, the referenceiterative solver and the two recycling strategies
are introduced. Their efficiency is analyzed ona first example. A modified algorithm
based on the seledive reuse of Krylov subspaces approach is then introduced. In a
final part, the dficiency of the modified agorithm is ill ustrated with two large-scde
examples.

2. Discrete model
2.1. Basic principle

We present in this part the model, based on a representation d the material as a
particle assembly. Vorond paygors (or payhedrain 3D) are used, which al ow fast
mesh generation : (i) the particle nuclei are randamly generated in ead cdl of are-
gular grid, (i) aVorona tesslationis performed using these nuclei. Thisgrid suppat
algorithm, proposed by (Moukarzd et al., 1992, simplifies applicaions of boundry
andloading condtions. Particlesare considered rigid but they can owverlap to reproduce
material deformation. Cohesive forces are represented by beamsjoining the centers of
ead coupe of neighbouing particles. Material elastic constants E' and v, respedively
the Younds moduus and the Poisson coefficient, are related to beams elastic moduus
and quedratic inertiafador. Elastic moduusis chosen to be the same for al beans. In
the following, Euler-Bernouli beans are considered, which are strictly equivalent to
particle interfaceforces within the framework of elasticity and small strains.

Material norlinea behavior is obtained by considering a perfed brittle behavior
for beams (Figure 1). Thischaiceisjustified when considering damage behavior of the
studied material. The bre&ing criterion for beamn 7, that relies particle i and perticle
7, iswritten (Herrmann et al., 199Q D’ Addetta, 2009 :

2
Py= () * ('%‘ﬁ") 21 (4
ij ij

g;; isthe bean longtudinal strain, 6; and§; are respedively rotations of particles and
particle j. e57 and ;7 are two model parameters that control the material asymmetric
behavior in tension and compresson (Delaplace 2009.
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Figure 1. A mesh sample with the representation o the brittl e behavior

2.2. Algorithmsfor static problems

Asmentionned inintroduction, our study dedswith static problems, i.e. that inertia
forces could be negleaed. For the loading step &, the formulation o the problem is
reduced to the equation :

Kru® = f* [2]

where u” is the vedor containing the particle degrees of freedom (dof) and f* isthe
loading vedor. K* is the global stiffnessmatrix that depends on the loading step. A
major property of this matrix is that evolution o different comporents is nat conti-
nuots. For the chasen elastic brittle behavior, locd stiffnessmatrix of ead bondis
either constant (surviving bond or null (broken bong.

Equation [2] could be solved by two algorithms when f* evolves, the monatonic
algorithm or the dastic prediction ore.

2.2.1. Monaonic algorithm

Thisis probably the most employed agorithm. Resporse is computed from a suc-
cesson o increasing loading steps f*, k € {1, ..., n.,} with n,,, the total number of
loading steps before rupture. During ead increment, a number m;, of beams can fail
if their bregking threshold is excealed. With this algorithm, the resporse depends on
theincremental step. The dgorithm for the step & isthe following :

Step k&

1) apply loading f*

2) compute u* solving equation [2]
3) save oupe (u”, f¥)
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4) find the m, links that verify
P . >1 pE{l,..,mk}

pJp

5) change stiff nessmatrix with

ipJp lplp

mpg
K =K' - L "KL

p=1
where L;_; , isthe conredivity matrix of element i,,j,,.

2.2.2. Elastic prediction dgorithm

This agorithm could be seen as an event-driven algorithm. Loadingis nat control-
led by an increasing quantity (e.g. force or displacement) but by the deaeasing o the
secant stiff ness Usually, onelinkis broken for one step. Thiskind o control al owsto
follow snap badk resporse, and uriquenessof solution is guaranteed in the sense that
it does not depend o aloading parameter. By considering the dastic brittle law for
bonds, we know exadly the number of changing elementsin global stiffnessmatrix :
4 x n2, where n,y isthe number of degrees of freedom for one particle.

The dgorithm for bre&king the kth-bondis the following ore :
Step k&

1) apply elastic loading £
2) compute u® solving equation [2]

3) compute ayin With
. 1
. e min
Omin 6,5€{1,..,n} P7,'j
1<j

4) save ougde (aminu®, aminf)
5) change stiff nessmatrix with
KM = KF — Ly;"KEL;;

where Lj; is the conredivity matrix of the particular element ij that satisfies
step 3).

Resporses obtained with these two algorithms are plotted on Figure 2. If a suf-
ficient number of steps is considered with the monatic loading algorithm, bath res-
porses are simil ar. Note that just the dastic-prediction dgorithm is able to foll ow the
locd instability (snapbad) during the loading. Furthermore, nonphysicd cradk path
could be obtained if the monaonic dgorithm is used with a too large loading step,
as shown on Figure 3 where two cradks are obtained. Because of its better acaragy
to ded with elastic brittle behaviour, we will use the dastic-prediction agorithm for
solving rext problems. Then, solution to a problem is obtained by solving n,,,-times
equation [2], with n,,, the total number of bresking bond at global fail ure.
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Figure 2. Force-displacement resporse obtained with the two algorithms for a DCB
test on a ndched spedmen

Figure 3. Unphysical crack path (left) obtained with toolarge loadng step monaonic
algorithm, compared to theright crack path ohtained with elastic prediction dgorithm

2.3. Reference problems
In order toill ustrate eaily the solver feaures, wefirst introduce asimple problem,

cdled PO, with alimited size Then, we propcsetwo problems, PA and PB, with amore
redistic number of degrees of freedom to ill ustrate the performance of the improved
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solver. The number of degrees of freedom of the two problems are dose, but the first
oreis lved in 2D asthe seand oreis lved in 3D. The main initial properties of
the stiffnessmatrices are given in Table 1.

2.3.1. Tensiontest on asquare (problem 0)

This amall-size problem isa simple 2D tensiontest on a square, with 64 x 64 par-
ticles, that corresponds to 12 288 degrees of freedom. After afirst stage of distributed
damage, a maaocradk appeas and propagates through the sample. The number of
systemsto solve n,,, can be estimated by the expresson 64 x n2” /2, where n2P ~ 6
isthe average number of connedions per particle for aVorona tesslationin 2D.

2.3.2. 3-point bendtest (problem A)

Figure 4 shows the geometry and loading condtions of thistest. The simulationis
performed with a2D-mesh of 800 x 100 particles, that correspondsto 240 000 degrees
of freedom. The stiffness matrix has a narrow band dagoral form. In this problem,
damage locdi zes from the beginning o the load, with a aad that propagates from
the bottom of the beam. Total fail ure is obtained with a short number of broken fibers
(M ~ 100 x 220 /2).

Figure 4. Geometry andloadng condtions for the 3-point bend test (PA), and crack
pattern at the end o the loadng

2.3.3. Tensiontest on acube (problem B)

Figure 5 shows the geometry and loading condtions of thistest : adisplacement is
applied onthetopfaceof a aube. Likefor PO, after afirst stage of distributed damage,
amaaocradk appeas throughthe sample, perpendicular to the loading dredion. The
simulationis performed with a 3D-mesh of 40 x 40 x 40 = 64 000 particles, that cor-
responds to 384 000 degrees of freedom. Total failure is obtained with alarge number
of broken fibers (n,,, ~ 1600 x 732 /2, where n2P ~ 16 is the average number of
conredions per particlein 3D).
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Figure 5. Geometry and loadng for the uniaxial tension test (PB), andinitiation o
the macrocrack

Table 1. Siffnessmatrices features

number of DOF | number of norzero elements fill ratio
Problem 0 12288 253675 0.1680%
Problem A 240000 5010095 0.008698%
Problen B 384000 36662401 0.02486%

3. Solution to a sequence of linear systems: recycling strategies

Solvingaproblem with adiscrete model consiststhen in solving asequenceof n,x
systemsK*u* = f*, k € {1, ...n,,} with smal changesin the Ieft hand side operator
(herethe stiff nessmatrix). The reduction o the total CPU time for the solutionto such
a sequence of large sparse symmetric paositive definite linea systemsisthen a aucial
point.

We explore in this paper the possbility offer by two different approaches based
on the use of akrylov iterative solver (a precondtioned corjugate gradient) asocia-
ted to areuse (or a regycle) of Krylov subspaces : the generalized iterative reuse of
Krylov subspaces algorithm (GIRKS) (Rey, 1996 Ridler et al., 2000 and the selec
tive reuse of Krylov subspaces (SRKS) (Rey et al., 1998 Gosslet et al., 2002. They
are based onthe reuse of numericd i nformation coming from the iterative solution to
previous linea systems. They have been introduced and evaluated in association with
domain decompasiti on strategies. Such an asociationindwed two spedficity : first a
significant reduction o the size of linea problems (by concensation at the interface
between subdamains) and secondthe used of afull re-orthogoralization procedure. In
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the following, the three dgorithms are introduced. Their adaptivity to the solution to
asequenceof large linea systems are discussed and eval uated.

3.1. Thereferenceiterative solver without recycling strategy

The precondtioned conjugate gradient is first described in Algorithm 1. For both
genericity and simplicity reasons, a standard Incomplete Chaesky Precondtioner
(ICP) is chosen. ICP alows to control easily the ratio performance/computing time
by changing its threshald £. It is a quite standard choice for the iterative solution to
large sparse symmetric paositive definite linea systems (Saad, 2000.

Algorithm 1 PCG

1: uf arbitrary
2: g§ = Kku’{jl: £k
3 zf =Mlgh
410
5: repeat

. k k k k k (z§7Kwi'c— )
6 wh=zf 9k wh V= TR W)
7. uf, =uf+afol

k _k

8 gi =gl + oK) ap = _%

_ kN —lgk

O oz, =MTgl,
10 i<i+1
11: until convergence|g? ;| < 1078|gf|

The dficiency of PCG algorithm is mainly based onthe choiceof an efficient pre-
conditioner. Table 2 reports the performance of the ICP for diff erent ¢ for the problem
PO. A sequence of 212 resolutions has to be performed to oktain the failure of the
sample. Althoughthe number of iterations reduces dramaticdly as £ deaeases, the
CPU time to compute the precondtioner becomes too important with resped to total
CPU time to solve the entire problem. This effed can be seen onthe total CPU time
to solve PO (Table 2), and onFigure 6 where the difference of number of iterations
between ¢ = 1078 and ¢ = 10~ (visible on the battom graph for the first solved
system) vanishes as the number of solved systems increases. The optimum is obtai-
ned for a precondtioner with a number of norzero elements close to the number of
norzero elements of the stiffnessmatrix. This result is satisfadory considering that
it is not reasonable to store in memory a precondtioner much larger than the initial
stiff nessmatrix, espedally for large-size problems. Next, the threshold ¢ = 108 will
be chasen.

At last, ancther well-known pant that may affea the dficiency of PCG is related
to the numericd satisfadion o the K-orthogorality of the seach diredion w’ with
resped to previousone((Kw,’f,w;?) =0,Vj=1,...i—1). More predsely, to reduce
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Table 2. Performance of Incomplete Chalesky preconditi oner for PO

ICP threshold ¢ le7 5e8 2.5e-8 le8 5.e9 le9
Nonzero 101582 | 132715 | 167980 | 228813 | 291409 | 523943
elements

Ratio 0.400 0.523 0.662 0.902 1.15 2.07
ICPsizeK size

|CP computation 8.0 9.7 115 14.2 174 29.7
CPU time (s)

Nb iterations 138 94 67 45 36 20
for 1st system

Total CPU 156 146 140 131 146 165
time (s)

numericd error on the K-orthogorality condtion, a full-reorthogoralizaion proce-
dure can be used for the computation of vedors w”. Among \arious Gram-Schmid's

procedures, one simply consists in changing Line 6 into w® = z¥ + Z;;}) Yrwk
k k
with % = _ =0Kw))  5ne then oktains a more robust algorithm. The drawbadk is
(Kot wh)

obvioudly an extra-cost of the dgorithm.

Such procedure is typicdly required in the context of domain decompasition me-
thod In our case, numericd error propagation where never observed. It isan important
difference with the case we ded with. Hence, such re-orthogoralizaion procedure is
not required in our case and besic dgorithm of PCG is always preferred in the foll o-
wing.

3.2. Firstrecycling strategy : GIRKS algorithm

This drategy is based onthe computation of corredion terms for the preconditio-
ned residual z}, , (Algorithm 1, line 9) by reusing the r; vedors {w)} . ., gene-
rated during the iterative solution to the first problem. This corredion can be seen as
anonsymmetric precondtioning, leading to a patentially non convergent algorithm.
Hence afull re-orthogoralizaion of vedors w! is required (see (Risler et al., 2000
for the full agorithm). One of the advantage of the dgorithm is that the resolution
is dill based onmatrix-vedor prodicts and scaar prodicts : several routines (BLAS,
LAPACK...) can be used for optimized computations, and perdl eli sation d these pro-
ducts are eaily envisageable.

For problem PO with IC(¢=1.e-8) precondtioner, performancein terms of iteration
number of thisalgorithm iscompared to theiteration number with PCG in Figure 7. As
expeded, the number of iterations per system deaeases. The dfed ismainly visiblein



Regycling strategy for DEM 657

L = i
O--0 E =10
- = _
250 O-0g=10°| 2
0
9[ir
(2] - A—AE =10 n ,
c N
2500 It
- — i —
i
o j
) L i
= I"l'l,"\ pi
i1 :
— Ay i
O 150 S T e IV AN LR
W AT v
s I Wi ATS AR
- L% Py ! 1 ! n
o ‘E | T |I\’\"""A‘/‘/ VO\', -l N i i .
- (VN .
€ ool 0 AT ;
31004\3, VY f wto —
= IRYTIN L
)

0O 20 40 60 80 100 120 140 160 180 200 22
System number

or \ \
Jacobi
0-08=10" iy
O-0£=10"
NN 10°
. 4
= o
o) ST
= |
=) Q.
Sy ]
— N
(@] \
o N
Q 1
| | |
0 50 100 150 200

Number of iterations

Figure 6. PO - Number of iterations for each system (top) and residud corvergence
for the first solved system (bottom) with Incomplete Choleski Preconditi oner



658 EJCM — 182009 High-performance mmputing

| --- PGC |
—— Krylov correction|
|
£ 150 ,«I.'
o
=
@© L i
S
[}
=
u—
O 100~ 5
— i
14 |
I ~
Q L [INT S ’ll{/\‘/,"lr" ﬂl\\, i
e A ARV
-] J,\w/\\/\,\ vy
Z H
50 =Y
A A NN
K/\",‘J‘vrv\\,ﬂ ""\‘Ir \(’ !
i ]
0 ‘ | ‘ | ‘ | ‘ | ‘ | ‘ | ‘ | ‘ | ‘ | ‘ |

0O 20 40 60 80 100 120 140 160 180 200 22
System number

0 | | \
--- PGC
- — Krylov correction b
\\
\\\
2 \\\ —]
N
\
\
N
- \’,\\ -
e AN
[« N P
O) AN ~ AN
= 4 \
[@)) N
5 L I 4
- \\
g \\
— \\
-6 \\
AY
AY
\
N
\
L . i
N\
Ay
\
\
8l h
- N
| | | |
0 10 40 50

20 30
Number of iterations

Figure 7. Effed of Krylov corredionin terms of number of iterations per system (top)
andcorvergencerate for the second system (bottom)



Regycling strategy for DEM 659

the beginning d the loading : for example, the seaondsystem neads only 12 iterations
to be solved with Krylov algorithm versus 34 iterations for the PCG agorithm (the
total number of iterations to solve PO is here 8139 versus 12367 for PCG algorithm).
Furthermore, the evolution o residual (Figure 7, left curve) beaomes monaonic and
ensures a better convergence As the total number of solved systems increases, the
gain beaomes less sgnificant : changes in stiffnessmatrix transform more and more
the system to solve and Krylov corredion becomes lessrel evant.

Note that improvement can be atieved by aduali zing Krylov subspaceduring the
sequence of linea systems. However we will naot try this adualization. Indeed, in the
context where aGram-Schmid procedureis nat required for the reference solver, such
regycling strategy loses its interest if we consider the CPU time : iteration number
deaesases, but ead iteration is more mstly becaise of (i) the computation o the oor-
redion terms (ii) the required full re-orthogordizaion procedure. The reduction in
CPU timeis effedive (althoughli mited) during the first solved systems, but deaeases
and becomes negative for the last solved systems. Such problemswere not observed in
the context of domain decomposition methodfor mainly two reasons : first it operates
onareduced-sizeproblem and secondare-orthogorali zaion procedureisrequired on
the referenceiterative solver.

Anyhaw, at this paint, the fad is that we just have mnsidered that stiff ness ma-
trix has limited changes between two successve resolutions, but we do nd take into
acourt that theses changes are expli citly known.

3.3. Second recycling strategy : SRKS approach

The seledive reuse of Krylov subspaces (Rey et al., 1998 Gosslet et al., 2002
isthe seaondregycling strategy we propcse to evaluate. It is based onan Augmented
Conjugate Gradient algorithm. The key point here is that the use of a Gram-Schmid
procedure is nat required and ore cah exped areduction o CPU time. Furthermore
with the ACG algorithm, the projedor is only used ornce per iteration.

3.3.1. Augmented Conjugate Gradient with SRKS strategy

The Augmented conjugate gradient isfirst described in the Algorithm 2 (see(Saad
et al., 2000 among dher).

Thekey paint then relates onthe choiceof then, x r1 matrix C. A natural choice
isto consider 7 -Krylov space(span{w?, i = 1,...r }) generated duringthe solution
to the first system.

In order to reduce the mst of the dgorithm, one can limit the size of the matrix
C by reducing the number of kept vedors. Then, a natural idea (Rey et al., 1999
is to consider a subspaceof the r-Krylov space Different studies have shown that
convergence of PCG algorithm isrelated to convergence of the Ritz vedors (der Sluis
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Algorithm 2 Augmented CG

1

=
[

=
W N

© O NouakrwWDd

Compute P = |I - C (CTK*C) ™' CTK*|

. uf = C(CTK+C) ™ CTe*
- gf = 1" — Kfug

zlg = PM’lglg
wo = 20
1<=1
repeat
k k
k_ .k k k o (812 1)
u; =u; g o Wiy X1 = Rrwl Lok )
k _ _k k k, k
g}z{'} =81 _1 CZiflK Wi
zF = PM~lg o
k_ k k Lk k _ (z7 K wi_ ;)
w; =z; + fiw; Bi = TR W)
t<=1+1

: until convergence|g?, || < 107%|gk|

et al., 1986 Paige et al., 1995. A judicious choice for compaosing the matrix C is
to keep Ritz vedors only if their associated Ritz values have a good convergence
(Gosslet et al., 2002. This choice is redized through the Algorithm 3 (note that
superscript k& has been omitted in this algorithm for clarity).

Algorithm 3 Seledive Reuse of Krylov Subspaces

1
2

No oA w

i - RV
Deffnevp 7( 1) (".7vz.7)1/2"”}0<j<1°
Define H,, = tridiag(n;—1,(j,mj)o<j<p
. o B, .
with Qo= b G = L+ 2, g = Y2 (g isnotused
_ (gj,2;5) N (z; Kw;_1)
anda; = gy Gy b=~y

: Compute @genvedors q,, and eigenvalues 6, of H,, (6, > ... > 67)
: Compute Y, = Vyoqp, = [y, -, 48]

Extrad Hp—l = tridiag(nj_l, ij nj)0<j<p—1 from Hp

: Compute dgenvalues (01, > ... > 67_}) of H,_,
: Keep Ritz vedor q; in Krylov subspaceif assciated eigenvalue verifies:

; i—1
107, — 0,11

o

<94

Inthisagorithm, ¢ is a constant parameter that controls the number of vedors we

will kept. ¢, the number of kept Ritz vedors, is equal to Ofor § = 0 or equalsto
ry if & — oo. With this sledion, we reduce dimension o matrix C withou redu-



Regycling strategy for DEM 661

cing iterative solver performance (just Ritz vedors with low convergence fador are
removed).

However, as for the GIRKS agorithm, the total CPU time for this algorithm
is not reduced compared to the reference PCG one. The reason is that if the full
re-orthogordlizaion is no more needed with this algorithm, costly computation o
matrix-matrix product is gill performed. This kind o operations are usually avoided
initerative dgorithm. Note that in the context of domain decompaosition method such
inefficiency in terms of CPU time were not observed mainly because of the reduced
sizeof involved vedors (related to the interfacebetween sub-domain).

In the next sedion, we introduce a evolution o this algorithm, based onthe known
changes of the stiff nessmatrix.

3.3.2. SRKS appoach for explicit changesin the left handside operator

In the case where the dhanges in the left hand side operator K* are explicit, the
cost of the matrix-matrix product can be reduced.

Let us consider that the bondij bre&ks for step k. By using elastic prediction
algorithm, we can write :

CTK*C = CT(K" ! - L;;"K;;L;;)C = CTK*'C - CTL;;" K;5L;;C

In the last equation, CTK*~1C is a stored r; x r; matrix that has been computed
during last step. CTLijTKiJ-LiJ-C nealsonly 2 x 2n4; X ry operationsto be compu-
ted. This last computation and the computation o the inverse of the r; x r{-matrix
CTK*C are adieved only one time per resolution. In the same way, the r; x n'%-
matrix CTK* can be computed by wsing the relation :

CTK* = CTK*! — CTL;;"Kj;Ls;

By these monsiderations, the augmented conjugate gradient algorithm with SRKS
strategy recvers grong interest : iteration number deaeases, and corredion com-
putation is performed in a short time. A final remark concerns the storage of ma-
trices. It is not reasonable to store in the computer memory the n, x niy-matrix

{I -C (CTK"“C)71 CTKk]. The optimized storage, in terms on nunber of ope-
rations, isto store n® x ry-matrix C (CTK’“C)_1 andther; x n%-matrix CTKF*.
We propacse in the next part to evaluate the performance of this algorithm on PA and
PB, bath problems with arelevant number of degrees of freedom.

4. Performance of the algorithm
4.1. Problem A
For this problem, the failure of the beam is obtained after n,,, = 250 rupture of

bonds, so ore has to solve 250linea systems of 240 000 dof before fail ure. The thre-
shold of the ICPisfixed to & = 10~8. For the reference PCG solver, its corresponds
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to 258iterations to solve the first system, and atotal of 69077iterations for the 250
resolutions.

We present results obtained with the SRKS algorithm for different values of ¢.
Figure 8 shows the number of kept Krylov vedors and the total number of iterations
n'™ versus §, and the total CPU time of the PCG algorithm compared to the SRKS
algorithm.

We first observe asignificant reduction d the total number of iterations, but more
interesting is that the dficiency in terms of CPU time is quite constant (a reduction
fadtor of 2.5) for alargerange of § € [10-6,10719].

Figure 9 presents the evolution o number of iterations per system for both a-
gorithms with 6 = 10719, For this problem, the reduction o the total number of
iterationsisredly significant and is kept quasi-constant for all systems, that ensures a
significant reduction o the total CPU time.

Table 3 gives the best results between the two algorithms (with 6 = 1071°). The
total number of iterationsis divided by afador 3.25 andthe total CPU timeis divided
by afador 2.61. The lower fador for the total time is due to the extra-cost of eadh
iteration for the SRKS algorithm.

Table 3. Best results for problem PA

time (mn) n
PCG | 258iterations (first system) 133 69077

SRKS 14 Ritz vedors 51 21253
Ratio 184 261 3.25
4.2. Problem B

The failure of the aube is obtained after n,,, ~ 14000 ruptures of bonds, so ore
has to solve aound 14000inea systems of 384 000 dof before fail ure. The threshald
of the ICP isfixed to ¢ = 10~8. For the reference PCG solver, its corresponds to 253
iterations to solve the first system.

The analysis of the Ritz vedorsthreshold isjust performed onthe 100 first systems
(100 bre&ing bond). For PCG agorithm, it correspondsto 22963 iterations for these
100 systems. Like for problem A, we present results obtained with our algorithm for
different values of §. The total number of iterations n}* is again lower than the 22963
iterations for the PCG algorithm, and the reduction o CPU time dso increases. Fi-
gure 10 shows the number of kept Krylov vedors and the total number of iterations
n versus §, and the total CPU time of the PCG algorithm compared to the SRKS
agorithm. Here again, a large range of value for § € [10~*,10~7] insures a stable
fador of the reduction (greder than 2) the total CPU time. Note that the optimized
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300

range of value for § depends on the considered numericd problem. From our expe-
rience avalueof § = 10~7 isalwaysin the range of pertinent value and can be chosen

asageneric value if no spedfic analysisis performed.

Table 4. Best results for problem PB

time(mn) | n
PCG | 253iterations (first system) 383 22963
SRKS 38Ritz vedors 174 8014
Ratio 141 2.20 2.87

Table 4 gives the bets results between the two algorithms for § = 10~°. The total
number of iterationsis divided by afador 2.87 and the total CPU timeis divided by a

fador 2.20.
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5. Conclusion

The discrete models, based ona representation o the material with a particle &
sembly, are relevant to represent cradksin material. However, the large number of par-
ticles that shoud be considered reduces their interest in terms of computation time,
espedally for quasi-static problems. Then, one needls an efficient solver for an opti-
mized resolution. In this paper, we used iterative solvers based onthe regycling o
Krylov subspace For the large size systems considered in this gudy, we obtain as
expeded a significant reduction o the iteration number. On the other hand, such stra-
tegiesare nat efficient in term of CPU time, due to the use of a standard precondti oner
(IC precondtioner in this gudy) instead of the optimal precondtioner coming from
domain decompasition method Anyhow, in the spedfic context of the discrete de-
ment approad, the explicit knowledge of the changes in the operator off ers alow-cost
construction o the CTK*C matrix, leading to a significant reduction o the CPU
time. The main fedaures of the dgorithm are the following ores:

— The dgorithm is not intrusive &s it just requires the modificaion o the PCG
subroutine. The modificaions are based onclasscd matrix/vedor operations.

— The over cost of the dgorithm compared to a dasscd PCG algorithm is the
storage of a n'® x r¢-matrix (Krylov subspace, ar? x n'%-matrix (CTK*) and a
small 7 x 7¢-marix (CTK*C).

— The total number of iterationsis expeded to be divided by afador greaer than
2.5, asthe CPU timeis expeded to be divided by afador greaer than 2.
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