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ABSTRACT. This paper presents a fully parallel multi-component Library called CIMLib. 
CIMLib contains a set of components that allow to build efficiently numerical simulation of a 
various processes mainly in material forming. We describe in this paper the main components 
of the library: parallel mesh partitioning, parallel remeshing, the Finite Element modeling 
and the parallel storage and visualization. Two large numerical simulations are presented: 
the first one focuses on a multi-bodies contact problem, including friction, for complex 3D 
forming processes. The mesh is evolving during the simulation from 52K nodes to 7M nodes 
and 64 cores are used to handle this application. The second simulation concerns the 
multiphase problems involved in the manufacturing processes of full parts. The simulation is 
done using 88 processors and the mesh is refined during the simulation the final mesh has 
over 25M nodes. 

RÉSUMÉ. Dans cet article on présente certaines des méthodes numériques utilisées pour 
construire une bibliothèque parallèle appelée CIMLib. CIMLib est constituée d’un ensemble 
de composants logiciels permettant de réaliser la simulation numérique de procédés. Nous 
décrivons les composants principaux de la bibliothèque : génération de maillage et 
remaillage parallèle, solveur éléments finis, stockage des données et visualisation parallèles. 
Ensuite deux grandes simulations numériques sont présentées : la première représente un 
problème de contact multicorps récurrent dans la mise en forme des matériaux. La deuxième 
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1. Introduction

During the last decade, we developed a component based library CIMLib includ-

ing high performance computing (HPC) tools for simulation of complex 3D multi-

material/fluid and free-surface flow applications (Coupez et al., 1997; Mocellin et

al., 2001; Pichelin et al., 1997; Basset et al., 2005). These tools include geometry

modeler and mesh generator (Coupez, 2000; Coupez et al., 2000), highly scalable

and optimized parallel finite element solver (Coupez et al., 1997; Basset et al., 2005),

and using client-server technology for remote visualization (Squillacote, 2005). These

HPC tools have provided us a unique capability to simulate applications using unstruc-

tured meshes with 200 million elements. Such large simulations generate hundreds of

Gigabytes of data. These HPC tools are highly optimized for both memory and paral-

lel scalability especially for such large applications.

One objective of this paper is to highlight the importance of new technologies

in design of the massively parallel computing platforms. The model suggested here

is the CIMLib library which gathers parallel software components allowing to build

powerful applications in material forming.

The organization of this library is based strongly on fundamental choices of the nu-

merical methods implemented that it is necessary to recall. In particular the mixed fi-

nite element formulations (stable and stabilized) allow the use of unstructured meshes

in 2D as in 3D in fluid as in solid. It is then possible to combine tools for mesh

generation and mesh adaptation. The associated linear systems are sufficiently well

conditioned to be solved by iterative methods. Anyhow, parallelism will be trans-

parent only if meshing, remeshing, repartitioning are parallel and transparent. These

are the key points of an efficient implementation of the library components. It is the

principal contribution of the authors in this paper.

A second objective of this paper is to show that a library as CIMLib can associated

design pattern. This allows the mutualisation of the developments with the mainte-

nance of good performances.

In this paper, we describe the main components of our library CIMLib. CIMLib is

a Multi-components library designed in such a way that the user defines the simulation

process as a set of needed components to be executed by a root driver. It is based on a

programming interface containing several components that solve specialized problems

(like FE equations, meshing the computational domain, contact detection. . . ) with a

main program that is able to construct and organize the different components to build

processes to be simulated like forging, polymer injection, mixing. . .

To illustrate the efficiency of CIMLib, we present two large scale numerical simu-

lations. These consist in:

i- Hot forging process: one involving large deformation within a Lagrangian

framework and the other one for flow calculation within an Eulerian formulation

of metal material using remeshing stage during the simulation. Here, we use a La-

grangian technique to update the computational domain, the mesh then gets distorted
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and without remeshing can rapidly degenerate. Remeshing techniques are mandatory

for such applications. A parallel meshing/remeshing (Coupez et al., 2000) is used

to adapt the mesh during simulation. A 3D stabilized mixed finite element solver (as

component of CIMLib) is used to solve the nonlinear incompressible stokes equations.

ii- Free-surface flows in complex 3D applications. In our approach, the governing

equations are the Navier-Stokes equations written for multiple incompressible fluids.

We solve these equations over a fixed mesh. A Level Set function is associated with

a multi-phase description (Basset et al., 2005). This function is convected throughout

the computational domain by scaling a transport equation. Here also, a mixed first

order finite element method based on P1+/P1 bubble stabilization is used to simulate

free-surface flow applications. Moreover, an anisotropic adaptive remeshing can be

used (Mesri et al., 2008) to increase the accuracy of the interface capturing.

This paper is organized as follows: Section 2 details the governing partial differ-

ential equations that are used in the modeling. Sections 2.1 and 2.2 are devoted to the

main applications of this paper, the forging and free surface flow modeling. Section 3

is devoted to the parallel computation framework, which consists in the parallel imple-

mentation of all software components. In Section 4 we depict numerical results which

exhibit the advantages of the combined parallel component tools to handle accurately

complex computational mechanics problems.

2. Modeling framework

CIMLib allows to run a large range of incompressible viscous fluid applications,

from viscoelastic to linear elasticity and viscoplasticity. In order to cover and ensure a

certain compatibility with the software components, we use a generalized fluid-solid

modeling.

The following generalized Stokes equations are used to compute the solid materials

and incompressible flows in a cavity Ω; v represents the velocity field and p the pres-

sure:

{

−∇ · (2η(|ε(v)|)ε(v) + τ) + ∇p = 0
∇ · v = 0

[1]

where η and ρ denote respectively the viscosity and the density, and ε is the symmetric

gradient operator:

ǫ(.) =
1

2
(∇T . + ∇.)

and τ is an extra stress tensor field that occurs for much more complex constitutive

equations (visco-elasticity, elasto-plasticity...). In the following we will focus on a

Stokes equations where τ is neglected.
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The following functional spaces are considered for the variational formulation of

the Stokes equations:

V = (H1(Ω))d, V 0 = (H1
0 (Ω))d, and P = L2(Ω) [2]

where d is the space dimension, L2(Ω) = {q,
∫

Ω
q2 dΩ < ∞} and H1(Ω) = {v ∈

L2(Ω),∇v ∈ (L2(Ω))d}.

The variational problem consists in finding (v, p) ∈ (V, P ) such that:







∫

Ω
2η(|ε(v)|)ε(v) : ε(w) −

∫

Ω
p∇.w = 0

∫

Ω
q.∇ · v = 0

[3]

for any test functions (w, q) ∈ (V, P ).

Now, we build finite-dimensional spaces Vh and Ph such that Vh → V and

Ph → P when h → 0. The domain Ω is then decomposed in tetrahedra T : Ω = ∪T T
so that we can apply a mixed finite element method using the so-called MINI element

(P1+/P1) (cf. (Arnold et al., 1983)) with a linear continuous interpolation P1 for both

pressure velocity and the pressure, and a bubble enrichment of the velocity. This bub-

ble function, which is necessary to satisfay the LBB stability condition (cf. (Fortin et

al., 1991)), can be seen as an enrichment of the element by four piecewise linear func-

tions. The solution (v, p) is then approximated by the solution (vh, ph) ∈ (Vh, Ph)
for the following problem























∫

Ω
2η(|ε(v̄h)|)ε(v̄h) : ε(wh) +

∫

Ω
2η(|ε(v̄h)|)ε(bh) : ε(wh) −

∫

Ω
ph∇.wh = 0

∫

Ω
qh.∇ · v̄h +

∫

Ω
qh.∇ · bh = 0

[4]

where (wh, qh) ∈ (Vh, Ph) and vh = v̄h + bh is decomposed in resolvable scales

(v̄h) and unresolvable scales (bh) that are represented as bubbles.

We notice that the MINI element is stable in the sense of the Brezzi Babuska con-

ditions. It is close to the stabilized mixed method, the stabilization operator being

obtained by a static condensation of a bubble term inside each element. A very impor-

tant advantage of this approach is the possibility to use an iterative solver for linear

system solution. It is based on a GMRES method (Generalized Minimal Residual

method) and it shows to be extremely efficient for solving generalized incompressible

Stokes flows. Note that today, every linear system are solved using a parallel itera-

tive method. The library used here is the PetSc toolkit that offers a large number of

capabilities.
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Bubbles can play a direct role in stabilizing the Stokes equations by means of

a multiscale approach (Hughes, 1995). Thus, the resolvable scales (v̄h) are distin-

guished from the unresolvable scales (bh) that are, in fact, represented as bubbles.

We present in the following sections, two different problems to be modeled with

the equations [1]. We give also, with respect to each problem, the boundary conditions

that is needed to close the PDE system [1].

2.1. Forging modeling

2.1.1. Continuous problem

In this section, we adopt the flow formulation which is quite natural in viscoplas-

ticity and covers a large range of applications. This formulation can be extended to

elastoplastic calculations as it has been shown in reference (Gay et al., 1994). How-

ever, under hot forging conditions, the elastic deformations can be neglected, thus

assuming the material to be homogeneous, isotropic and incompressible. The result-

ing nonlinear partial differential equations are described in [1].

The velocity v and the pressure p are computed upon a time-dependent domain

Ω = Ω(t) of boundary ∂Ω. The viscoplastic behavior is modelled by a viscosity

which is a function of the strain rate tensor ǫ(v). The following power law, known

as the Norton-Hoff law, is considered here: η(|ǫ(v)|) = K(
√

3|ǫ(v)|)m−1 where K
is the consistency of the material and m is the strain rate sensitivity coefficient that

ranges between 0 and 1. Boundary conditions [5] on the contact surface with the

forming tools are added, assuming that the friction is governed by Norton law

{

(v − vtool).n − δ
∆t

≤ 0
τ = −fK||∆vt||p−1∆vt

[5]

where f is the coefficient of the friction law, vtool is the tool velocity, n is the outward

normal, δ is the distance to the tool surface, ∆t is the time step and ∆vt is the rela-

tive tangential velocity. Contact condition is an equality constraint. We remark that

inequality can be converted into equality by:

(v − vtool).n − δ

∆t
≤ 0 <=> [(v − vtool).n − δ

∆t
]+ = 0 [6]

where [x]+ is the positive part of the quantity x. This equality constraint is then im-

posed by penalty formulation. Therefore, a mixed velocity/pressure formulation is

used for the variational form of the equations [7], where v is a kinematically admissi-
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ble velocity field that satisfies the contact conditions [5] for any test functions (w, q)
in V × P .















∫

Ω
2η(|ǫ(v)|)ǫ(v) : ǫ(w)dΩ −

∫

Ω
p∇.wdΩ+

r
∫

∂Ω
λw.nd∂Ω +

∫

∂Ω
f ||∆vt||p−1∆vtw∂Ω = 0

∫

Ω
q∇.vdΩ = 0

λ = [(v − vtool).n − δ
∆t

]+

[7]

where r denotes the homogeneous penalty coefficient (r >> 1) used to impose the

contact constraint. An Euler explicit scheme is used for time integration and the spatial

discretization is based on tetrahedral elements with a P1+/P1 interpolation. The con-

tact condition [5] is handled by a penalty method. The resulting non linear equations

are solved by a Newton-Raphson algorithm and the linear system by a Preconditioned

Conjugate Residual algorithm. The contact between deformable bodies, i.e. the work-

piece and the forming tools, is treated using a master-slave algorithm as presented in

(Bruchon et al., 2009; Pichelin et al., 2001).

2.1.2. Contact treatment

At each time step, a search for nodes that are potentially going to penetrate the op-

posite surface is performed. A penalty contribution, based on the penetration distance,

is added to the functional for these nodes. The contact terms arising from contact be-

tween different bodies are computed with a coupled approach based on a master-slave

algorithm which deals with contact, friction and thermal conduction terms. The con-

tact algorithm will ensure that slave nodes will not penetrate into master faces. The

choice of the slave and master surfaces is based on two main rules: - when the me-

chanical behaviors of the two opposite bodies are different, the master surface is the

more rigid; - when the mechanical behaviors of the two opposite bodies are the same,

it is better to have a finer mesh on the slave surface in order to minimize penetration.

The non-penetration condition will be written between a slave node and a master tri-

angular face (introduction of fictitious elements ) in the current configuration. At the

beginning of each time increment, a search algorithm is performed to build the node-

face contact pairs which determine for all slave boundary nodes the closest master

face. More details can be found in (Pichelin et al., 2001).

2.2. Multi-phase modeling

2.2.1. Interface capture

This paragraph shows a way to couple the Stokes Equations [1] with the scalar

advection equation in order to simulate multi-phase flows. The issue here is to capture

effectively the interfaces between phases. To this end, a regular Level-Set function α
is used to approximate the interface Γ between different phases (cf. (Sethian, 1986;
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Osher et al., 2001)). we initialize α as a signed distance function to the interface

α(x) = dist(x,Γ):







α > 0 in the first phase

α < 0 in the second phase

α = 0 in the interface

[8]

Then, when this function is transported during the simulation, the isosurface zero

of α is kept to be the fluid interface. Moreover, thanks to the fact that α is signed,

the different fluids in the flow can be located by using an appropriate mixture law

presented in the next section. For the sake of simplicity, this paper only consider

a Newtonian (η(|ε(v)|) = η = Cte) bi-fluid flows, but the presented methods can

easily be extended to a higher number of different fluids present in the flow.

2.2.2. A Mixture law for multi-phase modeling

Since we have several phases and only one flow solver, we need to turn the different

viscosities and densities into homogeneous parameters to use during resolution of

the Stokes system. Thus, based on a mixture law, we make η and ρ depend on the

characteristics of each fluid: for a simulation involving a first fluid with viscosity η1

and density ρ1 , and a second fluid with viscosity η2 and density ρ2 , we define the

parameters η and ρ in the Stokes equations as the following:

η = η1H(α) + η2(1 − H(α))

ρ = ρ1H(α) + ρ2(1 − H(α))

H(α) =

{

1 if α > 0
0 if α < 0

[9]

where H is the Heaviside function. With such definition, we have η = η1 and ρ = ρ1

in the first phase; η = η2 and ρ = ρ2 in the second phase; and intermediate values

given inside a mixture zone.

We will see that this buffer zone where the two fluids coexist at the same time can

be as small as the element size. By this way, the diffusivity goes no larger than the

mesh size all along the simulation. H(α) can be straight or not, abrupt or gradual,

etc...; and that determines the nature and the size of the buffer zone. Here, a smooth

transition on a certain thickness is considered and is given by:

He(α) =







1 if α > e
1
2 + α

2e
if α ∈ [−e, e]

0 if α < −e
[10]

where e is an element size. Such a regularization is used to control the thickness of

the mixture zone. Actually, it allows to determine the amount of all fluids present
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inside elements crossed by the interface; while other elements are fully filled by only

one fluid. A big benefit would be that the zone where several fluids coexist is totally

controlled, and cannot grow larger than the element size e.

2.2.3. Transport equation

Usually, the motion of the interface is driven by a velocity field v related to the

differential properties of the manifold. This leads to a pure advection scalar equation

that is well suited to compute moving liquid when the complex interface shape varies

quickly at very large amplitude:

dα

dt
=

∂α

∂t
+ v.∇α = 0 ∈ Ω [11]

The variational problem consists in finding α ∈ H1(Ω) with ϕ ∈ H1
0 (Ω) such that:

∫

Ω

∂α

∂t
.ϕ +

∫

Ω

∇α.v.ϕ = 0 [12]

With the same discretization as for the Stokes equations, α is approached by the solu-

tion αh of this problem

∫

Ω

∂αh

∂t
.ϕh +

∫

Ω

∇αh.vh.ϕh = 0 [13]

While finite element methods (and the classical Galerkin formulation naturally as-

sociated with them) are well suited for solving incompressible fluid flows, they are

somehow inappropriate for purely convective problems. The reason is that the cen-

tered differencing property of the standard Galerkin method causes spurious oscilla-

tions in the solution when the problem is not dominated by diffusion, but by advection.

First, we observe that a standard Galerkin method gives much better results (and less

oscillations in the solution) when the function α to be transported is initialized as a

Level-Set function; i.e. a distance function to the fluid interface. Second, we can apply

stabilization by keeping the bubble and multiscale philosophy (Hughes, 1995), as for

the Stokes equations. This way, the method like the Residual-Free Bubbles (Brezzi et

al., 1994; Brezzi et al., 1998) provides us the wanted stabilization for the advection

problem:

∫

Ω

∂αh

∂t
.ϕh+

∫

Ω

∇αh.vh.ϕh+

∫

Ω

(∂αh

∂t
+∇αh.vh

)

.τa.
(∂ϕh

∂t
+∇ϕh.vh

)

= 0

[14]

where τa = 1/3
hv

T

|vT | , |vT | is the average velocity norm in the element T, and hv
T is the

length of the longest segment parallel to vT and contained in T .
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2.2.4. Coupled formulation

The two models we seek to couple are strongly dependent, so the coupling is done

in this order: we solve the (v, p) system, when we get v we then compute α. α is used

to update ρ and η. Consequently, the resulting coupled system contains five unknowns

per node of the mesh cavity (in three dimension). The coupled systems are defined

in the whole domain Ω, the test functions of the corresponding weak formulations are

required to vanish at the boundary of the domain, but not at the interface of the fluids.

3. Parallel computation framework

Our demonstration application library, CIMLib (Digonnet et al., 2003), is an un-

structured mesh, parallel finite element code developed by the CIM group of the Ecole

des Mines Center for material forming (CEMEF). CIMLib uses the single program

multiple data (SPMD) message-passing programming model. Since, the mesh parti-

tioning has a dominant effect on parallel scalability, CIMLib contains a mesh parti-

tioning/repartitioning algorithm called MeshMigration, that allows to balance well the

number of mesh entities (vertices or elements) per processor (see (Digonnet, 2001)).

MeshMigration is extended to heterogeneous architectures by taking into account the

parallel machine characteristics (CPU and network) (see (Mesri et al., 2005)).

The local matrices and second members resulting from the implicit finite element

formulations are assembled and solved by using PETSc library. We used an ILU

preconditioning and a Generalized Minimal Residual (GMRES) resolution method.

CIMLib is a Multi-components library designed in such a way that the user de-

fines the simulation process as a set of needed components to be executed by a root

driver. It is based on a programming interface containing several components that

solve specialized problems (like FE equations, meshing the computational domain,

contact detection . . . ) with a main program that is able to construct and organize the

different components to build the process we want to simulate. Thus, we can define

CIMLib as:

- a set of components, each of which allows solving one particular problem like

remeshing, boundary conditions. . .

- an engine that organizes the components and therefore allows to simulate a par-

ticular process like forging, polymer injection . . .

Some functional components that can be interpreted like the classical instructions

present in every language. By instruction, we mean "block", "if then else", "while" . . .
Others focus on numerical simulations: mesh management, solving FE problems with

large linear/non linear systems. All these components are provided to help the user

in building/modeling the process he wants to simulate and not dedicated to a specific

process. We take particular care to keep a very good upgradeability: it is easy to add
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a new component, but also by implementing components that can be easily derived to

solve a large number of problems.

It is important to enable the component organization to exchange information. For

example the velocity, computed by solving the Navier-Stokes equation, needs to be

used as a parameter for the transport equation. To make possible such exchange, we

introduce the notion of "Field". By Field we consider common results like velocity,

temperature, stress which are represented over the mesh, but also some scalar values

like the global volume of the piece. The Field interface is then derived into several

interpolation Fields: from the P0 interpolation, a constant value over the whole do-

main, to the discontinuous P0 interpolation and continuous P1 interpolation. Field

is the main object used to interact between components. One field computed in one

component can be used by another one as a parameter. The large majority of the com-

ponents present into CIMLib takes as input some parameter Fields and has also some

Fields as output. These Fields are the main object to exchange information between

components, even if there are other objects. For example, a "Geometer" can be used

in a particular component to compute the distance to a particular form.

3.1. Mesh partitioning component

3.1.1. Workload model

In this work based on the previous work of ((Basermann et al., 2000)), we consider

the combined (dual and nodal) graph for modeling the Finite Elements applications.

We represent the application as a weighted undirected graph W = (V (W ), E(W )),
which we will call the workload graph . Each vertex v has a computational weight

ω(v), which reflects the amount of the computation to be done at v. An edge between

vertices u and v, denoted {u, v}, has a computational weight ω({u, v}), which reflects

the data dependency between them.

3.1.2. Heterogeneous architecture model

Partitioning applications onto heterogeneous architecture such as a Grid environ-

ment requires a special model architecture that reflects both heterogeneous resource

characteristics and also non-homogeneous communication network between these dif-

ferent resources.

The machine architecture can be represented as a weighted undirected graph

A = (V (A), E(A)), which we will call the architecture graph. It consists in a

set of vertices V (A) = {p1, p2, ..., pn}, denoting processors, and a set of edges

E(A) = {{pi, pj}|pi, pj ∈ P}, representing communication links between proces-

sors. Each processor p has a processing weight sp, modeling its processing power per

unit of computation. Each link has a link weight vpq , that denotes the communication

bandwidth per unit of communication between processors p and q.
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In this work, we assume that the machine architecture can be represented by a

complete graph: given any two processors p and q, there always exist a path connect-

ing them even if they are not directly connected by a physical link. In this case, the

weight of the edge {p, q} will be evaluated as the minimum of the link weights on the

shortest path connecting p and q. The communication matrix in the Figure 1 gives for

instance the communication weights matrix corresponding to the adjacent architecture

graph.

P1 P7

P5P4P2

P3 P6

1

2

2

2

10

1010

10

Architecture graph

C =





















× 10 10 10 1 1 1
10 × 10 10 1 1 1
10 10 × 10 1 1 1
10 10 10 × 1 1 1
1 1 1 1 × 2 2
1 1 1 1 2 × 2
1 1 1 1 2 2 ×





















Communication Matrix

Figure 1. Heterogeneous graph architecture and the corresponding matrix of commu-

nication

3.1.3. Mesh partitioning model

We consider a workload graph W (V (W ), E(W )) which represents the applica-

tion, and a architecture graph A(V (A), E(A)) which represents the parallel machine.

The machine architecture is heterogeneous both for network and processors. So we

consider the characteristics of architecture graph to define the partitions. A mapping

of a workload graph onto a architecture graph can be formally described by:

m : V (W ) −→ V (A) [15]

where m(v) = p, if the vertex v of W is assigned to processor p of A.

In order to evaluate the quality of a mapping, we define two cost models: one for

estimating the computational cost and the other one for the communication cost

evaluation.

3.1.3.1. Computational cost

For each mapping of the workload graph onto the architecture graph we can

estimate the computational cost as follows: If a vertex v is assigned to a processor p,

the computational cost is given by tvp = ω(v)/sp, that is the ratio of the computational

weight of v per the processing weight of p. Computational cost estimates the time

units required by p to process v.
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3.1.3.2. Communication cost

The communication cost is introduced when we have a data communication trans-

fer between two different nodes in the target graph. Suppose that {u, v} ∈ E(W ) and

u ∈ V (W ) is assigned to processor p and v ∈ V (W ) is assigned to processor q. The

data is transferred from the local memory of p to the local memory of q via message

passing. In this case, the communication cost is given by cu,v
pq = ω({u, v})/vpq, that

is the ratio of the communication weight of edge {u, v} per the link weight between

p and q. The communication cost represents the time units required for data transfer

between the vertices u and v.

3.1.3.3. Cost function

Let m : V (W ) −→ V (A) be a mapping of W (V ) onto V (A), the weight of

subgraph assigned to a processor p in V (A), is the sum of the weights of the vertices

in the subgraph: C(p, m) =
∑

v∈V (W ),m(v)=p ω(v). For all p in V (A), the compu-

tational time is given by tp = C(p,m)
sp

, where C(p, m) is defined above and sp is the

processing weight.

Let {p.q} ∈ E(A), we define the communication cost associated to the processors

p and q as:

C({p, q},m) =
∑

m(u)=p
m(v)=q

{u,v}∈E(W )

cu,v
pq

The total communication time associated to processor p is defined by:

C(p, m) =
∑

q∈V (A) 6=p C({p, q},m). To evaluate the quality of the map-

ping, we define a cost function as follows: F (W,A, m) := T + C where T =
t
(

t1, . . . , tcard(V (A))

)

and C = t
(

C(1,m), . . . , C(card(V (A)),m)
)

. The definition

of the graph partitioning problem is to find a partition (mapping m) which minimizes

the cost function F (W,A, m). Clearly, the problem is extensible to the classical graph

partitioning and task assignment problem, and it is well known that this problem is NP-

complete. In the next section, we describe the iterative algorithm chosen to minimize

this cost function and find the efficient partitioning.

3.1.4. Parallel partitioning/repartitioning algorithm

MeshMigration is a parallel graph/mesh repartitioning scheme developed for het-

erogeneous architectures such as the Grid. We employ a local method of parallel

repartitioning developed during the DRAMA project (Basermann et al., 2000).
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The principal steps of this strategy are the following:

- Form disjoint pairs of processors that will present an important gain for the cost

function (see section 3.1.4.2).

- Optimize the mapping on each formed pair: This optimization is performed by

transferring vertices (elements and nodes) from one processor to another by using the

notion of strip migration (see the last part of the section 3.1.4.2). The definition of

strips to be migrated is given in the section 3.1.4.1.

- The two previous steps are iterated as long as we are able to globally optimize

the partition.

3.1.4.1. Strip migration

Let (p, q) be two processors and let Ip.q = {{u, v} ∈ E(W )/m(u) =
p and m(v) = q} be the interface between the processors p and q. For any w
such that m(w) = p (resp. q) the topological distance (denoted dist) of w from the

interface is defined as the shortest path between w and a vertex of the interface in

the nodal mesh graph (if w is a node of the mesh) or in the dual mesh graph (if w is

an element). We then define, a strip as the set of nodes and elements that have the

same topological distance from the interface. The optimization of the partition is then

performed by transferring strips from processor p to processor q in order to increase

topological distance as long as this transfer improves the cost function.

3.1.4.2. Formation of processor pairs

The goal of this algorithm is to perform a parallel and automatic coupling of pro-

cessors. It provides the maximum number of pairs of processors which consent to

optimize the partitions.

If we consider a pair of processors (p, q), the cost function of initial parti-

tion between p and q is given by: F0|pq = max(tp, tq) + C({p, q},m) where

C({p, q},m) = C({q, p},m). To improve the initial partition, we evaluate the cost

function strip per strip as long as we find the best strip associated to the minimum of

the cost function on p, denoted F p
min and on q, denoted F q

min. On a processor p, the

cost function is evaluated at every strip s as follows:

F p(s) = max(t′p, t
′
q) + C′({p, q},m) [16]
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where

t′p = tp − C ′(p, m)

sp

, t′q = tq +
C ′(p, m)

sq

C ′(p, m) =
∑

v∈V (W )
dist(v)≤dist(s)

w(v)

C′(p, m) =
∑

dist(s)≤dist(u)<dist(s+1)
dist(s−1)<dist(v)≤dist(s)

Cu,v
p,q

Then, we define a Friendship function between the processors p and q which is given

by the maximal potential gain:

Friendship(p, q) = max
(

F0|pq − F p
min, F0|pq − F q

min

)

[17]

The first pair of processors formed is given by:

Friendship(p, q) = max(Friendship(i, j)) , for all i and j in V (A).

The migration between p and q is determined as follows:

if (F0|pq − F p
min) > (F0|pq − F q

min) (resp. (F0|pq − F p
min) < (F0|pq − F q

min)),
the elements and nodes having a distance lower than the distance of the best strip

associated to F p
min (resp. F q

min ) are migrated from p to q (resp. from q to p).

3.2. Parallel mesh generation

In this section we review a parallel mesh generation and adaption procedure which

is based on a topological mesh generator. In the next section (3.2.1) we describe

briefly the sequential mesh generator MTC and further (section 3.2.2) we describe the

strategy adopted to parallelize this mesh generator.

3.2.1. Serial remeshing

MTC is a mesh generator developed by Thierry Coupez at Ecole des Mines de

Paris, Center for Material Forming, Sophia Antipolis. It is based on the idea to im-

prove iteratively, an initial unsatisfactory mesh by local improvements.

MTC mesh generator re-meshes the initial mesh iteratively by a local mesh opti-

mization technique. The mesh optimization technique consists in local re-meshing of

cavities formed by small clusters of elements in order to increase the “quality” of the

elements of the cluster.
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Figure 2. Local mesh optimization process in MTC

In the re-meshing process, two principles are enforced :

– Minimal volume, which assures the conformity of the mesh, with no overlaps of

elements: let Ti(Cavity) denote the i-th set of elements T filling the local cavity. Fol-

lowing the minimum volume principle we choose as an optimal (possibly not unique)

re-triangulation of the cavity the one satisfying
∑

T∈Ti(Cavity)

|(V olume)(T ))| → min, [18]

where the minimization is done over a small set i = {1, . . . , I} of possible triangula-

tions Ti(Cavity) of elements (Fig. 2 right) connecting the nodes on the border of the

cavity, or other nodes like the cavity barycenter, with all boundary faces.

– The geometrical quality Q(T ), which is evaluated for each element. If the

minimum of [18] is not unique, this criterion picks among all admissible cavity re-

triangulations the one improving the geometrical quality of the mesh by improving

the quality of the worst element of the triangulation.

While the former criterion assures the conformity of the mesh, if the initial mesh

was conforming, the latter handles improvements of element shape, size, connectivity,

etc., depending on the quality function Q(T ). Usually, the quality function Q(T )
is a function of the geometry of the element T and the prescribed background metric,

which give together a measure for the element size and the element form (aspect ratio).

For further details see (Coupez, 1994; Coupez, 2000).

3.2.2. Parallel remeshing

Parallelism of the mesh generator MTC is performed by partitioning/repartitioning

the initial mesh into submeshes, the individual submeshes are refined/derefined or
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adapted to an error estimator by using the serial MTC. In order to keep a global mesh

correctness, the interface faces between the submeshes should be subdivided the same

way. To perform this efficiently in the parallel context, we have chosen to keep inter-

faces unchanged during the local (inside each subdomain) re-meshing. Which avoid

any communication between processors during the remeshing step. The blocking in-

terface chose introduce therefore a new constraint in the iterative remeshing process

(elements near the interfaces are not remeshed). To obtain a satisfactory final mesh

regarding the quality function, we perform a repartitioning step to move the interface

inside the domain in order to enable re-meshing in a next phase. We notice that a few

iterations (three to five depending of the space dimension) between remeshing and

repartitioning stages could be necessary to build the optimal mesh. The time spent

in the remeshing and the repartitioning per iteration decreases drastically as there are

less and less elements to move and remesh. The partitioning/re-partitioning of a mesh

is performed in parallel using MeshMigration tool that is described in the section 3.1.

Figure (3) shows this strategy that is applied to a simple 2D mesh with 7 submeshes

partitioned onto 7 processors. The process depicted in the figure (3) consists in a

parallel isotropic refinement of an initial unstructured 2D mesh. We depict the mesh

partition and the zones to remesh during the iterative remeshing procedure. At the first

iteration, all mesh domain has to be remeshed and step by step the zones to remesh

become small and small and then the remeshing time decreases drastically.

A preliminary version of this work is presented in (Coupez et al., 2000). It han-

dles large scale simulation by removing any sequential part of the code and has also

reduce by around 20% the simulation run time. Parallel performance analysis pre-

sented in (Digonnet et al., 2007) show reasonable but not optimal speed-up (six over

eight processors) when looking only at the remeshing stage. In this paper we focus

on parallel efficiency to overcome some bottleneck algorithmic. To this end, we have

worked to fully take advantage of the local procedure optimization used in MTC and

DRAMA. A new repartitioning method have been implemented to move efficiently

the interfaces. A strict extraction of local zones that need to be remeshed is performed

using a permutation technique (see figure (3)). This local extraction method allows to

reduce the complexity of the algorithm from O(Np) to O(Nz) where Np denotes the

size of a processor submesh and Nz denotes the size of local zone in the processor

submesh with Np >> Nz .

We illustrate the parallel efficiency of the new development by some test cases

(isotropic refinement in 2D and 3D). Table (1) shows the parallel remeshing speed-

up of 1 to 32 processors. The speed-up realized is closed to the optimal for 2D and

3D test-cases. All these implementations are included as a component of the CIMLib

library in order to perform large scale simulations in material forming processing.

Complete simulations using a large number of processors are also done and analyzed

in the following sections.
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Figure 3. Illustration of the strategy used to parallelize the mesh generator. From the

top to the bottom we show the successive steps of parallel repartitioning and parallel

re-meshing by keeping interfaces unchanged

3.3. Finite element component

A finite element component is used to determine the solution fields of PDEs using

the finite element method. To solve such equations, we have to compute, store and

solve large linear/non linear systems. Non linear systems being solved using Newton-

Raphson method lead to the resolution of several linear systems. Here again, we

must take care of hiding parallel instructions in the part of the code where we are
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Table 1. Parallel remeshing speed up of 1 to 32 processors obtained onto 2D and 3D
meshes

CPUs Remeshing (s) Speed up

1 2391.34 1

2 1097.32 2.17

4 510.201 4.68

8 269.179 8.88

16 119.735 19.97

32 68.423 34.94

2D mesh test-case

CPUs Remeshing (s) Speed up

1 3079.98 1

2 1443.76 2.13

4 753.538 4.087

8 385.474 7.99

16 196.179 17.48

32 112.045 27.48

3D mesh test-case

planning to make most future developments (Digonnet et al., 2003). For that, we

have chosen to use the PETSc library (McInnes et al., 1995) that provides functions

to store and solve large systems in parallel. We have made a clear separation between

the storage-solving linear system which use PETSc and the way to compute local

contributions at the element level. As soon as the Object PETSc can deal with solving

symmetrical/non symmetrical systems with a free number of unknowns located at

each element or node of the mesh, we developed an interface that computes local

contributions of a problem. By using this, common developer only needs to implement

the FE model of his physical problem at the element level in a sequential way and can

use it in parallel.

3.4. Parallel visualization component

The computational meshes that we use contain several millions of points. For

instance, the largest mesh we deal with uses up to 25 millions mesh points to derive a

good solution. Visualizing the solution data from this type of calculation is particularly

challenging because the associated unstructured meshes are typically large in size and

irregular in both shape and resolution. Moreover, calculations are done in parallel

and solutions are also stored in a distributed form, then it is efficient to visualize the

parallel solution directly without assembling it in a serial form. For this purpose, we

use the parallel visualization tool ParaView 1, to render in parallel the unstructured-

mesh data.

1. http://www.paraview.org
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4. Numerical results

4.1. Performance analysis

In this section, we present computations performed on the CEMEF’s cluster. The

presented case was chosen to evaluate the parallel performance of CIMLib. It regards

a linear Stokes system. The linear stokes system is derived from [1] by assuming a

constant viscosity η and ommitting the time-dependent term and the second member.

The mesh used contains 1 million of nodes. The parallel simulation was running onto

1 to 256 processors in order to study the speed-up. The parallel machine (cluster)

used here is heterogeneous and is constituted by 512 Opteron cores (dual cores with

2.4 Ghz, 2Gb memory, 1Gb of cache memory and quadri-core with 2.3 Ghz, 2Gb

memory and 512Mo of cache memory) linked by an infiniband network.

Table (2) presents the computational time in seconds, as well as the Speed-Up

measured during such a simulation. For one CPU, we depict the runtime over two

different nodes to highlight the heterogeneity in CPUs of the cluster.The table shows

the number of iterative iteration to solve the linear system, the time spent in assembling

and resolution, the time spent in computing the symmetric gradient operator ǫ(v) =
1/2(∇.v +∇t.v) and then the speed-up with respect to both sequential reference time

(ref1 and ref2).

Regarding the resolution of the FE problem, the time spent is divided by the num-

ber of used processors in spite of the heterogeneity of the parallel machine. However,

the speed-up is mainly affected by the heterogeneity of resources.

Table 2. Time profiling for the Stokes equations

CPUs NbIter Assembling (s) Resolution (s) ǫ(v) (s) Speed-up

1 (ref1) 579 114.5037 2899.3799 18.9484 1

1 (ref2) 579 134.7185 2417.4146 16.4948 1

2 600 58.5123 1095.7660 9.2421 2.2/2.64

4 608 29.8496 509.9427 4.6028 4.74/5.68

8 623 14.7492 311.4674 2.4108 7.76/9.3

16 620 7.6469 176.7225 1.1869 13.76/16.4

32 639 4.2451 138.0940 0.5606 17.5/20.99

64 626 2.0935 63.8948 0.2852 37.83/45.38

256 818 0.5123 18.1372 0.0624 133.33/158.92

4.2. Forming processes

The geometry of the problem is composed of three bodies as depicted in figure 4. A

constant vertical velocity is imposed on the top of the upper die Ω2. No displacement

is imposed to the lower die Ω3. At the interface of the bodies, the contact is supposed
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to be sliding with a viscoplastic friction law defined by α = 0.3 and q = 1. Other

boundaries are free surfaces. We choose a consistency of K = 179.2MPa and a

strain rate sensitivity m = 0.3 for the intermediate block. The lower and upper dies

have a consistency one hundred times higher. These values are representative of hot

forging of steel. The intermediate body is the slave body and the upper and lower dies

are master bodies. In our calculation, the slave mesh is always finer than the master

one. Furthermore, the interface meshes do not coincide. We notice that the mesh

is deformed during the process and must be adapted continuously in order to avoid

distorsion and to obtain a good description of the contact zone. In this calculation, the

remeshing strategy described in 3.2 is used periodically in order to adapt the mesh to

the contact evolution. The required average number of Newton-Raphson iterations for

convergence is six. The convergence test requires a relative convergence of 10−6 on

the residual norm. This residual takes into account the contact terms.

Figure 4. Contact configuration: upper die, workpiece and lower die

Computations are performed on 64 cores of the CEMEF’s cluster. This cluster

is constituted by 512 Opteron cores (dual cores with 2.4 Ghz, 2Gb memory, 1Gb

of cache memory and quadri-core with 2.3 Ghz, 2Gb memory and 512Mo of cache

memory) linked by an infiniband network.

At each increment we perform, a parallel remeshing stage (including metric com-

putation and field transport from the old mesh to the new mesh ), a non-linear and a lin-

ear systems computation and resolution. Therefore, we should depict both: the parallel

remeshing and the parallel FE solver. An initial workpiece mesh with around 52354
nodes and 33000, 32000 nodes respectively for the upperdie and lowerdie meshes are

chosen to perform these computations. The two dies meshes are fixed during compu-

tations since the workpiece mesh is evolving and it reaches 5 millions nodes at the 120
increment.

Table 3 presents the computational time in seconds for different increments. We

show at every 20th increment, the number of mesh nodes (in million), the number of
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non linear iterations, the time spent for solving that includes resolution and assembling

time, remeshing which represents parallel remeshing and field transport and finally

the time spending in writing output files. The number of mesh nodes increases as

the deformation of the part progresses. That is due to the successive refinement of

the deformed regions of the part and explains the increase in the number of points

of the grid from an increment to another in Table 3. Moreover, one can observe that

the nonlinear iteration count obviously influence the solution time. A high number

of nonlinear iterations increases the solution time. The difference of the nonlinear

iteration count of an increment to another reflects the difficulty encountered with the

resolution of the contact problem that is strongly nonlinear. Figure 5 at the top-left

Table 3. Time instrumentation for the forging simulation

Increments 20th 40th 60th 80th 100th 120th

# of nodes 1.3M 1.89M 2.46M 3.29M 4.09M 5.1M

NL iterations 277 210 161 223 260 210

Solver (s) 1234.16 2276.60 2310.78 7350.31 9120.07 10854.37

Remeshing (s) 1356.72 1752.38 2005.73 5414.71 6617.85 8257.44

Outputs (s) 392.11 665.22 958.32 1208.87 1631.53 2511.60

Sum (s) 2982.99 4694.20 5274.83 13973.89 17369.45 21623.41

shows the evolution of the deformed body from the initial shape to the one obtained

at increment 120. In the top-right of figure (5), the velocity magnitude is high in the

upper and low in the lower parts. Figure (5) at the bottom-left shows the distance of

the body to the tools and at the bottom-right we show the viscosity field.

4.3. Injection process simulation

The presented case clearly illustrates the capabilities of parallel computation. Such

a test is challenging and needs a full parallelization of all parts of the code. The

visualization is also done in parallel by using ParaView tool.

This case is run on the old CEMEF’s cluster, which is composed by 24 bi-

processors bi-cores AMD Opteron 280 with 8 GB of RAM. The network is Infini-

Band. To calibrate the test, we first need to think how to determine the limits of such

architecture by taking into account the global RAM. Here, every processor (core) has

2 GB that corresponds solving linear systems with around 1.2 million unknowns (after

estimation). This results into 115 millions of unknowns for the cluster. As this cluster

is not used by a single person and that some nodes could be out of order, we have cho-

sen a test case that requires solving systems with 100 millions unknowns. The largest

system is for solving the Stokes equations, using the mini-element P1+/P1 in velocity

and pressure. In a 3D case, we have 3 unknowns for each node for the velocity and

1 unknown more for the pressure. At the end, we build a mesh containing around 25

million nodes (figure 6 represents the initial mesh and one portion of the 25 million

nodes fine mesh).
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(a) (b)

(c) (d)

Figure 5. All figures are captured at increment 120: (a), the initial and the deformed

body obtained at increment 120. (b), the velocity magnitude over the deformed body.

(c), the signed distance between tools and the body. (d), the viscosity field

We remark that it is impossible to build such a mesh sequentially, as the highest

value of memory we can allocate to one of our sequential computer is 16GB, which

is not enough to store the mesh. To build it, we used the mesh component of CIMLib

and we stored the mesh under its partitioned form. We started with the coarse mesh

and then refined it successively by reducing the metric mesh size and by increasing

the number of processors at each iteration.

Computing such a mesh was the first objective and after that, running the test case

was not so difficult, as soon as the maximum of memory used is well dimensioned.

The computed simulation is close to the injection process even thought we use

a simplified model with only one resolution of the Stokes equations. After that, the

transport equation is solved using a Level-Set method, according to the computed

velocity. The simulation was carried out by first doing one resolution of the Stokes
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(a) (b)

Figure 6. (a), the initial coarse mesh of the part with 11, 866 nodes and 37, 657 ele-

ments. (b), the mesh of only one of the 88 partitions used to represent the global piece.

This subdomain contains 304, 252 nodes and 1, 637, 436 elements and will be treated

by one processor (one core)

equation, and then by continuing with 1250 time increments to inject the polymer in-

side the cavity. This globally gives: - one linear system with 100 millions of unknowns

for the Stokes equation (4 unknowns per node) - 1, 250 linear systems of 25 millions

of unknowns for the transport equation (1 unknown per node and one linear system

per increment)

By using 88 processors (cores) of the cluster, we have been able to do this com-

putation. The global simulation time was close to 28 hours, with a little more than 2
hours to solve the Stokes problem, 21 hours solving transport equations and the last 5
hours to carry out some other computations, including writing results files. The next

figure 6, we present the position of the front after one hundred time increments on the

coarse mesh and on the very fine one. The front is illustrated by the zero iso-surface

of the Level-Set. Of course, here the difference is very important and an intermediate

mesh with some mesh adaptation techniques can be preferable in terms of precision vs

computation cost (Mesri et al., 2008). But the calculation made can be used as good

reference for comparing with other computations.

The accuracy of the results on the 25 million nodes fine mesh is really impressive

compared to the one of the coarse mesh. This is clearly due to the very large com-

putations that we have been able to do. For example, on this small part of the global

piece we have more than 5 millions nodes. The precision of this 3D calculation can be

compared to what we are able to do in sequential but in 2D. The size of the elements

with such a mesh is close to a pixel.
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(a) (b)

Figure 7. (a), the predicted front position on the coarse mesh after 0.1 second, (b) the

same front position at the same time using the 25 millions nodes mesh

5. Conclusion

We presented CIMLib a fully parallel multi-component library. This library is

based mainly on a parallel remeshing technology and a Finite Element solver. In

this paper, new developments are performed in order to improve the efficiency of

the parallel remeshing. The performance analysis shows that our parallel remeshing

scales well. The measured speed-ups are close to the optimal. An other performance

analysis is also obtained to highlight the scalability of the FE solver and other staff. A

demonstration of CIMLib efficiency on large 3D simulations is also presented. The

first large simulation presented focuses on a multi-bodies contact problem, including

friction, for complex 3D forming processes. The second one is devoted to the multi-

phase problems involved in the manufacturing processes of full parts. The mesh is

refined during the both simulations the final mesh has over 25M nodes for the last

one.
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