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ABSTRACT. In this article, we are concerned with the numerical simulation of granular media,
characterized as a large scale discrete system, involving non smooth interactions. For such
problems, domain decomposition approaches are potential interesting alternative solvers.
Herein, two robust and generic monoscale approaches are formulated and compared. The
first numerical results reveal a non standard behavior in term of numerical scalability.

RESUME. Dans cet article, nous nous intéressons a la simulation numérique des milieux
granulaires, caractérisés comme des systemes discrets de grande taille, avec des interactions
non régulieres. Pour de tels problemes, les méthodes de décomposition de domaine sont des
candidats intéressants comme solveurs alternatifs. Ici, deux approches monoéchelles robustes
et génériques sont formulées et comparées. Les premiers résultats montrent un comportement
non standard en termes d extensibilité numeérique.
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1. Introduction

The simulation of granular media behavior at small scale (i.e. the size of the grains)
leads to the modelling of each individual grain, as well as each interaction between
them. Such numerical tests allow to estimate a large number of information (grain
movements, chains of forces...) but they also require a huge amount of computational
resources. Indeed the number of grains may be large, and the number of interactions
is even larger.

Classical approaches embed a rigid model for each grain, and a non smooth uni-
lateral contact, with or without friction, cohesion... as a model of interaction. The
resulting problem at small scale is therefore belonging to non smooth dynamics.

A wide range of practical engineering applications (monuments, masonry, blocky
rocks, geomaterial, ballasts, powders) concerns quasi-static evolutions of dense gran-
ulates and slow flows in which the forces network is the main mechanical feature
(Nedderman, 1992; Radjai et al., 1998). The numerical simulations have to be per-
formed using contact dynamic methods based on a fully implicit resolution of the
contact forces. At a given step of evolution, all the kinematic constraints within the
packing are simultaneously taken into account together with the equations of motions
to determine all the contact forces in the packing. This allows to deal properly with
nonlocal momentum transfers implied in multiple collisions, contrary to molecular
dynamics schemes traditionally used that reduce the system evolution to a succession
of binary collisions (Cundall et al., 1979).

To be able to use classical numerical schemes such as molecular dynamics (MD),
this non smoothness is often alleviated using penalization techniques (for instance
using a contact stiffness). These approaches are usually justified by invocation of
physical arguments (grains exhibit a small flexibility, therefore the contact behavior is
better described with a Hertzian model, or even with a simplified apparent stiffness).
The main counter argument is the following: If the physical contact indeed exhibits
a certain stiffness amount, the stiffness is sufficiently high that if used with classical
solvers, the physically regularized problem is often stiff enough to impair the conver-
gence and/or the stability of the numerical scheme, and eventually requires drastically
reduced time steps. In such cases, the penalizing term has to be artificially reduced to
cope with the solver requirements. As a consequence, if one can use a solver suited to
non smooth evolutions, the stiff contact (with an infinite rigidity) is therefore a better
model than an artificially under-stiffened regularized model.

In this article, we focus on using two non smooth solvers. The first one is de-
rived from the Large Time Increment method (LATIN) initiated by Ladeveze (1999);
the second one, developed by Moreau (1999) in the framework of Non Smooth Con-
tact Dynamics (NSCD), may be interpreted as a Non Linear Gauss-Seidel (NLGS)
algorithm. For frictionless problems these methods are not the more efficient in com-
parison with Projected Conjugate Gradient algorithms easily extended from the linear
case (Dilintas et al., 1988; May, 1986; Renouf et al., 2004). The Conjugate Gradient
schemes are also used by the Domain Decomposition Methods for linear problems
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(BDD (Mandel, 1993), FETI (Farhat et al., 1991)). These methods are difficult to
extend to frictional problems — and more yet to more general interactions (adhesion,
capillarity) — and the performances are not so good; indeed the conjugate gradient
approach in this case exhibits convergence difficulties (Renouf et al., 2004). This is
the reason why we develop here a Domain Decomposition strategy using only robust
and generic incremental solvers based on LATIN and NLGS.

The ‘direct’ extension of FETI-like methods (using an active set approach) for fric-
tionless (Dureisseix et al., 2001; Avery et al., 2004; Avery et al., 2009) or frictional
contact problems (Rebel et al., 2003), as well as the approaches of Dostal for friction-
less (Dostal et al., 1998; Dostdl et al., 2000), or frictional contact problems (Haslinger
et al., 2002; Dostal et al., 2005), exhibited their efficiencies for ‘assembling’-like
problems (with a few number of contact interfaces), but have the same limitations
as the previous ones for diffuse contact conditions (with a large number of frictional
contact conditions).

2. Non smooth dynamics model for granular media without friction

We consider interactions between grains, that constitute a system which can be
viewed as a rigid multibody collection of particles. For sake of simplicity, unilateral
contact without friction is considered herein.

2.1. The grain dynamics

We assume that each grain denoted with ¢ interacts with its neighbors via a finite
collection of punctual contacts. Its mass is denoted with m;, and its center of mass
with G;. Its inertial operator at point G; is J; ;. At the contact labelled « and located at
point M, the two contacting bodies are conventionally called the candidate contactor
and the antagonist one. At the point M, the common normal unit vector n, is directed
toward the candidate body.

The body kinematics is described with 6 parameters in 3D: 3 are the elements of
the celerity vector of the mass center U;, the others are the elements of the rotation
rate ;.

In order to compute the evolution in time, an integration scheme is needed. Since
the behavior of a granular medium involves non smooth effects in velocity jumps, a
scheme which is not built on the derivability and continuity of velocity equations is
used. Because of the very high number of contacts involved in dense granular media,
a Time-Stepping scheme is chosen rather than an Event-Driven one, which would lead
to a too small time step. In particular, the Event-Driven scheme is unable to take into
account simultaneous contacts (Glocker et al., 1995; Liu et al., 2008; Liu et al., 2009).
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A Time-Stepping scheme provides a discretized equation of dynamics involving
impulses in its right-hand side, i.e. the integral over ]¢~, ¢ [ of the force and moment
quantities. The kinematic quantities have to be determined at the end of the step ¢,

mUe v ) (B )
i i _ i [1]
{ a K1+K1d G

Jic (QF =)
where the external actions applied on the system are: the contact impulse resultant

T
P;, the non contact impulse resultant P¢ = f:, Fddt (where F is the non contact
resultant), the contact impulse moment at G;, K;, the non contact impulse moment at

f
Gi, K& = [ Mdt (where M{ is the non contact moment at G).

Assembling mass and inertia in a small local matrix M;, the kinematic parameters
U; and €); in a small local vector V;, the impulse quantities P; and K; in a vector R;,
and finally the given quantities P and K¢ into a vector RY, the dynamical admissi-
bility reads:

MVt = Ri+ R{ + M;V;~ 2]

For simplicity the upperscript + is omitted in the following. These vectors, associ-
ated to each grain, may be concatenated in global vectors, in such a way the dynamics
of the granular medium is rewritten as the following vector equation where the matrix
M is diagonal, provided that the global coordinates of rotation vectors are expressed
in the inertia eigen basis of each grain.

MV =R+R*+ MV~ (3]

2.2. Grain to contact mapping and reverse

The relative velocity of the candidate body with regards to the antagonist one
equals the vector difference of the normal velocities of the respective contacting par-
ticles, say v® = H®'V, where H*" denotes a linear mapping from the particle level
to the contact one. In a view of the definition of generalized components, the normal
contact force r® exerted by antagonist body upon the candidate one contributes in the
element R: R = Hr".

The relative velocities of all contacts and the contact impulses are concatenated in
v=H!'Wand R = Hr.

2.3. Constitutive relation of an interaction
We focus in this article on simple unilateral contact which is naturally expressed as

a complementary condition linking contact force to gap. For dynamics, Moreau (1999)
proved via a viability lemme that we can use a velocity-impulse complementary law.
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The unilaterality of interaction is written :
(4]

If w»>0, r=0
If «#<0, 0<vlr >0

where uP is the gap prediction (positive if no contact is detected); we use here the
classical ‘leapfrog’ predictor (Moreau, 1999): u? = u~ + %v_, with h = tT — ¢t~ as
the time step. Such a relation is summarized in the following formal equation,

R(v,r) = 0 [5]

2.4. Reference problem

Taking into account the grain dynamics [[3]] and the contact to grain mapping, the
impulse-oriented formulation of the reference problem can be obtained (called re-
duced dynamics equation):

v—Wr=vl40v" [6]

where W is the Delassus operator W = H'M~'H, and the given quantities are
vl=H'M"'R?andv™ = H'V ™.

When velocities are prescribed on a part ; of the grains: Vg, = Vj, the grain
degrees of freedom can be splitted into two sets: with the subscript v the unknown
values, and with the subscript p the prescribed values. The reduced dynamics equation
[6]] then reads:

v—Wyr =0 +9" [7]

with W, = HL M H,, o = H{M,*R% + H!V,, and o~ = H.V, . Since this
problem has the same structure as [[], and to simplify the notations, [[]] will be used
in the following. To close the problem, one has to add the constitutive relation [3]].

3. Domain splitting

The suited splitting of a structure for using a domain decomposition approach
is a geometrical partitioning of the domain occupied by this structure. In the case
of a discrete structure, there are two common ways to partition it: (i) distribute the
elements, the links, or the interactions among substructures, or (ii) distribute the nodes
or the grains among substructures. Both strategies were used in the literature. For a
topological point of view, they correspond to the splitting of two different graphs: the
connectivity graph or its dual graph. The node or grain distribution if often considered
in algebraic partitioning where the left hand side matrix of the velocity formulation
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is splitted according to its columns (degrees of freedom). In our case, since the non
smoothness may occur in the interactions between grains, we choose to distribute these
interactions among the substructures (we proceed by distributing the middle points
between the centers of mass of interacting grains, according to their coordinates, with
the help of an arbitrary regular underlying grid, Figure[I). Indeed, with such a choice,
some of the ‘boundary’ grains are splitted themselves in the data structures arising for
the subdomains. Note that for dynamical evolutions, contrary to (Alart et al., 2008),
the mass located in such a grain has to be splitted in two contributions, one for each
duplicated grain, see Figure [I] The interface between two subdomains is defined to
be the set of these grains, joining a substructure to the other. The nonsmoothness is
therefore localized within the substructures only. This modeling choice is identical
to (Barboteu et al., 2001) and somehow the dual of the one proposed in (Ladeveze et
al., 2002) where the non-linearities (contact of crack lips) are isolated in the interfaces.

Introducing such a splitting leads to have additional unknown fields to emerge: on
each interface between a subdomain ) i and a subdomain g, a discrete repartition of
impulsion Fp g/ expressing the actions of the subdomain 25 onto the subdomain 2.
A discrete velocity field Vg g- is the trace of the velocity field in the subdomain Qg
on its local interface with the neighboring subdomain 2. With the previous choice
of splitting, the behavior of the interface is perfect, i.e. it transfers both impulse (the
splitted grains interforce) and velocity (of centers of mass):

Feppr+Fpp=0 [8]
Ver = VeE [9]

Figure 1. Geometrical partitioning of the domain

The data structure of the dynamical reference problem is therefore complexified
with the additional interface quantities. In particular, for a subdomain £ among nsp
subdomains, the subscript ET" will denote the collection of its local interfaces (i.e.
its neighboring interfaces). F'rr will therefore be a vector that collects the impulse
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on these local interfaces, and Vg will collect the velocity on the same local inter-
faces. Moreover, one needs a Boolean matrix that maps the local interfaces degrees of
freedom to the subdomain degrees of freedom; this will be denoted with C'gp in the
following.

4. Domain decomposition solvers

Two numerical strategies, using the same database structure issued from the de-
composition of Section [3] are detailed and compared in the following.

4.1. Monoscale LATIN method

In the present case of an incremental approach, and for non evolutionary prob-
lems, the Large Time Increment method (Ladeveze, 1999) is close to an Augmented
Lagrangian approach (Alart et al., 2005). It is an iterative method, which at each
iteration requires two different steps, namely the local stage, dealing with local con-
stitutive relations, and the linear stage, dealing with admissibility conditions. This
iterative scheme successively builds approximations of the solution, i.e. the normal
relative velocity and the impulse (vg,7g), F = 1,...,nsp, and the nodal velocity
and impulse on each interface (Vgg/, Fgg').

4.1.1. Local stage
Once (vg,rg) and (Vgg/, Frgr/) are known, the local stage consists in finding
(i}\E, ?E) and (‘/YEEI7 FEE’) satisfying:
— for each interface, the interface behavior:
/F\‘EE’ JFEE/E =0 [10]
Vep = VeE

— the interface search direction:

(Fpp — Frpr) — d* (Veg — Veg) =0 [11]
— for each interaction of each subdomain, the constitutive relation R(vg, 7g) = 0;
— and the interaction search direction:

(g —rp) — 1T (0 —vE) =0 [12]

d* and [ are two positive parameters of the method. For perfect interfaces and
frictionless contact interactions, the solution of the local stage is explicit:

{ EE’E = :F\EE/ = (Fgp— Fgp) —d"(Verp — Ver)) [13]

Veg = Ve =i [(Ves + Vi) —d" (Fgg + Fppr)
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Ifu? >0, 7g=0 and vg=vg— (IT)"lrg

IfuP <0, TE =<rTg — l+’UE >4 and [14]
EJ\E = —(l+)_1 <Trg— Z+UE >_

4.1.2. Linear stage
Once (Ug,Tg) and (‘//\'E By P wr) are known, the linear stage consists in finding
(vg,rg) and (Veg/, Fpp) satisfying:
— for each subdomain, its dynamical evolution:

MgVg = Rp + Fg + Ry + MgV, [15]
and the remaining admissibility equations: vg = H }EVE, Rg = Hgrg, Fg =
ChrFer, Ver = CerVe.

— for each subdomain, and its local interfaces, the search directions:

{ (’I“E — ?E) + l_(UE —@\E) =0

ES ~ 16
(Fgr — Fgr) +d~ (Vgr — Ver) =0 L16]

d~ and [~ are also two positive parameters of the method. Using the search directions,
the linear global problem reads on each subdomain:

(Mg + Hgl Hb + Chrd~ Cpr)Ve = Rp + RE + MgV, [17]

where Ry = Hp(Fg +170g) + Chp(Fer +d~Vir) is a given quantity at this stage.
Once Vg is obtained, the other quantities are obtained in a post-processing step:

Vg = HtEVE [18]
rE :?E+175E—17HtEVE [19]
Fgr = Fgr +d Vgr — d ™ Vgr (20]

4.2. Monoscale NLGS method
The continuity condition of the velocity field on the global interface I" requires

Boolean signed operators Agr that extract from a subdomain vector Vg its signed
restriction to the interface,

Z AprVe =0 [21]
E

We define Fr as the multiplier associated to this constraint. The dynamics of each
subdomain according to [[6] is described by

Wgrg —ve — HoMgt AL Fr = —of — vy, [22]
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The combination of the dynamics [22]], the continuity condition [21]] and the con-
stitutive relations of the interactions restricted to subdomains [3]] gives,

WETE — Vg — HtEMEIA%FFF = _U% - UE‘
E = 1, ..z NSD
R(UE,’I‘E) =0

> AprVe =0
E

(23]

Using directly the dynamics equation [3]] per subdomain the last equation may be
replaced by an equation with F1 as the main unknown (X =Y, Agr My 1Afmﬂ),

Wgrg —veg — HuMgt AL L Fr = —vf — v
E= 1, s NSD
R(UE,’I“E) =0

XFr— Y AprMy'Rp =Y AprMy'R§
E E

[24]

A Gauss-Seidel like algorithm applied to this last system consists of two steps.
The first one performs one Gauss-Seidel iteration for each subdomain indiced by F,

{ Whrg —vep = HL Mgt AL Fr — vl — (We — WE)Fe —vg 5]

R(’UE,’I“E) =0

The classical Gauss-Seidel splitting of Wy uses the lower triangular part W (in-
cluding the diagonal part WZ): Wr = Wk + (W — WE). This first step is then
performed subdomain per subdomain and may be easily parallelized. The non linear
problemis easily solved, progressing whith each unknown couple (v%,r%, one af-
ter the other, for which a graph intersection technique provide the result explicitely
(for the frictionless case).

After updating the impulse quantities grain per grain Rg the second step consists
in solving the last equation of the system [24]],

XFr =Y AprMy'(Rp + R}) [26]
E

This second step benefits from the diagonal feature of the X matrix, that is a
specific issue of the dynamics of rigid grains.

4.3. Algorithmic connection of the two methods

To compare the two previous methods, one has to specialize each of them (with re-
spect to the free choices that have been made during their design). Moreover, concern-
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ing notations, the Boolean mapping matrices are linked with Cgr = |Agr| and the
subdomain impulse arising from the global interface are F; = Ch Fpr = Al Fr
whenever the impulse equilibrium of interfaces is enforced.

First, one has to consider a Jacobi version of the previous Gauss-Seidel approach,
i.e. choosing the diagonal part W2 in the splitting: Wi = WE + (Wg — WE).
In such a way, shifting from Gauss-Seidel to Jacobi, the convergence of NLGS is
expected to decrease.

Second, a degenerated choice of search direction parameters of the LATIN method
has to be selected in order to identify the two resulting algorithms: the search direc-
tions of the local stage should be d* = 1 X~ and I* = (WJ)~", and the search
directions of the linear stage should be ‘vertical’, i.e. d- = [~ = 0. With these
choices, the convergence of the LATIN method is expected to decrease also.

The unification of the two previous algorithms is therefore subjected to a degener-
acy of both of them.

5. Basic behaviors in linear case

To test the scalability of the methods we deal here with a linear model example
without realistic relevance, but considered as an intermediate problem before tack-
ling granular systems. A granular sample is performed using the numerical plateform
LMGC9(ﬂ dedicated to multicontact problems (Jean, 1999). The contact interactions,
originally written with a velocity-impulse formulation, are replaced by linear viscous-
like links between the centers of the grains. In this way, the example may be viewed
as a truss composed of massive nodes and damped links. The only adaptation to the
reference problem is the constitutive relation R(v,r) = 0 that is now: r = —kv (k
is the viscosity term multiplied by the time step). The tested sample is composed of
5191 grains, Figure [2] the velocity of bottom grains is prescribed to zero, while left
and right sides are subjected to a global rotation to mimic a global shearing. In such
a case, the reference problem can be further simplified into a single equation, that
reads: (W + k=1)r = —vg — v~. The left hand side is therefore composed of a
diagonal, regular, viscous-like part, and the Delassus operator, which is singular (in
most cases: indeed, imagine replacing the contact interactions with bars of a truss,
the size of the kernel of the Delassus operator is the number of self-stress states). To
check the influence of this singular character, two different values of k will be tested:
a reference value kg selected as the mean value of (W)=, and a value k; reducing
the regularizing contribution of viscosity: k1 = 50kg.

Several convergence curves are plotted in each case, for a single time step incre-
ment of the problem, see Figures[3|and [} for each method, and for different numbers
of subdomains, i.e. ngp = 1,2,4,8,16 or 32. For this linear test problem, and con-

1. http://www.Ilmgc.univ-montp2.fr/~dubois/LMGC90/
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Figure 2. Test case with 5191 nodes and 10177 interactions, and the grid used to split
the domain into 16 subdomains

trary to the granular one, the solution is unique in terms of impulses r.;. Consequently,
a relative error is used to check the convergence:

(T' - 7"ref)t(r - rref)
(T + rref)t(r + Tref)

n= [27]
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Figure 3. Results with k = kg
For the LATIN method, the search direction parameters are chosenas [t =~ = k

anddt =d~ =k.

As a general trend, the convergence rates of both methods decrease when the in-
fluence of the regular viscosity part decreases. On this test, NLGS exhibits a higher
convergence rate than the LATIN, though it is less obvious for the less regular case

(Figure ).

The numerical scalability is lost (when the number of subdomain increases) but it
is not systematic (contrary to the known results for a continuum media case). Indeed,
for the LATIN method, for £ = kg, the 4, 8, 16 and 32 subdomain cases are very
similar; for kK = k1, the 1, 2, 4 and 8 subdomain cases on one hand, and the 16 and 32
subdomain cases on the other hand are similar.
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Figure 4. Results with k = k1 = 50kq

6. First results for granular media

A smaller problem with 991 grains and 1679 non smooth interactions (Figure [3))
issued from LMGC90 platform is this time considered with frictionless contact inter-
actions [H]. Since the solution is not unique in this case, the relative error is replaced
with a relative error indicator to check the convergence: at iteration i,

G = \/ e = vl = 1aa) [28]

;T

Figure|[§ plots its evolution along iterations, for a single time step increment of the
problem, for both methods and 1 to 8 subdomains. At least for this test case, all the
convergences are similar.
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Figure 5. Test case with 991 nodes and 1679 interactions
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Figure 6. Results for non linear case

7. Conclusion

The proposed methods developed in this article seem to be more and more scalable
when the interaction behavior exhibits more and more non linearities/non smoothness,
even without using a multilevel enrichment. This could be attributed for one part
to the simplicity of the non linear solvers (based on a fixed point technique) when
compared to conjugate gradient algorithms (Renouf e al., 2004; Dureisseix et al.,
2001). For the other part, this may arise from the simultaneous treatment of the non
linearities and the domain decomposition, since the most efficient methods embed a
domain decomposition for the linear resolutions in outer Newton iterations (De Roeck
et al., 1992; Barboteu et al., 2001). Notice that this last approach is not suited to the
problem we wish to tackle here, where the non smoothness is diffuse (everywhere in
the domain) (Nineb et al., 2007).

Using multiscale versions of the present approaches would nevertheless present
several advantages. The first one is to get access to a numerically homogenized be-
havior of the subdomains, a useful feature to be able to couple two models at two
different scales (Mobasher Amini et al., 2009). The second one is the possibility to
initialize successive steps in a problem of evolution with a coarse solution provided
by the previous time step, in order to accelerate the resolution. The main outlook of
this work is nevertheless to tackle the frictional contact case.
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