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1. Introduction

Full displacement field measurements by digital image correlation are now widely
used in mechanical engineering and materials science (Sutton et al., 2000). One of
the main interest is that digital image correlation yields aconsiderable amount of
data that are useful for identification purposes. Fracture mechanics has already been
investigated using displacement field measurements (McNeill et al., 1987; Anbanto-
Buenoet al., 2002; Forquinet al., 2004; Réthoréet al., 2005; Rouxet al., 2006). The
fact that the displacement measurements achieve uncertainties of the order of 10−2

pixel, allow this technique to reveal cracks that cannot be seen by other means if
their opening is less than one pixel wide. Besides the qualitative aspect of detecting a
crack, the next challenge is to be able to reach a quantitative estimate of mechanically
significant properties, such as stress intensity factors. One related key quantity is the
precise determination of the crack tip location, which has adirect consequence on
the amplitude of stress intensity factors. This is the problem that is addressed in the
present experimental case study, although the technique has a much broader scope of
application.

In order to proceed, the very first step is to use a digital image correlation tool that
accounts accurately for the kinematics of a cracked specimen. Recently, Réthoréet
al. (2007) proposed an extended digital image correlation (X-DIC) technique. It is
referred to as “extended” because of the enriched kinematics it uses as in extended
finite elements (Moëset al., 1999). A discontinuous enrichment is added to a standard
finite element approximation(Nn)n∈N

exploiting its partition of unity property

∑

n∈N

Nn(x) = 1 [1]

The enriched approximation of the displacement field then reads

u(x) =
∑

j=1,2

∑

n∈N

anjNn(x)Xj +
∑

j=1,2

∑

n∈Ncut

dnjNn(x)Hn(x)Xj [2]

where(anj)n∈N are degrees of freedom associated with standard (i.e., continuous)
shape functions in each directionX1 andX2 of the image co-ordinate system,Ncut

the set of nodes that hold additional degrees of freedomdnj associated with the en-
richment functionHn(x) defined as

Hn(x) = H(x) −H(xn) [3]

whereH is the Heaviside step function whose value is0 below the crack front and
1 above (Figure 1), andxn gives the position of noden. This enrichment function,
first introduced by Ziet al. (2003), is preferred to the Heaviside or to the generalized
Heaviside function.

In experimental applications, the advantages of adding enriched degrees of free-
dom are useful since they allow one to account more preciselyfor features such as
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weak or strong discontinuities (e.g.,cracks, shear bands) that may be poorly captured
by standard finite element shape functions. However, their determination is typically
based on the exploitation of pixel values that are less numerous than for standard
elements. As a result, the conditioning of the linear systemto solve relative to the
enriched degrees of freedom is worse than for standard degrees of freedom, and hence
they are much more prone to noise. This effect may be compensated for at the identi-
fication stage by improving the noise robustness of the stress intensity factor estima-
tion (Réthoréet al., 2006).

Figure 1. Typical enrichment configuration. Circles denote nodes with discontinuous
additional degrees of freedom

In this paper, we propose a different route called extended and “integrated” digital
image correlation (or XI-DIC). “Integrated” refers to the fact that the assumed material
behavior and the balance of momentum are directly integrated into the correlation
algorithm. This type of approach was already used when a closed-form solution exists
for Brazilian tests or cracks (Hildet al., 2006; Rouxet al., 2006). In the present case,
an X-FEM simulation will give access to a mechanically admissible solution. The
principle is to perform image correlation with the additionof mechanical constraints
so that the distance of the displacement field to the space of mechanically admissible
solutions is penalized. A mechanically admissible solution is such that the stress field
obtained through a linear stress/strain relationship is momentum balanced. Under
these constraints, lower uncertainty levels are expected for the determination of the
measured displacement field, and the stress intensity factors.

It is proposed to use the Equilibrium Gap Method coupled withan image corre-
lation algorithm over the entire region of interest. The Equilibrium Gap Method was
first used to identify material (e.g.,elastic) property fields from a previously measured
displacement field (Claireet al., 2004). This identification technique is based on a
minimization of the norm of the internal force residuals induced by material parame-
ter mismatch. In the present paper, it is assumed that the material behavior is linear
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elastic and the Equilibrium Gap Method is used to enforce themechanical admis-
sibility of the solution. Both aspects of the method, namely, image correlation and
mechanical filtering, are presented in Section 2.

Furthermore, when using an enriched interpolation, the crack geometry has to be
determined in advance. As illustrated in Section 4, a mere approximation of the crack
path may be obtained from a standard digital image correlation result. One captures
the crack faces that hold the discontinuity of the displacement. Even though a good
approximation of the crack direction is obtained by visual inspection, the positioning
of the crack tip is a sensitive issue (Rouxet al., 2006). Moreover, the studied case
is expected to be very difficult because the maximum displacement discontinuity is
very small, by far sub-pixel (with a value of about0.3 pixel). Therefore, at a distance
of about 15 pixels from the crack tip, the opening is expectedto be of the order of
2.5 × 10−2 pixel, and hence it is extremely difficult to locate the cracktip very
accurately.

When carrying out a correlation analysis, one may have the crack traversing the
entire image because, if no discontinuity occurs in the displacement field then the en-
riched degrees of freedom will be estimated to0 (to the measurement uncertainty).
That is, “optical” tractions make the enriched degrees of freedom vanish over the un-
cracked region of the image. Accounting for balance of momentum in the correlation
algorithm, the crack faces are traction free from a mechanical point of view and the
activation of all the enriched degrees of freedom is unavoidable. Consequently, an in-
tegrated approach needs a more accurate positioning of the crack tip. Thus, Section 5
is aimed at presenting how the integrated approach is used todetermine the crack tip
position. Last, stress intensity factors are estimated with an interaction integral.

2. Integrated digital image correlation

In the following, an integrated correlation algorithm is presented. It is based upon
a correlation procedure that is regularized by seeking mechanically admissible dis-
placement fields.

2.1. Image correlation

The correlation of two gray level imagesf andg (f is the reference picture and
g the deformed one) is recast as the local passive advection ofthe texture of the two
images by a displacement fieldu

g(x) = f(x + u(x)) [4]

The problem consists in finding the best displacement field byminimizing the corre-
lation residual

η(x) = |f(x + u(x)) − g(x)| [5]
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The minimization ofη is intrinsically a non-linear and ill-posed problem. For these
reasons, a discrete and weak format is preferred by adoptinga general discretization
scheme

u(x) =
∑

n∈N

anψψψn(x) = [Ψ(x)]{U} [6]

whereψψψn are the vector shape functions (including the enhanced ones) andan their
associated degrees of freedom. In a matrix-vector format,[Ψ] is a row vector contain-
ing the values of the shape functionsψψψn and{U} the column vector of the degrees of
freedom. After integration over the domainΩ, the global residual is defined as

Rcor =

∫∫

Ω

(f(x + [Ψ(x)]{U}) − g(x))
2

dx [7]

At this level of generality, many choices can be made to measure displacement fields.
In the following, an extended procedure is considered (Réthoré et al., 2007), based
upon a Q4 correlation algorithm (Besnardet al., 2006).

2.2. Balance of momentum

To enforce mechanical admissibility in a FE sense, the following mechanical resid-
ual is introduced. The local balance of momentum equation reads

∇ · σσσ = 0 [8]

and is reformulated as an “energy” term based on the domain integral of the quadratic
norm of the above divergence, in a form suitable to the used finite element formulation.
Let us first recall the expression of the strain energy

Emec = (1/2)

∫∫

Ω

σσσ : ǫǫǫ dx [9]

where “:” denotes the contraction with respect to two indices,σσσ the Cauchy stress
tensor andεεε the infinitesimal strain tensor. Prescribing a linear elastic stress/strain
relationshipσσσ = C : εεε, whereC is the fourth order elastic tensor, and adopting the
discretization scheme for the displacement, the matrix-vector format ofEmec is

Emec = (1/2){U}T [K]{U} [10]

whereK is the stiffness matrix associated with the discretizationscheme and{U}
contains the values of the displacement unknowns. If∇s denotes the symmetrized
gradient in space, then the components ofK read

Knm =

∫∫

Ω

∇sψψψm : C : ∇sψψψn dx [11]
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For identification purposes, the minimization of the mechanical energy is more conve-
niently written as the norm of the internal forces in the spirit of the Equilibrium Gap
Method (Claireet al., 2004). Then,Rmec is defined as

Rmec = (1/2){U}T [K̄]T[K̄]{U} [12]

where[K̄] is the rectangular part of[K] involved in the computation of the internal
forces of the internal nodes of the mesh (i.e., all nodes except those on the mesh
boundary).

2.3. Partitioning the residuals

To solve the coupled minimization of image correlation residualRcor and mechan-
ical admissibility residual (Rmec), a weighted sum of both residuals to a total potential
Rtot is defined as

Rtot = (1 − λ) Rmec + λ Rcor [13]

whereλ is a coupling parameter belonging to[0; 1]. In practice,Rmec andRcor are
normalized by their initial value whenλ is unity, namelyR0

mec andR0
cor (R0

tot =
R0

cor) i.e., for a displacement field obtained by a standard (e.g.,Q4-DIC) correlation
technique as an initialization step of the analysis.

3. Resolution

For a given value ofλ, the minimization ofRtot with respect to{U} is non-
linear because of the presence ofRcor. A Newton iterative procedure is elaborated to
circumvent this non-linear aspect of the problem. LetUi denote the displacement at
iterationi. Then assuming small incrementsdU = Ui+1 − Ui of the solution, the
minimization ofRtot reads

{∂Rtot

∂U
}i

λ = (1 − λ) [K̃]{U} + λ {dRcor

dU
}i [14]

with
[K̃] = [K̄]T [K̄]

Under the same assumption of small increment of the solution, a Taylor expansion is
used to linearizef(x + u(x)) and then,{dRcor

dU }i recast in a matrix-vector product

{dRcor

dU
}i = [M]i {dU} − {b}i [15]

with

M i
nm =

∫∫

Ω

(ψψψn · ∇f(x + [Ψ]{U}i))(ψψψm · ∇f(x + [Ψ]{U}i))dx [16]
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and

bin =

∫∫

Ω

(ψψψn · ∇f(x + [Ψ]{U}i))(g(x) − f(x + [Ψ]{U}i))dx [17]

A key point in reaching good convergence rates is the computation of∇f(x+ui). The
gradient of the imagef is computed in the frequency space using an FFT algorithm.
For consistency, FFT is also used to translate the image for the sub-pixel parts ofui.

The increment of the solution is thus obtained by solving
[

(1 − λ) [K̃] + λ [M]i
]

{dU} = λ {b}i − (1 − λ) [K̃]{U}i [18]

The solution is then updated and the process is repeated until a convergence criterion
associated with a given norm|R0

tot − Ri
tot|/|R0

tot| is reached.

One key question is the determination of theλ value to be chosen (at present this
parameter appears as arbitrary):

– One option is to impose that the displacement field be admissible. This corre-
sponds to considering the limitλ → 0+. It may be shown that this limit corresponds
to imposing the displacement field measured on the outer boundary of the domain,
and to solve for the Dirichlet elastic problem with this boundary condition to obtain
the displacement in the bulk of the domain. This approach is quite satisfactory, with
however one limitation. The outer boundary is where the determination of the dis-
placement has the least confidence level, and thus the elastic solution matching the
outer boundary is presumably not the most noise-robust determination.

– An alternative corresponds to fixing a non-zero value ofλ. In this case, it may
be shown that there exists a length scale,ξ, such that

ξ ∝ 4

√

1 − λ

λ
[19]

and the additional mechanical term in the residue is such that over wavelengths less
thanξ, internal forces are used to relax the displacement field, whereas larger wave-
lengths are preserved and quenched. Thus, considering a finite λ value may be seen
as a way to preserve unphysical internal forces after a low-pass frequency filtering.
However, if the length scaleξ is large enough, the magnitude of these internal forces
may be considerably dampened and still the largest noise error due to the boundary
may have a reduced influence on the bulk determination of the displacement.

Therefore, our tentative conclusion at this stage is to favor theλ → 0+ limit, as
corresponding to a penalization of non mechanically admissible displacement fields,
or to allow for a small but non-zeroλ value, based on a criterion of noise sensitivity.
This is the route that is followed in the sequel.
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Figure 2. Geometry of the sandwiched beam set-up (a). The brittle sample (N) is put
in between two steel beams (A and B). A three-point bend test is performed. A first
stable crack is initiated. Initial (b) and cracked (c) SiC sample face. In the middle of
the lower side, the black spot is the mark of the notch, from which a crack propagates.
The image size is1008× 1016 pixels with a conversion factorp = 1.85 µm/pixel

4. Preliminary results

The application discussed herein is based upon a silicon carbide (SiC) sample in
a sandwiched beam test (Figure 2-a). This type of experimental set-up allows one
to initiate a crack without complete failure of the central beam. However, the ar-
rest conditions are strongly dependent upon friction between the beams, their flexural
stiffness, and the notch geometry (Forquinet al., 2004). Therefore, numerical tools
require a number of measurements to feed the modeling beforethe latter may provide
a meaningful determination of stress intensity factors.

The region of interest covers part of the image whose size is1008 × 1016 pixels
with an 8-bit digitization (see Figure 3). Preliminary results are obtained with a Q4-
algorithm. The mesh with 16-pixel elements and the crack geometry are shown in
Figure 2-b.

The change of the residuals is presented in Figure 4. It is shown that the equi-
librium gap decreases very rapidly from the initial pure correlation solution withλ
equal to1. When the coupling parameter tends to0, the mechanical contribution to
the energy also vanishes as its weight with respect to the correlation residual becomes
larger. Even thoughRmec decreases very rapidly whenλ is less than1, Rcor slowly
increases (the maximum value ofRcor is of the same order of magnitude as its initial
value) from the residual obtained for a pure correlation problem (λ = 1). As a conse-
quence,Rcor remains the dominant term inRtot even if its contribution is weighted by
λ. Rtot is then nearly linear inλ and the minimization through the coupling parameter
leads to the limit solution withλ valued to0.
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Figure 3. Horizontal displacement map superimposed to the referenceimage (left)
when a Q4-algorithm is used. 16-pixel mesh and initial guessof the crack geometry
(right). The conversion factor isp = 1.85 µm/pixel
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Figure 4. Change of the normalized residuals level as functions of thecoupling pa-
rameterλ

A stabilization of the solution is observed in Figure 5 wherethe difference between the
XI-DIC and X-DIC solutions in terms of mean displacement is plotted as a function of
the coupling parameter. As mentioned earlier, it is proposed to perform an uncertainty
analysis in order to select the appropriate value of the coupling parameterλ. The
reference image is artificially deformed by an asymptotic displacement field that is in
the admissible space of searched solutions, namely, the analytical crack solutions in
mode I and II are used to create a fake deformed image. The displacement is such that
the normal and tangential discontinuities are0.5 pixel at the bottom of the reference
image. This constitutes ana priori test to evaluate the performance in the estimation
of the displacement field as compared to known displacementsfor each value ofλ.

The root mean square (RMS) of the displacement error is plotted in Figure 6. A
minimum value,8.5 × 10−3 pixel, of the uncertainty in the displacement jump is
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Figure 5. Change of the displacement gap between the XI-DIC and the X-DIC solu-
tions as functions of the coupling parameterλ
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Figure 6. Uncertainty measurement for the displacement jump on an artificially de-
formed image. Left, uncertainty for 16-pixel elements as a function of coupling pa-
rameter; right, uncertainty as a function of element size

obtained forλ = 0.25 although the error does not increase much for smaller values,
reaching8.9 × 10−3 pixel for λ = 10−4 whereas it was1.35 × 10−2 pixel when
λ = 1. The value ofλ is non-zero but still quite small as compared to 1, as proposed
above. For this optimal choice ofλ, the measurement uncertainty on the displacement
map under conditions similar to the experimental analysis (same image texture, same
displacement range, same assumed material behavior) is2.35 × 10−2 pixel. Figure 6
also depicts the uncertainty as a function of the element size. One may notice that
increasing the element size first has a positive effect (the uncertainty decreases) but
then the interpolation error becomes predominant and the uncertainty increases. The
gain obtained with the proposed penalization mainly concerns the displacement jump
along the crack front. For the latter, enforcing a zero-traction condition enables for a
significant decrease of the displacement uncertainty.
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Figure 7. Vertical (left) and horizontal (right) displacement map for the SiC specimen
for 16-pixel elements using: X-DIC (a), XI-DIC (b). The conversion factor isp =
1.85 µm/pixel

Let us now report on the analysis of the pair of experimental images, using first
a simple X-DIC algorithm, and second the XI-DIC method with the optimal value of
λ = 0.25 as above determined. The displacement maps are presented inFigure 7.
The fields remain similar but the integrated solution shows anoiseless aspect. This
corresponds to the expected effect, namely, the short wavelength displacement noise
is (efficiently) filtered out by the mechanical penalizationterm.

However, the two solutions reveal indistinguishable errormaps (see Figure 8).
The mean values are respectively3.3 and3.5 gray levels for the X-DIC and XI-DIC
solutions. The incorporation of the admissibility condition restricts considerably the
space of displacement fields, and thus it leads to an increasein the optical residual.
Yet this increase is very small, and well within the expectednoise level in the image
acquisition.

Furthermore, the norm of the difference between the two solutions normalized by
the norm of the X-DIC solution is shown in Figure 9. The mean value of the gap
is 0.2 % and its maximum4.6 %. This corresponds to the part of the displacement
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field that was filtered out by the elastic penalization. It is essentially a short range
correlated field, likely to be pure noise.
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Figure 8. Error mapη for the SiC specimen for 16-pixels element using X-DIC (a) or
XI-DIC (b) algorithms. The analyzed pictures have an 8-bit digitization
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As mentioned in the introduction of the paper, enriched degrees of freedom as-
sociated with jump functions are more sensitive to noise than classical finite element
degrees of freedom. Figure 10 shows that the mechanical filtering better constrains the
enriched degrees of freedom and the crack opening profile is noiseless except within
the boundary element wherein the minimization of the internal forces is not enforced.
For X-DIC, the practical displacement uncertainty is less than 0.1 pixel,i.e., less than
twice the a priori estimate (Figure 6).

5. Crack tip positioning

One key information to be extracted from the displacement analysis of cracked
samples is the location of the crack tip. This is difficult since the displacement am-
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plitude in the vicinity of the crack tip are less than the resolution of the measurement
technique. We propose a method based on the exploitation of displacement field and
of the analytical elastic crack solutions.
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Figure 10. Comparison of the norm of the displacement jump for the X-DICand the
XI-DIC solutions

5.1. First super-singular component

From a theoretical view point, the displacement field solution of a plane elas-
ticity problem with a semi-infinite crack is conveniently written by using Kolossov-
Muskhelishvili potentials (Williams, 1957; Irwin, 1957).The displacement fieldu is
written in the complex planez = x+ iy, asu = ux + iuy. The complete set of linear
elastic displacement field satisfying a condition of zero traction along the crack path
is written as two integer-labeled families of solutions

u =
∑

j,n

aj
nΦj

n [20]

with j indicating the mode (I or II). We only give here the discontinuous (oddn)
solutions. For mode I, the functionsΦ read

ΦI
n = (−1)(n+1)/2rn/2

(

κeinθ/2 − n

2
ei(4−n)θ/2 + (

n

2
− 1)e−inθ/2

)

[21]

and for mode II

ΦII
n = i(−1)(n−1)/2rn/2

(

κeinθ/2 +
n

2
ei(4−n)θ/2 − (

n

2
− 1)e−inθ/2

)

[22]

where the constantκ is equal to(3 − ν)/(1 + ν) in plane stress or3 − 4ν in plane
strain,ν being the Poisson’s ratio. The components corresponding ton = 1 are the
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classical fields giving access to the stress intensity factors. In practice the amplitudes
corresponding to this family of solutions are evaluated by using a least-squares mini-
mization of the gap between the DIC displacement and a displacement field including
functions forn = −3 ton = 3 for modeI and modeII. Using the above expressions,
the following property is derived

∂Φj
n

∂x
= −n

2
Φj

n−2 [23]

The derivative with respect to the crack tip positionxc being the opposite of the above
equation, it shows that the mis-positioning of the crack tipalong its axis will give rise
to a supersingular contributionΦj

−1, away from the immediate vicinity of the crack
tip. Therefore, in order to estimate the crack tip position,one may decompose the
displacement field using then = 1 andn = −1 order functions, and rewrite

aj
1Φ

j
1 + aj

−1Φ
j
−1 = aj

1

(

Φj
1 + 2

aj
−1

aj
1

∂Φj
1

∂xc

)

[24]

This result is interpreted as a Taylor expansion of the usualcrack tip field whose tip
would be shifted from the actual one by an offset distancex1 such that

x1 = 2
a1
−1

a1
1

[25]

Calculatingx1 from aj
−1 andaj

1, one obtains an estimate of the offset between the
assumed crack tip and the actual one. Figure 11a showsx1 as a function of the shift
of the crack tip. It is observed that a unique position allowsone to cancel the first
supersingular amplitude, which is defined to be the most likely crack tip position (with
respect to its influence on the large distance displacement field). Moreover, Figure 11
shows that the derivative of the offset with respect to the shift has a slope of−1 in the
vicinity of the point where the offset vanishes, as expectedfrom the above argument.
Thus, from this analysis the best evaluation of the crack tipposition is located 43
pixels away from the initially guessed position.

5.2. Correlation residual

As an independent check of this result, the correlation residualRcor is plotted in
Figure 11b as a function of the shift of the crack tip in the direction tangent to the
crack faces. One observes a minimum ofRcor for the same shift of about43 pixels
from thea priori assumed position.

5.3. Crack opening displacement

Furthermore, Figure 11c also shows the change of the squareddisplacement jump
that is expected to be linear in elasticity. Using this curve, one easily extrapolates
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the far-field results that remain linear to obtain the position of the crack tip where the
displacement discontinuity vanishes. A shift of43 pixels again leads to a very good
estimate of the actual position of the crack tip.

Last, Figure 12 allows one to compare the displacement jump obtained by X-DIC
and XI-DIC with the initial position of the crack tip and withthe crack tip shifted
by 43 pixels. Even though the effect of the modification of the crack tip position
is significant in the neighborhood of the crack tip, the results remains the same at a
distance of about150 pixels from the shifted tip for XI-DIC.

6. Stress intensity factors

6.1. Interaction integral

After measuring the displacement field, stress intensity factors are estimated
by various techniques, namely, crack opening displacement(Forquinet al., 2004),
least squares minimization of the gap between the solution and the theoretical
solution (McNeill et al., 1987; Anbanto-Buenoet al., 2002) or interaction inte-
gral (Réthoréet al., 2005). Because of the very erratic crack profile obtained with
an X-DIC technique (Figure 10), an estimation of stress intensity factors using the
crack opening displacement is not appealing. As a domain independent integral, the
interaction integralIint may be more convenient

Iint = −
∫

D

[

σa
mlum,lδkj − (σa

ijui,k + σiju
a
i,k)
]

qk,j dD [26]

whereu,σ are the actual displacement and stress fields,ua, σa the auxiliary displace-
ment and stress fields,q the virtual crack extension field, andD the domain over
which Iint is computed. The auxiliary field is chosen to be the analytical solution
of an infinite elastic body with a semi-infinite crack in modeI or modeII (i.e., the
above introducedΦj

1 fields). Under these assumptions, the stress intensity factors are
obtained through the two-field Irwin relationship

Iint =
2

E
(KIK

a
I +KIIK

a
II) [27]

If Ka
I = 1 MPa

√
m andKa

II = 0, respectivelyKa
I = 0 andKa

II = 1 MPa
√

m, then
KI , respectivelyKII , are directly evaluated fromIint. The virtual crack extension
field has to satisfy the following conditions

q · nΓ = 0 onΓ
q = tΓ at the crack tip
q = 0 on∂D

[28]

whereΓ is the crack surface andnΓ, tΓ its unit normal and tangent vectors. In the
present paper, the norm ofq is assigned to linear variation between∂D and the crack
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Figure 11. Three methods to determine the crack tip position: (a) estimated offset
using the first supersingular term obtained by a least squares fit; (b) change of the
normalized correlation residual; (c) square of the norm of the displacement jump
obtained by XI-DIC for initial crack tip and the43-pixel shifted crack tip
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tip. If two discretization schemes are adopted foru andq, then the interaction integral,
and thus the stress intensity factors are recast in a matrix-vector format

KI,II = {Q}T[SI,II ]{U} [29]

where{Q} contains the nodal values ofq evaluated for a standard finite element
interpolation over the same mesh as foru. KI,II et SI,II correspond to modeI or
modeII by setting the appropriate auxiliary field in

SI,II = −E
2

∫

Ω

∇ψT
q [σσσa : ∇ψu I − (σσσa∇ψu + (D∇sψu)∇ua)] dΩ [30]
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Figure 12.Comparison of the norm of the displacement jump for the X-DICand XI-
DIC solutions with the initial crack tip and the shifted crack tip

6.2. Noise sensitivity

Let us now assume that the digital images are corrupted by noise during the ac-
quisition process of the camera. This noise is modeled to be white, namely, the noise
that affects each pixel of the sensor is uncorrelated with that of neighboring pixels.
The imagef may be conveniently defined as a noiseless reference, so thatthe tan-
gent matrix of the correlation residual is not affected by noise. On the other hand, the
residual itself, invokingg − f , contains a noise whose varianceη2

p is twice the vari-
ance of the actual acquisition noise. From the linear systemsolved at the last iteration
(Equation [18]) of the Newton algorithm, ones obtains the perturbationηuηuηu induced by
this noise on the displacement estimation. Sincef is considered to be noiseless, only
{b}i is affected by the noise and its variance is recast under the form [M]i. Then, the
variance of the displacement perturbation reads

〈ηuηuηu
2〉 = λ2 [(Ai)−1Mi(Ai)−1]η2

p [31]



302 EJCM – 18/2009. Pictures and finite elements

where
[Ai] =

[

(1 − λ) [K̃] + λ [M]i
]

This is now used to evaluate the perturbation of the estimation of the stress intensity
factors. By using Equation [29], the corresponding variance of the stress intensity
factors is

〈δK2
I,II〉 = λQT [SI,II(A

i)−1Mi(Ai)−1ST
I,II ]η

2
p [32]

This last equation defines the perturbation of the stress intensity factors estimation
directly expressed as a function of the image noise, and the correlation algorithm.
This formula will be used in the sequel to estimate error barson the determination of
the stress intensity factors.

6.3. Results
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Figure 13.Uncertainty (a) and modeI stress intensity factor (b) obtained from the
X-DIC and XI-DIC results

Figure 13a shows the standard deviation ofKI as a function of the integration
domain size. First, using pure correlation measurements, one may better choose a do-
main as large as possible. As the domain becomes larger, the gradient of the virtual
crack extension that is involved in the interaction integral is decreasing as well as the
sensitivity of the estimation. Second, the XI-DIC procedure gives a nearly constant
uncertainty if a strong coupling parameter is used (λ = 0.0001 for which the min-
imum of the mechanical residual is reached, see Figure 4). When the domain size
reaches the size of the region of interest, the estimation ofthe displacement within the
outer layer of elements, which is as sensitive as for X-DIC, increases the sensitivity of
the estimation ofKI . However, uncertainties of about6× 10−3 MPa

√
m / gray level

are obtained for the integrated scheme whereas the lower uncertainty obtained with
X-DIC was10 times higher. Withλ = 0.25 the change of the uncertainty in theKI

estimation reveals the same trends as in the pure X-DIC case.However, the values are
lower by a factor of about4. From these results, one may think that with the choice of
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λ = 0.25, which is optimal for the displacement jump uncertainty, the displacement
field is still affected by noise. As shown by Figure 13a, the influence of this remaining
noise is reduced by adopting larger integration domains. For λ = 0.0001 the uncer-
tainty appears to be independent of the size of the integration domain because of the
strong reduction of the noise level affecting the displacement field obtained with such
a strong penalization of the momentum and constitutive equations. As an alternative
for reducing the noise influence on the stress intensity factors estimation, the inter-
ested reader may refer to (Réthoréet al., 2006) for an optimization of the virtual crack
extension field to lower the sensitivity to measurement uncertainties.
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Figure 14. Location sensitivity: for the X-DIC displacement field (a) the uncertainty
level due to image noise is higher than the influence of a mismatch of the crack tip
position,KI as a function of the crack tip shift for XI-DIC (b)

The results forKI are presented in Figure 13b. Even though the interaction inte-
gral is theoretically domain-independent, the modeI stress intensity factor from the
analysis of a pure correlation result remains oscillating.As the integrated approach re-
stores the independence conditions of the interaction integral (balance of momentum,
traction free crack faces),KI computed from the XI-DIC displacement field reveals
only tiny variations with respect to domain size. Adopting alower coupling parameter
meaning a stronger mechanical filtering, the domain independence is better achieved
with lower values ofλ. The error bars depicted in Figure 13 correspond to an image
noise of2 gray levels. With a domain size of580 µm, a value of3.06±0.18 MPa

√
m is

obtained for X-DIC whereas the XI-DIC results are3.03 ±0.05 MPa
√

m for λ = 0.25
and3.02 ± 0.01 MPa

√
m for λ = 0.0001. Those three results are consistent with re-

spect to the uncertainty ranges obtained for each case. Let us also note that the XI-DIC
results with the initial crack tip position are in good agreement with the results of the
integrated approach proposed by Rouxet al. (2006). The much lower uncertainty
level obtained with the XI-DIC approach are to be put into perspective by a higher
sensitivity to the crack tip location.
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6.4. Location sensitivity

From the previous section, the noise sensitivity of the identification procedure of
the stress intensity factors is obtained. Another important feature is the crack tip
location and one may wonder about the sensitivity of the stress intensity factors esti-
mation to a bias on the location of the crack tip. For this purpose, Figure 14 shows
the change ofKI when the crack tip is translated from its initial position. Alin-
ear regression enables us to estimate the sensitivity of theKI measurement chain to
0.012 MPa

√
m / pixel for the XI-DIC algorithm whereas the uncertainty due to the

image noise remains higher than the location sensitivity for the X-DIC technique.

Yet, the three techniques used herein to determine the position of the crack tip give
very consistent results that increase the confidence in a43-pixel shift for the present
case. Furthermore, using the super-singular component of the displacement field to
locate the position of the crack tip, the following system issolved

LV = B [33]

whereV contains the amplitudesaj
n of the displacement field corresponding to the

Kolossov-Muskhelishvili integer-labeled families of solutions andL, B have the fol-
lowing expressions

Lij =

∫ ∫

ΦiΦjdS Bj =

∫ ∫

ΦjUdS [34]

For a homogeneous perturbationηu of the displacement field a zero-mean perturbation
δV of the fitted amplitudes is obtained. The variance〈δV 2〉 of this perturbation reads

〈δV 2〉 = L−1LL−1〈η2
u〉 = L−1〈η2

u〉 [35]

Then the variance of the offset distance of the crack tip is evaluated in the vicinity of
a1
−1 ≈ 0 as

〈δx2
1〉 =

(

2

a1
1

)2

L−1
oo 〈η2

u〉 [36]

whereo is the index corresponding toΦ1
−1. Accounting for a value〈η2

u〉 of about6 ×
10−4pixel2, the uncertainty in the crack tip offset is±0.5 pixel. Because a description
of the crack geometry at the pixel-scale is adopted, the positioning error is set to±1
pixel. Consequently, the crack tip location is accurate andthe uncertainty forKI due
to the positioning uncertainty is as low as±0.012 MPa

√
m. Adding the error from

the interaction integral, the global uncertainty forKI using the XI-DIC strategy is
±0.022 MPa

√
m for λ = 0.0001. However, this error remains at least5 times less

than the uncertainty of the X-DIC identification procedure.All these results show that
the valueλ = 0.0001 is a good estimate and can be used for the XI-DIC procedure.
Consequently, the computation time time required for XI-DIC compared with X-DIC
is comparable, the main difference is given by the assembly of a stiffness matrix whose
elementary terms are easily known for Q4 elements.
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7. Conclusion

Considering static admissibility conditions in the determination of the displace-
ment field by digital image correlation, a mechanical filter is obtained. Using the sum
of two objective functions, one based on the residuals associated with the correlation
of reference and deformed images and a second associated with the internal forces (in
a finite element framework), the correlation algorithm is penalized by a minimization
of the equilibrium gap condition. The resulting fields are closer to the space of ad-
missible elastic solutions of the problem (and statically admissible in one numerically
accessible limit). The proposed approach enables for a morerobust analysis than us-
ing a pure correlation algorithm. In the application discussed herein of crack detection
in a ceramic specimen, the displacement field is sub-pixel and the displacement jump
over a15 pixel radius circle remains in the uncertainty range (i.e.,about0.025 pixel).
The detection of the actual position of the crack tip is proposed based on a criterion
exploiting supersingular crack fields. The final estimate ofthe crack tip position is
estimated to be accurate to ca. 1 pixel (or less than 2.0µm).

After an appropriate position is assigned to the crack tip, stress intensity factors are
estimated using an interaction integral. The domain independence is not obtained from
pure correlation results. Conversely, the integrated approach restores the conditions
to achieve the stability of the interaction integral. However, the results from the two
approaches are in good agreement to the uncertainty of the X-DIC estimation of the
displacement field. Using such an integrated approach, the uncertainty of the stress
intensity factors estimate reaches the very low value of about 1%.

In the present paper, the coupling parameter is considered as a constant over the
entire region of interest. For many reasons, for example if the process zone is exten-
sively developed around the crack tip and the assumption of alinear elastic material
is not valid over this region, the coupling parameter may be considered as a function
of space. A pure correlation problem may subsequently be solved over the region
wherein the assumed material behavior failed at modeling the actual one. The use of
a spatially variable coupling parameter and the use of such an integrated digital image
correlation technique for the identification of non-linearmaterial behavior will be the
purpose of further studies.
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