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ABSTRACT. The comparison of finite elements (FE) and experimental data fields have become ever 
more prevalent in numerical simulations. Since FE and experimental data fields rarely match, 
the interpolation of one field into the other is a fundamental step of the procedure. When one of 
the fields comes from FE, using the existing FE mesh and shape functions is a natural choice to 
determine mesh degrees of freedom at data point coordinates. This makes no assumptions 
beyond those already made in the FE model. In this sense, interpolation using element shape 
functions is exact. However, crude implementations of this technique generally display a 
quadratic computation complexity with respect to mesh size and number of data points, which is 
impractical when large data fields must be compared repeatedly. This document aims at 
assembling existing numerical procedures to improve the interpolation efficiency. With a 
combination of cross-products, bounding-boxes and indexing methods, the resulting algorithm 
shows linear computation cost, providing significant improvement in efficiency. 
RÉSUMÉ. La comparaison entre des champs simulés par éléments finis (EF) et des données 
obtenues par mesures de champs devient une étape de plus en plus courante des simulations 
numériques. Quand un des champs vient d’un modèle EF, l’utilisation du maillage et des 
fonctions de forme EF pour déterminer des degrés de liberté aux coordonnées expérimentales est 
une approche naturelle. Elle n’introduit aucune autres hypothèses que celles de la simulation. En 
ce sens, nous qualifions cette interpolation d’exacte. Cependant, une implémentation directe de 
l’interpolation conduit à une complexité algorithmique qui varie de manière quadratique avec le 
nombre d’éléments et de points de mesure, ce qui n’est pas acceptable lorsque de grands champs 
de données doivent être comparés plusieurs fois. Cet article décrit comment, à travers une 
présélection des éléments par un maillage virtuel et l’utilisation de boîtes englobantes, la 
complexité algorithmique de l’interpolation EF peut rester linéaire. 
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1. Introduction

The increasing use of finite elements has given rise to a series of applications re-
quiring the comparison of data fields with finite elements results. These applications
include mesh-interaction (Beckert, 2000; Van Loon et al., 2006), geological topogra-
phy (Fukushima et al., 2005), visualization (Nikishkov, 2003; Rumpf, 1999), contact
analysis (Faucher et al., 2003), calibration of boundary conditions (Padmanabhan et
al., 2006) and material identification (Bledzki et al., 1999; Bruno et al., 2002; Cugnoni
et al., 2004; Genovese et al., 2006; Kajberg et al., 2004; Meuwissen et al., 1998; Moli-
mard et al., 2005; Cardenas-Garcia et al., 2006). Reviews of material identification
techniques can be found in (Grediac, 2004; Amiot et al., 2007; Avril et al., 2007).
In general, a finite elements solver provides information only at nodal or integration
points, which may not always coincide available experimental data points. Hence,
mapping one field of points onto the other becomes necessary.

For identification problems, the choice of mapping technique is fundamental, of-
ten the first of a long series of assumptions and decisions. Popular mapping methods
include: generic approximation 1 and interpolation algorithms (Cressie, 1993; Math-
works, 2004; Kajberg et al., 2004), node placement (Bruno et al., 2002; Meuwissen
et al., 1998), mesh projection (Pagnacco et al., 2007) and shape function interpo-
lation. Amongst these, interpolation with finite element shape functions is selected
as the most natural approach. It simplifies the identification decision chain, since it
makes no assumptions beyond those already made in the FE model and requires no
adjustment of interpolation intrinsic parameters (i.e. kernel width, polynomial de-
grees, etc). Interpolating nodal degrees of freedom at experimental data points leaves
experimental data completely unaltered. Hence, no implicit filtering is introduced by
interpolating experimental data. Since the FE mesh is also unaltered, the approach
completely decouples the accuracy of the experiment and numerical model. However,
in identification problems, each time a parameter changes, the FE model has to be
compared to a constant data field, requiring the repeated mapping of 103 to 104 data
points. Hence, it is very important that this mapping be carried out as efficiently as
possible.

The mapping of each data point entails two steps: first, the element containing
each data point is identified (this is the most computationally intensive step). Next,
the coordinates of each data point are transformed into the finite element’s reference
coordinate system (hereafter this procedure is referred to as inverse mapping). The
reference coordinates are used to compute the element’s shape-function coefficients
which completes the interpolation. Given the complexity of these operations, it is easy
for implementations of the algorithm to be very time consuming. Hence, a variety of
methods are discussed to improve the interpolation speed. Most of these methods can
be found in a variety of contexts such as image processing (Bourke, 1989), mesh gen-
eration (Rassineux, 1994) and contact analysis (Faucher et al., 2003). To the authors

1. Unlike interpolation, approximation points do not necessarily match experimental or FE
data points.
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knowledge, these methods have not been presented together in the context of material
identification, which is the main objective of this article. The paper begins by de-
scribing some available mapping algorithms, justifying the choice of shape function
interpolation. It continues by discussing possible combinations of available interpo-
lation methods. A theoretical estimate of the computation cost, based on operations
counting, is made for each combination. These are later bench-marked in a C++ test
program, which is applied to plate with a hole problem.

Summary of notation

e(p) Element containing p
ε(p) Neighborhood around point p
nji ith node of set j
nmesh Set of nodes in a finite elements mesh
nε(p) Set of nodes in a neighborhood of p
p A data point
p Set of data points
~v A vector
vi The ith scalar component of vector ~v
~x(p) Coordinates of point p in the global coordinate system
~ξ(p) Coordinates of point p in an element’s reference coordinate system

2. Overview of mapping techniques for comparing data fields

This section is an overview of approaches for comparing field measurements and
FE model results. Experimental fields are corrupted by deterministic and random er-
rors, but this article, which is primarily concerned with the numerical cost of field
comparison, does not discuss these errors, although it is acknowledged they are of
great importance for identification accuracy. Hence, throughout this article, experi-
mental fields are assumed to be in the form of discrete data points (see Figure 1(a)).
When interpolating nodal degrees of freedom, the interpolation accuracy is measured
with respects to FE shape functions (see Figure 1(b)). An interpolated value un(p) is

un(p) = um(p) + δun(p), [1]

where um(p) is the mesh displacement and δun(p) the interpolation error. In general
this interpolation error is less important than the measurement uncertainty.

2.1. Node placement and interpolation of experimental data

In identification, coordinate mismatch problem is often avoided by forcing FE
nodes and experimental points to coincide (Bruno et al., 2002; Meuwissen et
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al., 1998), a practice hereafter referred to as node placement. Node placement is
achieved either by selecting only points with matching node and experimental coor-
dinates, or by moving FE nodes to match experimental data points, or by acquiring
experimental data at node coordinates. The three approaches are all valid solutions to
the mapping problem but carry with them a series of technical challenges. In the first
method, the selection of matching points cannot in general exploit all available exper-
imental data, which makes the comparison sensitive to small positioning errors. In the
second method, since the accuracy of FE models depend on node position, mesh dis-
tortion may introduce an undesired coupling between the position of data points and
the accuracy of model. In the third method, node placement by acquisition at node co-
ordinates requires either an non-evolving FE mesh or a new experimental acquisition
each time the FE mesh evolves.

(a) Measurement uncertainty (b) Interpolation uncertainty

Figure 1. (a) Experimental data always contains spatial and measurement uncertain-
ties, both deterministic and random. This article assumes a point-wise recording of
the measure. (b) The interpolation error is defined with respects to the FE shape
functions

Alternatively, the experimental measures may be interpolated at nodal coordinates
without conducting new experimental acquisitions. Exploiting knowledge of the mea-
surement system, it may be possible to preserve the field characteristics and change the
post-processing of a measured field to obtain a coinciding discrete field. For instance,
in digital image correlation, displacements are measured by assuming a deformation
law (e.g. linear, quadratic) over a set of neighboring pixels (correlation windows)
(Wang et al., 2002). Hence, experimental data may be interpolated at node posi-
tions with the same deformation law for each correlation window without introducing
an implicit filter. However, this can be very complex particularly when information
about the process is not fully available. Otherwise, careless interpolation experimen-
tal data introduce fundamental assumptions on the shape of the field that may degrade
information through implicit filtering.
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2.2. General interpolation of numerical results

The griddata and interp2 functions in the Matlabr software package (Mathworks,
2004) provides four techniques to obtain data u(p) at arbitrary points p from a cloud of
data u(n): triangle-based and quadrilateral-based linear, cubic, nearest neighbor and
biharmonic spline (B-spline) interpolation. All methods in griddata (except B-spline
(Sandwell, 1987)) generate interpolation meshes via Delaunay triangulation (Barber
et al., 1996). Meshes for interp2 are user-defined and must be expressed as a matrix
of sorted node coordinates. These techniques are summarized by the equation

u(p) =
no. nodes in ε(p)∑

i=1

Wi

(
~x(p), ~x(nε(p))

)
u(nε(p)i ), [2]

which define the degrees of freedom at point p, u(p), as weighted sum of neighbor-
ing data points u(nε(p)i ). The nearest-node and linear interpolation algorithms are the
fastest, but have discontinuous zeroth and first derivatives, respectively. The other two
are continuous up to the second derivatives, but are significantly slower. By default,
griddata does not account for fields with an internal discontinuity, such as a plate with
a hole. The algorithm fills the hole with elements, thus introducing boundary effects
on the interpolated data. Kriging (Cressie, 1993) is another interpolation approach
popular in geo-statistics. It has the advantage of providing an estimate of the interpo-
lation variance. However, it is computationally expensive (often requiring the solution
of large linear systems). Another drawback of general interpolation is that it affects
the data by introducing non-physical parameters to the comparison (i.e. kernel width,
polynomial degrees, variogram length and scales in kriging).

2.3. Methods based on finite elements shape functions

With FE shape functions, Nj , the value u(p) is estimated from the node values
u(ne(p)) of the element containing the data point p, e(p) (hereafter referred to as the
owner element),

u(p) =
no. nodes in e(p)∑

j=1

Nj

(
~ξ(p)

)
u(ne(p)j ). [3]

Generally, shape functions are written in the reference system of the element con-
taining point p. Calculating the local coordinates of a point is not a trivial operation,
requiring two steps. First, finding the owner element. Second, calculating the local
coordinates of the point (an operation referred to as inverse mapping), which normally
involves solving a multi-dimensional non-linear system of equations. The comparison
of the FE model and data fields is performed either at the coordinates of the FE nodes
or at the coordinates of data points. Continuity is guaranteed for the zeroth derivative,
but is usually discontinuous for higher-order derivatives.
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2.3.1. Projection of data points onto the FE response space

E. Pagnacco and D. Lemosse (Pagnacco et al., 2007) describe a technique where
the data field is approximated at the nodal coordinates of the finite element mesh.
This method searches for node values u(nmesh) that best fit available data u′(p). The
approximation is defined as the projection of the data onto the finite element model
space. The values of u(nmesh) are determined by solving a least-squares problem,

min
u(nmesh)

no. points in p∑
i=1

u′(pi)− no. nodes in e(pi)∑
j=1

Nj

(
~ξ(pi)

)
u(ne(pi)

j )

2

. [4]

This procedure requires a number of data points greater than the number of finite
elements nodes, and that the data field encompass a representative part of the finite
element mesh. The computational cost involves determining the reference coordinates
of each data point, and solving the least-squares problem. For applications where the
comparison is performed multiple times over a non-changing finite element mesh,
the interpolation of the data points has to be performed only once. This projection
method may eliminate (filter) high-frequency information in the measurement (e.g.
experimental noise).

2.3.2. FE interpolation at data points

Instead of interpolating measured data points at FE node coordinates, this article
selects the interpolation of node values at the coordinates of the experimental points,
leaving the experimental data unaltered. The strategy consists of simply evaluating
Equation [3] for each data point, p ∈ p. A special effort is made to improve the speed
of determining the owner element. This approach allows for the computation of de-
grees of freedom at arbitrary points, and has no restriction in the distribution or the
number of data points. The FE solution is completely independent of the position and
size of the experimental data field, and since the same mesh is used for solving the
model and interpolating the data, the resulting interpolated field is an exact represen-
tation of the FE solution. Also, similar to the previous technique, the interpolation
coefficients can be computed only once for a non-changing mesh, thus saving time
on applications that repeat the interpolation several times. Contrary to the previous
technique, this approach does not perform implicit filtering.

3. Determination of the owner element

Interpolation using shape functions is accomplished in three steps: determining
the element, which contains the data point (owner element), transforming the data
point coordinates into the reference coordinate system (inverse mapping), and finally
evaluating the finite elements shape functions to determine the degrees of freedom at
that point (Equation [3]). The determination of the owner element is not required to
be an independent step in the algorithm. However, this would entail inverse mapping
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for every element in the mesh, and checking if the point did fall inside the element
(Section 4). Since inverse mapping may be complex and numerically expensive, such
an approach would be inefficient. Moreover, inverse mapping algorithms are not guar-
anteed to have a solution for points outside the element’s domain, which jeopardizes
the reliability of a two-step interpolation algorithm. Instead, a combination of simple
tests is used to predetermine the owner element before inverse mapping.

3.1. Element tests

This section details both the cross-product and bounding-box tests. The term “el-
ement test” refers to any technique to determine whether a point lies inside or outside
of an element.

3.1.1. Cross-product test

The cross-product test (Figure 2(a)) consists in a series of cross and dot products,
which determines if a data point lies inside the intersection of the “vertex cones” of
an element. This is similar to techniques described by (Bourke, 1989). If point p is
inside the element, then for every node, n ∈ ne(p), the vector ~np will lie inside the
cone created by the two adjacent node vectors, ~ni and ~nj. This condition is verified
using the vectors ~s1 and ~s2,

~s1 = ~ni× ~np and ~s2 = ~np× ~nj. [5]

These vectors will have same direction for internal points and opposite directions for
external points. Hence, an internal point must satisfy the condition

~s1 · ~s2 ≥ 0 [6]

for all nodes in the element. For external points, there is at least one vertex such that

~s1 · ~s2 < 0. [7]

The cross-product test requires that a spatially ordered list of nodes be available for
each element (this is standard in finite element mesh formats). This test is exact for
elements with linear edges, and approximate otherwise.

3.1.2. Bounding-box test

The bounding-box test creates an encompassing box around the finite element
(Rassineux, 1994) and compares the coordinates of the data point with the bounding-
box’s two opposite corner points, pmin and pmax (see Figure 2(b)). The coordinates
of any point inside the bounding-box must satisfy the inequality

xi(pmin) ≤ xi(pinternal) ≤ xi(pmax) [8]
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for all dimensions i. At least one of the inequalities will be false for an external
point. The complexity of the test includes two parts: computing the boundaries of
the bounding-box (later stored in memory), and testing if a data point lies inside the
bounding-box. Since the bounding-box only approximates the geometry of a finite
element, it is possible for a point to be inside the bounding-box, but outside the fi-
nite element (pinternal in Figure 2(b)). Thus, in order to identify the owner element,
it is necessary for the bounding-box to be used together with an exact test such as
the cross-product. Section 3.3, discusses the advantages of scanning a list of finite
elements using the bounding-box and cross-product tests together instead of a search
algorithm using only cross-products. The algorithm first eliminates impossible owner
elements with the computationally inexpensive bounding-box before checking actual
owner elements with the more expensive cross-product test.

(a) Cross-Product Test (b) Bounding-Box Test

Figure 2. (a) The cross-product test uses cross and dot products to check if a point lies
inside all vertex cones of an element. (b) The bounding-box test uses a rectangular
approximation of the element to quickly eliminate impossible owner elements (case of
external points)

3.2. Searching the element list

The default implementation for finding an owner element is to sequentially scan
through a list of elements. Figure 3(a) shows two data points in a finite element mesh
and their corresponding places in a sequential storage container. If a point lies near
the end of the list, then element ownership tests must be executed for a large portion
of the list. Guessing a viable initial point in the list requires knowledge of how the
mesh was created, which is not always possible. The virtual mesh (Rassineux, 1994)
is intended to limit the number of elements scanned. A virtual mesh must have two
features: One, a computationally efficient way of determining a sub-region of the
mesh containing data point (referred to as a virtual element). This is typically obtained
through a regular paving of space. Two, its virtual elements, v, must store a list ev of
finite elements e that possibly share a segment of area,

ev =
{
e ∈ E | e∩̂v 6= ∅

}
, [9]



Efficient FE interpolation 315

where ∩̂ is the operator “possibly intersects”. This operator is implemented here
by computing the virtual element index range for the two opposite diagonal points,
γi(pmin) and γi(pmax) (see Figure 2(b) and Equation [10]). The list ev is typically
much smaller than the complete list of finite elements E.

Figure 3(b) illustrates the simplest virtual mesh, made of regular rectangles in
2D. This virtual mesh is used for the experiments in this article. Computationally,
retrieving the correct virtual element is very inexpensive. The ith dimension index γi
of the virtual element containing the data point p is resolved using only 3 operations,

γi = floor

(
xi(p)− xi

dxi

)
, [10]

where xi is the origin of the virtual mesh grid and dxi is the grid-step of the virtual
mesh in the ith direction. Once the virtual element has been retrieved, its reduced list
of finite elements, ev , is scanned using element tests.

(a) No Virtual Mesh (b) With Virtual Mesh

Figure 3. Examples of a finite element mesh and element containers. (a) With a se-
quential element list it is possible that interpolation points, although close in space,
are far away in the container. (b) Virtual elements contain small lists of finite elements
in their neighborhoods

3.3. Comparison of owner element search algorithms

This section compares three algorithms used to find the owner element of a data
point. Each algorithm is defined by a combination of element tests and an element
retrieval technique (either sequential or based on a virtual mesh).

– Search technique 1 (ST1) sequentially scans the full list of finite elements using
the cross-product test. The procedure is restarted at the beginning of the list for each
data point.

– Search technique 2 (ST2) sequentially searches the full finite elements list us-
ing a combination of the cross-product and bounding-box tests. This algorithm is
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essentially the same as the previous technique, except that the cross-product test is
performed only if the data point is inside the finite element’s bounding box. If the el-
ement fails the bounding box test, the algorithm moves to the next element in the list.
Again, the idea is to eliminate impossible owner elements via the simpler bounding-
box test.

– Search technique 3 (ST3) uses the cross-product and bounding-box tests to
search small lists of finite elements obtained with the virtual mesh. For each data
point, the algorithm retrieves the appropriate virtual element, and scans the list, ev ,
using a test similar to ST2.

The efficiency of an element search algorithm is estimated by counting the average
number of operations required to find the finite element containing each of Np points
in a uniform field. Operations are defined as basic math operators (+ − × ÷),
comparisons (= 6= < > 6 >), assignments and standard mathematical functions in
the C library. A uniform field is assumed to contain a fairly regularly distributed
grid of data points throughout the specimen’s surface. To the authors knowledge,
this assumption is consistent with current full-field measurements techniques. For
special applications where a large number of data points are concentrated in a small
region (e.g. measuring localized plasticity), the conclusions of this section remain
valid locally. A finite element model with a sequential list ofNe elements is illustrated
in Figure 3. The search time for a data point belonging to the ith element in this list is

T̂i = (i− 1)× T̂f + T̂s, [11]

where T̂s (success) and T̂f (failure) are the computation times (measured in number
of operations) to determine that the data point does or does not belong to an element,
respectively. For an average field, a point can belong to any element in the list with
equal probability.

The time complexity T̂c, namely the average number of operations to determine
the owner element of one point is

T̂c(Ne) =
1
Ne

Ne∑
i=1

T̂i. [12]

The total search time T̂t is an estimate of the average number of operations required
to identify the owner element for Np arbitrary data points including a preprocessing
time T̂b (required to initialize bounding boxes and the virtual mesh),

T̂t(Ne, Np) = T̂b(Ne) + T̂c(Ne)×Np. [13]

The objective is to find a combination of element tests resulting in the smallest
total search time T̂t. An estimate of T̂t was computed for ST1, ST2 and ST3 applied
to meshes of QUAD4 elements and written as T̂t|st1, T̂t|st2 and T̂t|st3, respectively.
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These search times are functions of the number of elements Ne, interpolation points
Np, as well as mesh-specific geometric parameters, N cl, Nk and Nve. The quantity
N cl is a measure of mesh distortion, specifically the average number of finite ele-
ment bounding-boxes that will claim an arbitrary data point (see Figure 4(b)). Nve

is the average number of virtual elements possessing a reference to the same finite
element. Nk is the average number of finite elements in a virtual element. Results are
summarized in the following table:

Table 1. Computation times for the compared element search algorithms

Time Cross-Product Bounding-Box Virtual Mesh
T̂b 0 20Ne (5Ne + 7) +

[
20 +Nve + 12

]
Ne

T̂f 37.5 2.5 Does Not Apply
T̂s 60 4 Does Not Apply

Technique Computation Time
ST1 T̂t|st1 = 18.75NeNp + 41.25Np
ST2 T̂t|st2 = 1.25NeNp + 20.75N clNp + 110.5Np + 20Ne
ST3 T̂t|st3 = (Nve + 37)Ne +

[
1.25Nk + 20.75N cl + 116.5

]
Np + 7

(a) (b) Example of Ncl

Figure 4. (a) Superposition of a finite elements mesh (dotted lines) and a virtual mesh.
Ae and dx × dy are the areas of a bounding-box and a virtual element, respectively.
(b) Examples of Ncl, the number of bounding boxes which claim a data point
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Details for the operations count and an approximate relationship betweenNk andNve

is developed in (Silva et al., 2007b). This relationship is summarized hereafter. Let
the a coefficient α, be the ratio of the average bounding-box area of a finite element
Ae to the area of a virtual element dx× dy,

α =
Ae

dx× dy . [14]

The approximation considers the limiting behavior of Nk and Nve as α → 0 and
α→∞, while accounting for mesh to virtual mesh offsets (see Figure 4(a)),

Nk ≈
1
α

+ 1, [15]

Nve ≈ α+ 1. [16]

If α is very large (i.e. very small virtual elements) the majority of the virtual
elements will contain a reference to only one finite element, leading to a decrease in
the time complexity T̂c of the search algorithm. However, since there are more virtual
elements, the preprocessing time T̂b will offset the advantage gained by the smaller
T̂c. The ratio α∗ represents the best compromise between T̂c and T̂b. It is obtained by
expressing T̂t|st3 in Table 1 with in terms of α (using Equations [15] and [16] ) and
solving for a zero of the derivative,

∂T̂t|st3(α∗)
∂α

= 0 ⇒ α∗ =
√

1.25Np
Ne

. [17]

The result, α∗, is proportional to
√
Np and inversely proportional to

√
Ne. This

is intuitive if we consider a situation where there is only one data point to interpolate
(i.e. Np = 1 thus Ne >> Np ⇒ α∗ << 1), the optimum grid step produces a
single virtual element containing all finite elements in the model. This is because the
computational cost of scanning the entire finite element’s list only once is smaller than
the cost of populating a large number of virtual elements. The converse is also true.
For a large number of data points (i.e. Np >> Ne ⇒ α∗ >> 1) the resulting virtual
mesh grid is very fine (i.e. an average of one finite element per virtual element). In
this case the computational cost of populating a fine virtual mesh is compensated by
only having to search one finite element per data point.

Figure 5 demonstrates some of the basic features of the different T̂t curves. All
functions are linear with respect to Np. The slope of ST1 is clearly the largest, fol-
lowed by ST2 and ST3, which stays nearly flat. In contrast, the offset of ST3 is the
largest, followed by ST2, while ST1 has no offset. These offsets are due to the pre-
processing time T̂b required by the virtual mesh and the bounding box calculations.
Next, pairs of element tests are compared while varying all parameters. Figure 6 is a
comparison of ST1 and ST2. The curves represent iso-lines where T̂t|st2 = T̂t|st1.
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ST2 is more efficient than ST1 for Np > 12 as long as N cl, the average number of
elements that claim a data point, is lower than 80% of the number of elements, Ne.
This condition is satisfied for all but very distorted meshes. The extra bounding-box
build time T̂b is compensated by the decreasing slope in the T̂t vs. Np curve. Figure
7 is a comparison of ST2 and ST3. The figure shows that for any reasonable mesh,
Ne ≥ 30 and Np ≥ 50, it is advantageous to use a virtual mesh. In Section 5 we val-
idate these conclusions experimentally, using a C++ implementation of the different
search techniques.
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Figure 5. Number of operations vs. data points for methods ST1, ST2 and ST3 (Ne =
10000, N cl = 10 and α = 0.05)
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Figure 6. Comparison of ST1 and ST2. The curves represent iso-lines where T̂t|st2 =
T̂t|st1. The regions above the curve are such that T̂t|st2 < T̂t|st1. Notice that Ne does
not affect the curves to a significant degree
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Figure 7. Comparison of ST3 and ST2. The curves represent iso-lines where T̂t|st3 =
T̂t|st2. The curves use the optimum α and N cl = 1, 5, 10, 15, 20

4. Inverse mapping

Finite elements shape coefficients Nj are generally known functions of an ele-
ment’s local coordinates, ~ξ (Equation [3]). Hence, to evaluate these coefficients it is
often necessary to compute ~ξ(p) from ~x(p). Equation [18] defines a non-linear map-
ping function from the reference coordinates ~ξ to the real coordinates ~x,

x(p) =
no. nodes in e(p)∑

j=1

Sj

(
~ξ(p)

)
x(ne(p)j ). [18]

The coefficients Sj are also known functions of ~ξ, and are the same as Nj for iso-
parametric elements. The opposite operation (i.e. calculating ~ξ(p) from ~x(p)) is called
inverse mapping.

Inverse mapping is a non-trivial operation, which needs to be performed numeri-
cally, although it is possible to invert the shape functions analytically in special cases.
Whichever technique is applicable, the accuracy of the inversion can be verified as
illustrated in Figure 8. If the inversion is successful the difference δξ = ‖~ξ∗ − ~ξT ‖
should approach machine precision. Since ~ξT is unknown, δξ cannot be computed
directly. Instead, by mapping S : ~ξ∗ → ~x∗, the value of δx = ‖~x∗ − ~x‖ is used
as a measure of the inverse mapping error. For shape functions where the analytical
solution of the inverse is unknown, δx is typically taken as the cost function to be min-
imized. Section 5 implements both analytic and iterative inverse mapping strategies
for a QUAD4 element. The iterative approach uses a Newton-Raphson optimizer to
minimize δx, by varying ~ξ. the appendix Section 8 discusses the analytical results for
QUAD4 elements, with more detail found in (Silva et al., 2007b).
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(a) (b)

Figure 8. An explanation of how to check the inverse mapping accuracy. (a) The
inverse mapping function S−1 : ~x → ~ξ∗ may contain errors δξ = ‖~ξ∗ − ~ξT ‖ caused
by convergence accuracy, where ~ξT are the target coordinates. (b) The inversion error
δξ cannot be computed directly, since ~ξT is unknown. Instead, the accuracy of the
inversion can be determined by mapping ~ξ∗ to the real coordinate system S : ~ξ∗ → ~x∗

and computing the error δx = ‖~x∗ − ~x‖. If the inversion is successful, δx should
approach zero

5. Numerical experiments

The efficiencies of owner element search algorithms were estimated in Section 3.3
by counting operations. This assumes that other contributions to the algorithm’s time
complexity (memory allocation and different computation costs for integer and float-
ing point arithmetic) are negligible. This section checks these assumptions by com-
paring the theoretical estimates with numerical experiments. The computation times
are measured when interpolating data-point grids with varying number of points Np
over meshes with different numbers of elements Ne. The experiments are conducted
with a C++ implementation of the interpolation algorithms, with an ABAQUS 6.4
finite element solver (ABAQUS Inc., 2003). The computer test-bed is a Toshiba satel-
lite A60 with a Pentium 4 processor running on a GNU/Linux Debian 3.1 operating
system (Hill et al., 2005). The FE model is the open-hole plate specimen illustrated
in Figure 9, see (Cardenas-Garcia et al., 2006; Lin et al., 1999). The model’s lower
edge is fully constrained, and the upper edge subjected to a 1000 kPa surface traction.
The model and boundary conditions are based on an experiment conducted by the Eu-
ropean Aeronautic Defense and Space Company (EADS) (Silva et al., 2007a). The
data points p are located on a grid of step s (Figure 9) 2. The total processing time
Tt is measured by an embedded C++ timer, which measures the time in seconds from
the beginning of the interpolation procedure until all data points in the grid have been
interpolated. The procedure is repeated with different mesh sizes, Ne, and grid steps,
s.

Figure 10(a) shows the test results for the ST2 algorithm, which uses the bounding-
box and cross-product tests to sequentially scan the entire list of finite elements. The

2. The data point grids encompass only a square window on the center of the model.
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execution time Tt increases linearly with Ne and Np when Np and Ne are held con-
stant, respectively. Notice that the slopes of Tt increase with Ne and Np. The ex-
perimental behavior is in agreement with the O(Ne × Np) time complexity T̂t|st2 in
Section 3.3 (Table 1). Figure 10(b) shows the results for the ST3 algorithm, which
uses a combination of the cross-product and bounding-box tests and a virtual mesh
container. Clearly, the interpolation algorithm using the virtual mesh is more efficient
than the previous algorithm. For large number of points (Ne ≥ 5000), the virtual mesh
reduces computation times by a factor of 10 to 60. Notice that Tt varies linearly with
Np and Ne, but unlike the previous case, the slopes of these curves are independent
of Ne and Np. These results match theO(ANe +BNp) in the time complexity T̂t|st3
(A and B are functions of mesh distortion, but independent of Ne and Np, see Table
1).

(a)
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(b)

Figure 9. (a) Test-Specimen Geometry: The model is an open-hole tensile test with
the lower edge fully constrained and the upper edge subjected to a 1000 kPa surface
traction. (b) Details of the finite element mesh (Ne = 33, 000) with displacements in
mm

Next, Figures 11(a) and 11(b) show the recorded inverse mapping times for an-
alytic and iterative inverse mapping algorithms. The iterative technique is a 2D
Newton-Raphson minimization of δx. The optimizer has a stopping criterion of
|δx| < 1e−5mm. Inverse mapping times for both techniques show a linear varia-
tion with Np and no tendency with respects to Ne. The graphs show a scatter pattern
because the inverse mapping cost depends on the position of data points inside an el-
ement (see appendix Section 8). These figures illustrate that inverse mapping can be
performed very quickly in comparison to the owner element search. For the analytic
solution, nearly 250,000 data points are interpolated in less than 1 CPU second. The
iterative approach is significantly slower, but is still capable of interpolating 40,000
points in about 5 seconds. If the field comparison is performed repeatedly over a con-
stant mesh, the index of the owner element and reference coordinates of each data
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point can be saved and reused in each subsequent comparison. This practice further
reduces interpolation time.
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Figure 10. Element search times (measured numerically)

This interpolation technique is now applied to the construction and visualization
of error maps. The plate with a hole (Figure 9) is composed of an orthotropic material
of properties E11 = 100 GPa, E22 = 36 GPa, G12 = 25 GPa, ν12 = 0.54 GPa. A
“reference model” is solved with a fine mesh of approximately 33,000 elements and
its nodal displacements are taken as the experimental data field see (Figure 9(b)). The
error maps are produced by solving a FE model with the same material properties, but
with a coarser mesh, Ne = 2, 500. The coarser mesh is compared with the reference
mesh using FE shape function interpolation, Matlab’s griddata nearest neighbor ap-
proximation, linear and cubic interpolation. The processing time for each technique
was 6, 10, 14 and 14 seconds, respectively 3.

3. The processing times include reading a matrix of data points and displacements for the
reference and test meshes, interpolating the test mesh at reference coordinates, then writing the
interpolated field onto a file.



324 EJCM – 18/2009. Pictures and finite elements

Since the test FE model has the same geometry, material properties and bound-
ary conditions as the reference model, the difference between the test and reference
meshes is only due to discretization and interpolation changes, which is small. Figure
12 shows error maps for all interpolation strategies of the normalized distance,

J(p) =

√√√√(u(p)ref − u(p)test

urefmax − urefmin

)2

+

(
v(p)ref − v(p)test

vrefmax − vrefmin

)2

, [19]

where the data points p are nodal displacements of the reference mesh. Notice that all
error maps are very small in scale, the smallest being FE shape function interpolation,
followed by linear, cubic and nearest neighbor interpolation. Although the variation
in scale for all techniques is small (i.e. 0.0034 ≤ ∆Jscale ≤ 0.048), their relative
variation with respects to FE shape function interpolation is significant (i.e. 54.8% ≤
∆Jscale ≤ 793%).
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(a) Analytic inverse mapping
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(b) Iterative inverse mapping

Figure 11. Inverse mapping times using (a) analytic and (b) iterative inversion algo-
rithms
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(c) Linear Interpolation
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(d) Cubic Interpolation

Figure 12. Error maps J(p) between a reference mesh ofNe = 33, 000 and a mesh of
Ne = 2, 500 using (a) FE shape function interpolation, Matlab’s (b) nearest neighbor
approximation (c) linear and (d) cubic interpolation

6. Conclusions

This article adapted and evaluated existing algorithms for mapping mesh informa-
tion to arbitrary points using finite element shape functions. The algorithms consist
of two parts: identification of the owner element, and mapping of interpolation points
into the element’s reference coordinate system. Interpolation is then a direct evalua-
tion of the element’s shape functions.

The strategy for determining the owner element for each data point is critical to
the numerical efficiency of the procedure. The use of a virtual mesh is recommended
as an alternative to sequentially searching the entire list of finite elements. With this
indexing technique, time complexity increases linearly with mesh size Ne and num-
ber of data points Np, contrary to sequential techniques which show a quadratically
growing cost. In addition to the virtual mesh, an efficient test for determining if a
point belongs to an element has been analyzed. The recommended test is a combi-
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nation of a fast approximate test based on bounding-boxes and an exact test based on
cross-products. Inverse mapping has been discussed through the analytical example
of bilinear quadrilateral elements, and numerically in general cases.

Finally, the different interpolation strategies have been implemented in C++, and
applied to a finite element model of open-hole tensile test. As a typical example, the
best strategy (virtual mesh, mixed test) interpolates over 40,000 data points in less
than 1 second for a finite elements mesh of 10,000 elements on a Pentium 4, 2.8 GHz
computer.
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8. Appendix: Inverse mapping for QUAD4 elements

This section establishes a mathematical basis for the inversion technique presented
in Section 4. Let the shape functions, Equation [18], of a 2D bi-linear quadrilateral
element be rewritten as

x0 = x− a0 = a1ξ + a2η + a3ξη

and y0 = y − b0 = b1ξ + b2η + b3ξη, [20]

such that (ξ, η)ε[−1, 1]2. The coefficients ai and bi are

a0 = 1
4 [(xn1 + xn2) + (xn3 + xn4)]

a1 = 1
4 [(xn2 − xn1) + (xn3 − xn4)]

a2 = 1
4 [(xn3 + xn4)− (xn1 + xn2)]

a3 = 1
4 [(xn1 − xn2) + (xn3 − xn4)]

b0 = 1
4 [(yn1 + yn2) + (yn3 + yn4)]

b1 = 1
4 [(yn2 − yn1) + (yn3 − yn4)]

b2 = 1
4 [(yn3 + yn4)− (yn1 + yn2)]

b3 = 1
4 [(yn1 − yn2) + (yn3 − yn4)] ,

where xni and yni are node coordinates.

Definition 1. Geometrically admissible element: A geometrically admissible element
is such that the nodal arrangement in the real coordinate system does not contain any
crossing segments, and has a non-zero area.

Proposition 1. If a1 + a3η 6= 0, then for all geometrically admissible elements one
of the solutions of the system

ξ = x0−a2η
a1+a3η

and Aη2 +Bη + C = 0, [21]

is an inverse mapping solution. The coefficients A,B and C are

A = a3b2 − a2b3 ,
B = (x0b3 + a1b2)− (y0a3 + a2b1) and
C = x0b1 − y0a1.
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(a) (b)

Figure 13. If any two opposite node vectors are parallel and point to the same direc-
tion (a) ~12 and ~23 or (b) ~23 and ~41, the nodal configuration is geometrically inadmis-
sible

Proposition 2. If a1 + a3η = 0 and a3 6= 0, then for all geometrically admissible
elements,

ξ = y0a3+a1b2
a3b1−a1b3

and η = −a1
a3

[22]

is an inverse-mapping solution.

Proof. For all geometrically admissible elements such that a1 + a3η = 0, a1 6= 0 and
a3 6= 0, we prove that a3b1 − b3a1 6= 0, which guarantees [22] can be used without
division by zero. Assuming without loss of generality that the nodes in the reference
element are numbered counter-clockwise, if a3b1−b3a1 = 0 then a3b1 = b3a1, where

a3b1 = [(yn2 − yn1) + (yn3 − yn4)][(xn1 − xn2) + (xn3 − xn4)],
b3a1 = [(yn1 − yn2) + (yn3 − yn4)][(xn2 − xn1) + (xn3 − xn4)].

Simplifying the expression yields,

(xn2 − xn1)(yn4 − yn3) = (xn4 − xn3)(yn2 − yn1),

⇒ (yn4 − yn3)
(xn4 − xn3)

=
(yn2 − yn1)
(xn2 − xn1)

.

Thus, the vectors ~12 and ~34 point to the same direction, which results in a geometri-
cally inadmissible configuration (see Figure 13).



330 EJCM – 18/2009. Pictures and finite elements

Proposition 3. For all geometrically admissible elements, such that a1 + a3η = 0
and a3 = 0,

ξ = y0a2−b2x0
b3x0+a2b1

and η = x0
a2

[23]

is an inverse mapping solution.

Proof. The proof follows directly from substitution into Equation [20]. It shows that if
there is a division by zero in Equation [23] the element is geometrically inadmissible.

Part 1: For all geometrically admissible elements, such that a1+a3η = 0, and a3 = 0,
it is necessary that a2 6= 0. If a1 + a3η = 0, and a3 = 0 then a1 = 0, thus

(xn2 − xn1) = (xn4 − xn3) and (xn1 − xn2) = (xn4 − xn2),
⇒ xn3 = xn4 and xn1 = xn2.

If a2 = 0, then

xn3 + xn4 = xn1 + xn2,
⇒ xn1 = xn2 = xn3 = xn4.

Hence, the resulting node coordinates are collinear, which is geometrically inadmissi-
ble.

Part 2: Assume that a2 6= 0 and that b1a2 + b3x0 = 0. Using x0 = x− a0, it follows
that

b3x = b3a0 − b1a2, where

b3 = [(yn1 − yn2) + (yn3 − yn4)]
b3a0 = 1

4 [(yn1 − yn2) + (yn3 − yn4)][xn1 + xn2 + xn3 + xn4]
b1a2 = 1

4 [(yn2 − yn1) + (yn3 − yn4)][(xn3 + xn4)− (xn1 + xn2)].

case 1: b3 6= 0. Substituting xn1 = xn2 and xn3 = nn4 and simplifying yields,

[(yn1 − yn2) + (yn3 − yn4)]x = [(yn1 − yn2) + (yn3 − yn4)][xn1 + xn3]
+[(yn2 − yn1) + (yn3 − yn4)][xn3 − xn1].

Solving for x,

x =
(yn3 − yn4)xn1 + (yn1 − yn2)xn3

(yn3 − yn4) + (yn1 − yn2)
.
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Defining α and β, where α+ β = 1 yields,

x = αxn1 + βxn3 .

For any internal point it is necessary that both α > 0 and β > 0. However, if yn3 −
yn4 > 0 it follows that yn1 − yn2 < 0 for an element with no intersecting edges.
Hence, α and β always have opposite signs for a valid element, thus the point x is not
an internal point.

case 2: b3 = 0. It follows that

(yn3 − yn4) + (yn1 − yn2) = 0
yn1 − yn2 = yn4 − yn3

0 = (yn3 − yn4)xn1 + (yn1 − yn2)xn3

0 = (yn2 − yn1)xn1 + (yn1 − yn2)xn3

xn1 − xn3 = 0⇒ xn1 = xn3

⇒ xn1 = xn2 = xn3 = xn4

The result is a collinear nodal arrangement, which is geometrically inadmissible.
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