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ABSTRACT. Inverse problem resolution methods are widely used in the determination of material 
behaviour. The optimisation of the parameters, as inputs into a well-defined system, is obtained 
from observed outputs such as kinematic field measurements. The aim of this paper is to 
summarize the research concerning one inverse method, Finite Element Modelling Updating, 
based on the use of these field measurements. This method is based on a combination of three 
components, described in the following three sections. First we present the optical field 
measurements applied to multi-axially loaded objects, together with their performances. Then 
we outline the use of Finite Element Modelling for achieving a correlation between numerical 
fields and their experimental counterparts. Finally we describe the identification process, 
together with cost functions, minimisation procedure and model validation analysis. 
RÉSUMÉ. Les méthodes de résolution de problèmes inverses sont notamment utilisées dans la 
détermination de comportements matériaux : l’identification de paramètres, comme variables 
d’entrée d’un problème bien posé, est obtenue sur la base des données en sortie telles que les 
mesures de champ. L’objectif de cet article est de produire une synthèse des recherches 
relative à l’utilisation d’une méthode d’inversion dite de recalage d’un modèle par éléments 
finis, lorsque celle-ci se base sur l’exploitation de ces mesures de champs. Cette méthode 
associe trois éléments principaux : les mesures de champs par voie optique, la modélisation 
des essais par éléments finis ainsi que les fonctions coûts et procédures d’optimisation. 
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1. Introduction

In recent decades, experimental devices and methodologies have evolved towards
the use of full-field measurements and their introduction into various identification
methods. Their main objective is to evaluate constitutive material parameters in a reli-
able and multi-scale manner. They are all derived from well-known principles of con-
tinuum mechanics. The Constitutive Equation Gap Method (Geymonat et al., 2003)
is based on the minimisation of a function that expresses the gap in the constitutive
equation; the Equilibrium Gap Method (Claire et al., 2004) minimises equilibrium
residuals; the Reciprocity Gap Method (Bui et al., 2004) is based on the Betti reci-
procity theorem of linear elasticity applied to two states (the measured field and an
arbitrarily chosen adjoining state); the Virtual Field Method (Grédiac, 1989) uses the
virtual work principle; and the Finite Element Method, which can be used as an anal-
ysis tool to express the gap between measured and simulated fields. This last strategy,
called the Finite Element Model Updating (FEMU) method, on which we shall fo-
cus in this presentation, can handle complex (3D) loads and geometrical shapes using
displacement and load measurements, independently of the type of behaviour, at the
structural scale. The mixed method was originally developed by coupling the Finite
Element (FE) model of static tests and experimental information such as strains (gen-
erally measured at a limited number of points) or displacements measured by Linear
Variable Differential Transformer (LVDT). Nowadays, with full-field measurements,
the mixed numerical-experimental method opens up a very broad range of experimen-
tal investigation possibilities, such as:

– the mechanical properties of structural materials such as composites: the ex-
treme anisotropy and/or non-homogeneous distribution of material properties over the
specimen produce non-homogeneous stress and strain fields in the investigated vol-
ume;

– new experimental designs: these enable loading conditions to be defined that are
much closer to those of practical industrial situations;

– the study of non-homogeneous strain induces a higher strain level: with the ho-
mogeneous response obtained using previous standard tests only local information
could be used to analyse the strain response, which could result in the necking of the
specimen;

– the analysis of multi-scale modelling by using optic and/or electronic mi-
croscopy with mechanical tests in-situ.

The use of optical measurements of kinematics fields enables more complex tests
to be carried out (multi-axial loading, experiments on structure components and non-
linear material behaviour) where contact-less measurements of the whole strain field
are accessible. Major developments in field measurement techniques are linked to
Charges Coupled Device (CCD) sensors and generally to progress in photonics and
optical components, together with automated image processing techniques. Many
field measurement techniques are available (Surell, 2004): geometric methods such
as 2D or 3D Digital Image Correlations, fringe projection, deflectometry, grid and
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Moiré methods; and interferometric methods like Moiré interferometry, speckle inter-
ferometry and shearing interferometry. We shall now return to the description of these
methods, their applications and their expected performances.

As optical methods (apart from 3D-Digital Image Correlation (DIC)) are neces-
sarily one or two-dimensional, in-plane or out-of plane measurements are generally
performed using thin specimens. These experiments are related to 2D simulations
(mostly plane stress assumption) to minimise calculation time. Field measurements
are often linked to global ones: for example applied stress or loading and displacement
measurements. They supply a higher degree of freedom in the test together with more
flexible processing. They can also include new boundary conditions such as parasitic
effects induced by jaw sliding, bending effects, etc. In the second part, we will present
the terms for particular utilisations of FE modelling. Field measurements also enable
the design of test geometry in order to increase the sensitivity of the material response
to the parameter set of the behaviour. It is thus possible to perform tests in situ, similar
to industrial environments. In addition, the non-intrusive and contact-less nature of op-
tical methods enables kinematic measurements that would be too difficult to access by
other methods (tiny test geometry, protected site measurements). Nevertheless, once
again, the test must be modelled in order to be properly simulated: measurements
of realistic boundary conditions, exact geometry of specimens and experimental de-
sign are not always carried out and require generally additional assumptions. Various
studies can be classified according to the number of identified parameters, which are
linked to the complexity of the laws applied (anisotropy, non-linearity, temperature
dependence, speed, damage etc.), to the tests conducted (traction, compression, bend-
ing) and to the minimisation methodology applied. Indeed, any iteration of the finite
element model updating process is very processing-time consuming, as each evalua-
tion needs a complete finite element analysis. Several possibilities have been explored
to minimise the processing time while retaining permanent accuracy of the identified
parameters. For non-linear computation, first-order methods (or descent methods),
sometimes combined with an evolutionary strategy, are generally preferable to a zero-
order algorithm because of their robustness and convergence speed. In the third part
we will present the types of identified material behaviour. Finally, we will discuss the
optimisation procedures used and their identification reliability.

2. Kinematic fields, measurements and sensitivity

2.1. Optical full-field measurement methods and applications

The principles of the optical full-field measurement (OFFM) methods are now
well-known and have been used for several decades. Moreover, recent developments
of optical components and improvements in data processing have led to a tremendous
expansion in the use of whole-field measurement techniques (speckle interferometry
and digital image correlation amongst others).
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Given the numerous optical techniques for measuring kinematic fields, the analyst
is often confronted with the difficulty of selecting the most appropriate method for the
target application. This selection is based on knowledge of the mechanical experiment
(the measurand, the range of measurement, the dynamic of the observed phenomena)
and the performances of the optical techniques. Associated to the choice of optical
components and data processing, we can advance some basic parameters which play
a key role in the selected method:

1) the spatial resolution which is the smallest distance over which two measure-
ments are independent: for the measurement of a local strain or the characterisation
of a distribution of displacement or deformation, this size determines the minimal
wavelength or the cut frequency of the detectable local gradients;

2) the sensitivity of the measured entity (measurand), which is the smallest mea-
surable value, i.e. which can be distinguished from background noise: it is generally
associated to the standard deviation of the noise measurement and is obtained either
by comparison with successive field measurements or using a reference configuration.

An essential stage, and which has an impact on both these parameters, is the post-
processing. Both the subset size (for random encoding) and the pitch (when the sur-
face is encoded by structured light or a grid pattern attached to the surface) define the
spatial resolution. This entity is generally chosen as a satisfactory compromise be-
tween sensitivity and detail lost due to over-smoothing of the data. So, in practice, the
operator is confronted with the inter-dependency of these two parameters for a given
optical method and its associated testing configuration (choice and position of optical
components and specimen under study, etc.).

While these essential characteristics should be mentioned in all the studies exploit-
ing OFFM methods, another parameter, the measurement uncertainty, can indicate the
possibility of exploiting a given method in another laboratory or industrial application,
for example. Although it is almost never discussed in research studies, measurement
uncertainty is an essential element in the expansion of whole-field methods.

2.2. Uncertainty of the data

2.2.1. Sources of error

Optical full-field measurement methods provide huge amounts of data whose rel-
evancy is not fully controlled due to a lack of standards and metrology. Among the
main sources of errors, for some applications the optical components introduce dis-
tortion effects. These systematic errors involve some post-processing using cameras
and experimental modelling. But the most significant source of systematic error is the
out-of-plane error due to the Poisson contraction of the specimen. Only 3D correlation
such as stereo-correlation can avoid this artefact. Recently, some studies have begun
to appear following the example of the ESPI method regarding uncertainty evalua-
tion, with the so-called law of propagation of uncertainties (ISO 0.7-0.20): the strain
and strain rate capabilities are evaluated by considering the misalignment of the CCD,
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the magnification factor and the coordinates of points between which the relative dis-
placement is measured (Montay et al., 2007). Other systematic errors are introduced in
the algorithms themselves, such as the interpolation functions for evaluating the non-
integer location using the correlation methods or shape functions which approximate
the displacement field. Generic interpolation and approximation algorithms (using lin-
ear, cubic and spline weight functions) eliminate high-frequency information (which
could be the source of local physical phenomena) through implicit filtering, and in-
troduce fundamental assumptions concerning the form of experimental data (Silva et
al., 2007), (Giton et al., 2006).

2.2.2. Test geometry and boundary conditions

From an experimental point of view, it is very important to collect accurate data
on the design of the test setup, the optical components and the material orientations.
Special care should be taken in the experiment to prevent misalignment of the camera
along the axis of loading and its specific orientation to the plane of the specimen.

Some other parameters required are the measurement of the specimen and the sup-
port geometries, the loading conditions and their correspondence with measured fields
(Giton et al., 2006). An interesting approach is to evaluate the boundary conditions
using a post-processing operation. For example, finding the exact location of the load
point consists in minimising the degree of statistical correlation between the variations
in the displacement fields due to an increment of different loading configurations in
the FE modelling.

3. Finite element method

3.1. Principles of the finite element method

Let B be a solid occupying, in a reference configuration, a domain Ω0 ∈ R3 with
its boundary (sufficiently regular) denoted by ∂Ω0 and let n0 be the corresponding
outward normal unit vector. When B is subject to loads, it undergoes a deformation
motion specified by the displacement field u in Ωt which is the deformed counterpart
of Ω0 with n the outward normal unit vector to ∂Ωt. In continuum mechanics, the
principle of virtual work states that: :

W ∗ =

Z

Ωt

D∗ : σdV +

Z

Ωt

u∗.ρ.üdV −
I

∂Ωt

u∗.σ.n.dS = 0 [1]

∀t,u∗sufficiently regular

where σ is the Cauchy stress tensor, ρ is the material density, u∗ refers to a virtual
motion and D∗ = 1

2

`∇u∗ +∇u∗T
´

to a virtual strain. The current stress state can be
related to a strain state (defined from u) by choosing an appropriate constitutive law
representative of the material behaviour.
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Finite Element Modelling (FEM) (Bathe, 1996) is a numerical strategy which ex-
presses an approximate form of the principle [1] by introducing a representation of
the (real and virtual) displacement field in a finite-dimensional space (spanned by the
finite element shape functions), leading to:

W ∗ = U∗T Fint

“
θ,U, U̇, ...

”
+ U∗T MÜ−U∗T Fext = 0 ∀t,U∗ [2]

In this equation, M is the global mass matrix of the system, Fext is the vector of
generalised nodal forces and Fint a vector of internal forces related to the current
stress state and possibly to its history. Vector U groups together the unknown degrees
of freedom (dof) introduced by the FEM discretisation (usually nodal displacements).
Equation [2] leads to the global, discretised, equilibrium:

MÜ = Fext − Fint

“
θ,U, U̇, ...

”
[3]

Moreover, when inertial effects can be neglected, the discretised equilibrium can be
reduced to

Fint = Fext or K.U = Fext [4]

with K a secant stiffness matrix. In the context of small perturbations with linear
material behaviour, K will be independent of U.

3.2. Finite element analysis and the “direct problem”

The most common problem in continuum mechanics consists in determining the
displacement, strain and stress fields over the time t, given the initial geometry of
the solid, the constitutive parameters and a set of boundary conditions. It is usually
referred to as direct or forward in the literature, and is well-posed and qualified for a
suitable choice of the set of boundary conditions. For this, each of the boundaries is
decomposed into two disjoint open parts denoted by S0u, S0r, Stu, and Str such that
∂Ω0 = S0u ∪ S0r and ∂Ωt = Stu ∪ Str with a displacement ū prescribed on Stu

and a surface density force f̄sr = σ.n applied on Str (which could be imposed as null
over a portion of it). This enables the definition of a set of kinematically admissible
(K.A.) displacement fields over which u must be found to satisfy

W ∗ =

Z

Ωt

D∗ : σdV +

Z

Ωt

u∗.ρ.üdV −
I

Str

u∗.f̄sr .dS −
I

Stu

u∗.f̄su .dS = 0

∀t,u∗sufficiently regular

where f̄su = σ.n corresponds to the unknown surface density applied to Stu required
to impose the prescribed displacement ū on Stu. A remedy to this situation consists
in choosing the virtual displacement field u∗ K.A. 0 to obtain the usable form for the
direct problem

W ∗ =

Z

Ωt

D∗ : σdV +

Z

Ωt

u∗.ρ.üdV −
I

Str

u∗.f̄sr .dS = 0

∀u∗sufficiently regular and for u K.A.
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Since closed-form solutions to these direct problems are only available in very par-
ticular cases, the FEM method can be used in a numerical analysis approach (leading
to finite element analysis or FEA) by solving [3] or [4] for U subjected to the discre-
tised constraint C.U = Ū, with C a boolean (selection) matrix. This step does not
deal with the discretised reaction loads R = C.Fext involved in Fext and correspond-
ing to f̄su . But these reaction loads can be recovered in a second step, by evaluating
Fext from [3] or [4], knowing U. Most of the time, this type of direct analysis is
used iteratively in the inverse problems presented in the following parts, by choosing
initial parameters and comparing the discretised fields obtained to the experimental
ones, until convergence.

4. Parameter identification using finite element model updating
and full field measurements

4.1. Theory

One of the methods used to identify the parameters involved in mechanical tests is
known as Finite Element Model Updating. The principle of this technique compared
to the classical (analytic) identification strategy is presented in Figure 1. It consists in
building a finite element model of the mechanical test under study using data about
geometry and boundary conditions, represented by $. Experimental data are mostly
accessible at discrete intervals (e.g. time or load steps) and the FEM generated data
which must be transformed inside the observation space to be compared to experi-
mental data. The observed response from the experiments is denoted m(t) at each
step of time t ∈ [0, T ] (displacements, strains, forces etc.), the corresponding infor-
mation from the model is denoted h$(θ, t) where θ is the set of parameters to extract
(material parameters, stiffness, local load etc.) and θ(0) is the initial estimate of θ
(necessary entities to start the optimisation scheme). The parameters θ, the input and
output variables m(t) and h$(θ, t) are stored in columns:

m(t) = [m1(t),m2(t), ...,mN (t)] [5]

h$(θ, t) = [h1$ (θ, t), h2$ (θ, t), ...hN$ (θ, t)] [6]

θ = [θ1, θ2, ..., θp] [7]

where N and p respectively denote the total number of measurements and the number
of parameters to be identified.

Depending on the choice of measurable quantities used for identification, a very
wide range of situations can be considered. In fact, it is desirable, but by no means
necessary, that field measurements should be used. The FEMU technique, because of
its principle, may be applied to any kind of over-determined data.
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(a) analytic
identification

(b) finite element model updating identifi-
cation

Figure 1. Schematic view of analytic and FEMU identification

When output data are chosen for benchmarking, there is another choice concern-
ing the criterion to be optimised. This criterion can either be algebraic, such as the
least square criterion (usual or weighted), or probabilistic, such as likelihood. The
first criterion implies looking for the parameters that tend to minimise the distance be-
tween m(t) and h$(θ, t), ∀t ∈ [0, T ] among all the possible θ factors. This general
minimisation problem can be written by means of a functional : J : P → R:

min
θ∈U

J(θ) = min
θ∈U

T∑
t=0

1
2
j$(θ, t)T Vj$(θ, t) [8]

where P is a part of Rp and

j$(θ, t) = m(t)− h$(θ, t) = [j1$ , j2$ , ..., jN$ ] [9]

with ji$ : P × [0, T ] → RN ∀i ∈ [0...N ] and V is a N×N matrix. In a large range of
applications the convexity of the function J with respect to θ is not demonstrated and
the question of the existence and uniqueness of the solution of [8] is an open problem.

The second criterion, based on a minimum variance estimator, implies that the
measurement errors e(t) in

m(t) = h$(θ, t) + e(t)
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follow a probability law. The optimal parameters minimise the following quadratic
expression:

min
θ∈P

J(θ) = min
θ∈P

T∑
t=0

1
2
j$(θ, t)T Vj$(θ, t) +

(
θ(0) − θ

)T

W
(
θ(0) − θ

)

[10]

where P is a part of Rp and j$(θ, t) is described in [9], θ(0) is an initial guess for the
parameter θ and V, W are N ×N matrices. This criterion is widely used in medical
applications (Hendricks, 1991; Oomens et al., 1993; Van Ratingen, 1994) and FEMU
structural dynamics (Collins et al., 1974; Friswell et al., 1995).

Nevertheless, both of these minimisation problems are solved by an iterative pro-
cedure: find θ solution of [8] (or [10]) such that

θ(k+1) = f(θ(k)) and θ = lim
k→+∞

θ(k). [11]

The choice of f depends on the chosen resolution algorithm (see section 4.3).

4.2. Finite elements and full-field measurements

The FEMU strategy coupled with full-field measurements is especially suitable
for non-homogeneous material responses. This explains why materials which ex-
hibit heterogeneous behaviour, homogeneous materials with particular geometries
that generate localisation phenomena, or bi-materials (Burczynski, 2003; Cugnoni et
al., 2006; Latourte et al., In Press) are usually used as applications.

Rather than giving an inventory of optical methods and their performances, which
the reader can find in the literature (Surell, 2004), below we present the applications
of these techniques when combined with the FEMU method. Two fundamental ori-
entations need to be considered: on the one hand, more or less local phenomena with
high strain gradients, and on the other hand larger-scale observations.

Logically, after the standard methods presented above, full-field displacement or
strain measurements were applied to macroscopic-scale quasi-homogeneous tests. All
the optical methods are used to determine the in-plane or out-of-plane displacement
field (Van Ratingen, 1994; Padmanabhan et al., 2007; Bruno et al., In Press; Genovese
et al., 2006b). Geometrical methods are also used (Projection Moiré, 2D or 3D Digital
Image Correlation and Video-Tracking, which is based on markers attached to the sur-
face of the specimen) as are Interferometric methods (Moiré Interferometry, Speckle
Interferometry and shearing interferometry, which gives the full-field shear strain).
In most of the studies, Standard Planar Bi-axial tension tests (in-plane-measurement)
or inflation tests (out-of-plane measurement) are applied to thin specimens so that a
state of plane stress generally prevails. In addition, the deformation is assumed to be
transversely isotropic so only one lateral direction can be used. However, there are
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some examples of 3D-problem resolution studies whose aim is to estimate boundary
conditions: both the magnitude and distribution of the contact forces between assem-
bled 3D components have been evaluated using forward resolution (Padmanabhan et
al., 2007). An interesting investigation concerned the optimisation of the geometry
and/or loading conditions to generate a displacement field more sensitive to certain
material parameters (Bruno et al., In Press): for example, to generate a displacement
field more sensitive to the value of the Poisson coefficient with a bi-axial flexure test
on disk specimen, the circular previously designed loading fixture was converted to a
three-point support. It’s necessary to note that the analysis of the experimental setup
becomes more complex and can only be performed numerically using a computer. It is
necessary to use some finite element codes and the improvement of the test is similar
to the procedure used for shape optimisation.

At the same observed scale, some studies have focused on more heterogeneous
tests where the spatial resolution still enable the measurement of strain gradients.
Open-hole tests on thin material shapes or similar experiments are generally used
(Mahnken et al., 1996; Lecompte et al., 2006; Molimard et al., 2005). The same
approach is used for Moiré hole drilling analysis: the inverse or backward problem
requires the observed displacement fields and knowledge of the elastic material prop-
erties to evaluate the boundary conditions in the form of applied principal stresses
(Cardenas-Garcia et al., 2006). Other studies focus on more local phenomena like
necking, which appears during uni-axial tension tests, or high strain gradients for
Compact Tension tests, tear strength tests and tensile tests on bi-material samples
(Mahnken et al., 1996; Forestier et al., 2002; Giton et al., 2006; Latourte et al., In
Press). In every case the resolution (or signal/noise ratio) increases with the strain
level suggesting that identification is more accurate for plastic behaviour (strain more
than 1) however the strain gradient become a significant source of errors in particular
in the neighbourhood of interfaces between two materials and in the vicinity of sin-
gularity. So, in every case, the displacement measurements are always filtered using
calibrated functions (splines or the weighted sum of a proper set of orthogonal poly-
nomials). Experimental displacements are generally extracted at the position of the
integration points in the FE model and in cases where the strain fields are introduced
in the cost-functions, numerical and experimental strains are calculated using the same
FEM-routine. For these last two families of studies, optical methods are improved to
guarantee the best resolution: notably to increase the sensitivity of interferometric
methods, the phase variations due to the displacements are measured by applying a
temporal phase shifting algorithm.

At the microscopic scale mechanical tests are performed either in the chamber of a
Scanning Electron Microscope (SEM) or in front of a camera with a microscope lens
(Hoc et al., 2003; Kajberg et al., 2004b; Cugnoni et al., 2006). In all cases, the op-
tical method is generally combined with a tracking method based on contrast change
or Digital Image Correlation. These techniques, which are based on the analysis of
an acquired sequence of images after the test, enable dynamic tests such as micro-
scopic high-speed photography to be performed (Kajberg et al., 2004b). Work on
SEM approaches concerns the mechanical properties at the characteristic size of the
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micro-structure of the material. Example applications are the study of a solder joint
used to interconnect electronic components or the analysis of a polycrystal to obtain
an accurate description of the mechanical behaviour of the constituent grains so as to
improve polycrystalline models. Microextensometry can be combined with the deter-
mination of the local lattice orientation, which is based on Electron back-scattering
diffraction (ESBD) techniques (Hoc et al., 2003).

Figure 2 shows some examples of specimens with non-standard shapes used to
produce heterogeneous mechanical fields. These samples need to be discretised in or-
der to apply FEA. The dof number is reasonably low so each resolution of the direct
problem is low cost in terms of computation. Numerical tests are usually run on a
single computer, so 2D simulations with axisymmetric or strain/stress plane assump-
tions are performed. However (Burczynski, 2003) performed 3D elastic identification
simulation on a human pelvis. The high number of dof, associated with the use of an
evolutionary algorithm (see section 4.3.2) necessitated parallel computation processes.

4.3. Cost functions and minimisation procedure

The inverse problem usually consists in identifying θ from measured data. In the
literature, in function of the application, various forms for the function j in [8] or [10]
and for the weighted matrices V and W can be found. For a least-square criterion, the
weighted matrix are used as a normalisation if the measured quantities are of different
physical dimensions, the impact of each quantity has to be tuned in order to obtain a
sum of squares of the same magnitude.

A large part of the inverse problem using full-field measurements is devoted to the
identification of material properties. Full-field measurements give experimental data
which are available either in Ωt or on ∂Ωt and the mechanical formulation of the prob-
lem has to be adapted in order to accommodate part or all of the available experimental
information. If we denote the measured quantities as •̂, it will be possible, depending
on the available or selected experimental information, to impose some conditions such
as U(t) = Û(t) in Ωt or U(t) = Û(t) on ∂Ωt or on Stu with Fext(t) = F̂(t) in Ωt

or Fext(t) = F̂(t) on ∂Ωt or on Str for the inverse problem.

4.3.1. Cost functions

The first (historical) objective function is based on the experimental availability of
all the displacements Û and F̂ in Ωt

j$(θ, t) = F̂(t)− Fint(θ, t) ∀t ∈ [0, T ] and V = I [12]

leading to the so-called (direct) “force balance method” (also known as the “in-
put residual method” or “equilibrium method”) (Kavanagh et al., 1971; Friswell et
al., 1995; Pagnacco et al., 2007). In [12] I denotes the identity matrix. Since Fint

is evaluated in this expression from the knowledge of U = Û in Ωt, the “direct
problem” is never solved in this method. Evaluating [12] is thus very efficient from a
computational point of view, and necessitates only an FE model, not an FEA.
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(a) Specimen shape of ref.
(Lecompte et al., 2005;
Mahnken et al., 1997; Moli-
mardet al., 2005) or (Pag-
nacco et al., 2005) without
hole

(b) Specimen shape of
ref. (Kajberg et al., 2004a;
Mahnken, 1999)

(c) Specimen shape of ref.
(Kajberg et al., 2004b;
Mahnken, 2000)

(d) Specimen shape of ref.
(Meuwissen, 1998)

(e) Specimen shape of
ref. (Meuwissen, 1998;
Meuwissen et al., 1998)

(f) Specimen shape of ref.
(Giton et al., 2006)

(g) Specimen shape of ref.
(Mahnken et al., 1996)

(h) Specimen shape of ref.
(Meuwissen, 1998)

(i) Specimen shape of ref.
(Lecompte et al., 2007)

Figure 2. Specimen shapes

Moreover, if the parameterisation of the problem is linear in θ (for example the
bulk and shear moduli, i.e. θ = [K,G], in a problem devoted to the identification
of isotropic material properties), the minimisation problem associated to this objec-
tive function is an over-determined system of equations of the form (Kavanagh et al.,
1971): (Kavanagh et al., 1971):

∂
[
K (θ) .Û

]

∂θ
.θ = F̂

which can be solved using a (non-iterative) least-square method in only one step,
without reference to any starting value θ(0). Consequently, no assumption about θ(0)

is necessary in this method, nor FEA or iteration.

Another common (but more recent) approach (Collins et al., 1974) to the iden-
tification problem is obtained by considering an objective function in which data on
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displacement measurements are retained for the minimisation process while the force
response is used as boundary condition:

j$(θ, t) = j$u(θ, t) = Û(t)−U$(θ, t) and V = Vu [13]

leading to the so-called “displacement method” or “output residual method”.
In this expression, U$ is evaluated through a FEA and is commonly
arranged as U$ = [(U1x , U1y ), (U2x , U2y ), ..., (UNx , UNy )] and Û =
[(Û1x , Û1y ), (Û2x , Û2y ), ..., (ÛNx , ÛNy )]1 for a number N of nodal data: this can ei-
ther be the total number of nodes describing the finite element mesh or a selection
of well chosen nodes. This is a decisive advantage of this method over the original
force method since measurements are not required over Ωt but could be limited to a
specific area. The misfit minimisation is always performed using iterative methods
and any possible non-linearity dependency on θ does not matter. Moreover, another
advantage of this method over the force method is that it seems to be less sensitive to
noise measurements, according to a numerical experimentation proposed in reference
(Cottin et al., 1984).

Since this method necessitates an FEA, displacement (either theoretical or mea-
sured) should usually be prescribed over a portion of the boundary in order to obtain
a well posed form for the direct problem. Such a choice may certainly have an impact
over the inverse problem solution. However (Pagnacco et al., 2006) proposes another
strategy to solve the problem without displacement boundary conditions for the FEA.
This strategy handles rigid body motion in the formulation and adds force loads to the
set of unknown parameters.

In [13], the function can be normalised (or not) by a suitable choice of weighted
matrix. For example, Vu = I in (Mahnken et al., 1996), Vu = Vu(t) =
(Û(t)−U(0)(θ))−1I where upper index (•)(j) refers to iteration number of the iden-
tification process (Mahnken et al., 1997) and Vu = Vu(t) = Û(t)−1I (Genovese
et al., 2006a). Consequently, great variety can be established by choosing the matrix
weighting Vu, giving several physical meanings. For example, J described by [13],
becomes homogeneous to an energy if Vu = K and is near to J , described by [12], if
Vu = K2.

In (Lecompte et al., 2007), the authors derive measured displacements to evaluate
the strains (axial, longitudinal and shear) which appear in the objective function:

j$(θ, t) = j$ε(θ, t) = ε̂(t)− ε($, θ, t) and V = Vε [14]

where ε(t) = [(ε1x , ε1y , ε1xy ), (ε2x , ε2y , ε2xy ), ..., (εNx , εNy , εNxy )], ε̂(t) =
[(ε̂1x , ε̂1y , ε̂1xy ), (ε̂2x , ε̂2y , ε̂2xy ), ..., (ε̂Nx , ε̂Ny , ε̂Nxy )] for 2D simulations, N corre-

1. In 2D situations, or as U$ = [(U1x , U1y , U1z ), ..., (UNx , UNy , UNz )] and Û =

[(Û1x , Û1y , Û1z ), ..., (ÛNx , ÛNy , ÛNz )] in 3D situations, with subscripts (•)x , (•)yand (•)z

referring to the coordinate system.
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sponds to the number of elements in the finite element mesh representation and
Vε = Vε(t) = ε̂(t)−1I. A stress formulation is adopted in (Molimard et al., 2005):

j$(θ, t) = j$σ
(θ, t) = σ̂(t)− σ($, θ, t) and V = Vσ [15]

In (Cardenas-Garcia et al., 2006) σ(t) corresponds to the maximum in plane shear
stress.

Works by (Kajberg et al., 2004a; Cugnoni et al., 2006; Giton et al., 2006) focus
the objective function on the force response at each time on the simulation treated as
implicit functions of the parameters, while displacement measurements are used only
on ∂Ωt as realistic boundary conditions:

j$(θ, t) = j$F(θ, t) = F̂(t)− Fint$(θ, t) ∀t ∈ [0, T ] and V = VF [16]

In this expression Fint$ is limited to ∂Ωt and must be evaluated through an FEA,
and j$F(θ, t) has two or three components if it is a 2D or 3D simulation. Here VF

is often used to normalise the functional VF = F̂−1
e I, where F̂e(T ) is the yield

force at the end of the simulation, (Kajberg et al., 2004a), or to adjust weights on
the misfits between measured and computed quantities. For example, Figure 3 shows
a comparison between experimental and simulated displacements (with cost function
described in [16]) for a biaxial test on a composite material (Pagano, 2006; Claire et
al., 2004).

Lastly, some authors combine the previous objective functions: they accumulate
j$u , j$ε and j$F

, scaling them with the difference between the maximum and the
mean value of the actual quantities (Kajberg et al., 2004a). Reference (Padmanabhan
et al., 2007) combines [15] and [13]. In (Mahnken et al., 1997; Mahnken, 1999;
Mahnken, 2000; Giton et al., 2006), the objective function combines j$u and j$F

such that Vu = wuI and VF = wF I where the weighting factors wu and wF are
chosen in such a way that jT$u

(θ, t)Vuj$u(θ, t) and jT$F
(θ, t)VFj$F

(θ, t) are of the
same order. In (Hoc et al., 2003) jF and jε are combined together with VF = wF I
and Vε = wεI such that the force contribution, which reproduces the best overall
response, is predominant.

Finally, recent works (Latourte et al., In Press) use weighted least square estimates
to compute both the stress and elasticity tensor from the displacement measurements
and applied loads. A variational approach (Geymonat et al., 2003) minimises a func-
tion (namely the “constitutive equation gap”), which is separately convex with respect
to the stress and elasticity tensor:

j$(σ,A) = σ −A : ε(Û) and V = A−1 [17]

where A is the elasticity tensor.
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(a) Experimental displacements (b) FEMU displacements
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Figure 3. Displacements field solutions using FEMU strategy for a biaxial test

In the framework of the characterisation of the mechanical properties of biolog-
ical material, some authors (Oomens et al., 1993; Van Ratingen, 1994; Meuwissen
et al., 1998) use the minimum variance criterion and j$(θ, t) = j$u(θ, t) in [10].
The weighted matrix Vu and W are diagonal and related to the available statistics
concerning observation errors. Their components are approximately the inverse of the
squared expected errors in the displacement and in the initial guess of the parameters,
respectively. A larger value of these matrices indicates a greater level of confidence.

In view of the references reported until now in this subsection, we can see that a
large proportion of inverse problem statements are concerned with the identification of
material properties, but parameters are not limited to this choice. Thus, in references
(Lemosse et al., 2003), (Padmanabhan et al., 2007) and (Pagnacco et al., 2005) the
authors use [13] and/or [14] to identify both loads applied to the structure and its
associated stiffness. And in (Cardenas-Garcia et al., 2006), θ refers to the applied
stress field around the hole in order to evaluate the residual stresses in the material
using [13].
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4.3.2. Process minimization

Although the function J in [8] can be minimised by a general unconstrained
method (a direct search method such as the simplex method (Kajberg et al., 2004a),
(Kajberg et al., 2004b), genetic algorithm (GA) (Burczynski et al., 2004; Bruno
et al., In Press) or simulated annealing (SA) (Genovese et al., 2006a; Genovese et
al., 2006b), in most general cases special methods adapted to least-square problems
are used. Example are the Gauss-Newton method (Oomens et al., 1993; Van Ratin-
gen, 1994; Meuwissen et al., 1998; Forestier et al., 2002; Lecompte et al., 2007) or
its alternative the Levenberg-Marquardt method (Molimard et al., 2005; Cugnoni et
al., 2006; Giton et al., 2006) which reduces (compared to the Gauss-Newton method)
potential instabilities due to ill-conditioning by filtering the lower eigenvalues of the
iteration matrix. They are both suitable for low residual cost functions and use the spe-
cific form of the gradient of J in their iterative resolution. All these methods follow
this iterative procedure: :

θ(k+1) = θ(k) + ρ(θ(k),d(k)) . d(k) [18]

where ρ(θ(k),d(k)) and d(k) depend on the chosen method. In order to apply these
methods one must specify the initial value parameters θ(0) ∈ Rp.

When the objective function is smooth enough these methods are known to be
competitive with respect to their speed resolution. It is possible to modify the Gauss-
Newton method to allow convergence for larger residual problems: this is the Cor-
rected Gauss-Newton method. For these large residue problems the Quasi-Newton
approximation (the most famous is the BFGS approximation) does not exploit the
least-square nature of the objective function (Gill et al., 2006). A modified version
of this Quasi-Newton approximation due to Bertsekas can also be used (Mahnken et
al., 1996). All these gradient methods depend strongly on the initial parameter esti-
mation because of the possible non-uniqueness of the local minimum.

In most general cases, ill-conditioning is a common feature of this non linear least-
square problem because the underlying mathematical model is often ill-defined. The
objective function J can be highly non-smooth and it is possible that the previous
methods could not work very well: instability in the iteration matrix (∂h$/∂θ) esti-
mated at each step of the analysis is a common feature, whether it is evaluated by an
analytical (Mahnken et al., 1996; Mahnken et al., 1997) or a numerical method (i.e.
the finite difference approach in (Meuwissen et al., 1998; Giton et al., 2006)).

Direct search methods are one remedy since only the function value is evaluated se-
quentially and compared to find the optimum. In this framework, the simplex method
is a determinist approach which is suitable for a low number of parameters. It consists
in evaluating the cost function on a simplex of Rp and moving this simplex with re-
spect to the results obtained. The starting point of these methods is the initial simplex
(Kajberg et al., 2004a; Kajberg et al., 2004b). Stochastic algorithms are also direct
search methods. In the context of identification, SA and GA are commonly used. They
both are based on an analogy with biological systems. SA is based on a thermody-
namic process called annealing (Genovese et al., 2006a; Genovese et al., 2006b). GA
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is based on analogies with natural selection strategies from evolution. Both GA and
SA have the property of allowing uphill iteration, so the number of iterations does not
therefore necessarily decrease monotonically. However, the robustness of these algo-
rithms is obtained at the expense of the computation time since they require further
re-analysis to complete the optimisation process. Direct search algorithms, unlike the
gradient-based methods, do not require initial estimates but a suitable set of bound-
aries for the unknowns. Significant improvements in terms of calculation time and the
accuracy of the solution can be obtained with respect to the evolution of this boundary
set.

In the variational approach [17], the uniqueness of the solution combined with the
convexity of the function enables the selection of a relaxation algorithm (Latourte et
al., In Press).

In the case of the minimum variance algorithm, the minimisation of the function
J in [10] is performed iteratively applying the following scheme:

θ(k+1) = θ(k) + D(k+1)(m(t)− h$(θ, t)), [19]

where D(k+1) is a weighting matrix depending on error covariance and iterative ma-
trices.

4.4. Applications, results and sensitivity

4.4.1. Applications to material behaviour

4.4.1.1. Description of material behaviour

Due to the utilisation of a numerical process to iteratively compute the quantity
h$ in [9], a wide variety of material behaviour can be identified using this procedure.
From linear isotropic elasticity to hyper-visco-elasticity, there is no restriction.

In the framework of linear elasticity, (Burczynski, 2003; Pagnacco et al., 2005;
Cardenas-Garcia et al., 2006; Cugnoni et al., 2006; Genovese et al., 2006a; La-
tourte et al., In Press) work on isotropic materials while references (Bruno et
al., 2002; Lecompte et al., 2006; Molimard et al., 2005; Silva et al., 2007) extend
previous computations to anisotropic behaviour. Viscoelasticity can also be iden-
tified both for long constant times (see (Le Magorou et al., 2002) for wood-based
panel applications) and for short constant times, typical of vibro-acoustic studies
(see (Pagnacco et al., 2007) for a polymer application). In the framework of lin-
ear elasticity, the group led by Prof. Oomens at Eindhoven University of Tech-
nology has undertaken a number of applications of such approaches in the field
of bio-mechanics on human skin in vivo (Meijer et al., 1997) or dog skin in vitro
(Oomens et al., 1993; Van Ratingen, 1994) assumed to follow an orthotropic elastic
law. (Burczynski, 2003) realised a 3D elastic identification simulation on a human
pelvis. In all theses cases, the number of parameters to be identified does not exceed
6. References (Kavanagh et al., 1971) and (Genovese et al., 2006a) treat the iden-
tification of a hyper-elastic constitutive law (Mooney-Rivlin) from bi-axial tests. In
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(Giton et al., 2006), the same behaviour is used for a PET specimen in a uni-axial test.
Up to 7 parameters have to be identified.

A large part of the literature is also dedicated to the identification of the plas-
ticity (or visco-plasticity) of (metallic) material behaviour assuming elastic parame-
ters are known. Among the first studies were (Mahnken et al., 1996) and (Mahnken
et al., 1997), where the material was modelled by J2 flow theory with non-linear
isotropic hardening. This procedure was extended to Gurson’s damage modelling
in (Mahnken, 1999; Mahnken, 2000). Studies by (Meuwissen et al., 1998; Cugnoni
et al., 2006) and (Meuwissen, 1998) deal with the identification of several plasticity
models (Von Mises or Hill criteria combined with isotropic or kinematic hardening,
etc.) through traction tests on various geometries (notched or drilled specimens). Ref-
erence (Kajberg et al., 2004a) performed in-plane traction tests with rate dependent
mechanical behaviour to deduce piecewise the linear plasticity and a parabolic harden-
ing model. An extension of this work involving visco-plastic constitutive parameters
obtained from high strainrate testing is presented in reference (Kajberg et al., 2004b).
In (Forestier et al., 2002) a complete testing of both isotropic and anisotropic visco-
plastics involving from 4 to 11 parameters can be found. Finally, at the microscopic
scale, (Hoc et al., 2003) identified several hardening laws from a traction test on a
polycrystal.

4.4.1.2. Identification reliability

Although the mixed methods enable stringent validation of a constitutive model,
there is an indirect relation between errors in the constitutive model and errors in
the predicted response. So the objective of some preliminary numerical simulations
should be to design suitable experiments for parameter estimation and model valida-
tion. In addition, material parameters describing non linear behaviour are not usually
compared with parameters deduced from reference tests. This makes the quality of
the results difficult to assess.

The stability of the identification results with respect to the chosen mesh is usually
checked first. Moreover, for local methods, parameter identification does not seem
to be affected by a change in the estimate of the initial parameter. The reason is
that the solution is usually sought in a restricted space (in which there is a single
minimum). For SA based optimisers, distinct optimisation runs have been carried out
with different ranges of the set parameters. It seems that material parameter values
were rather insensitive to this change (Genovese et al., 2006a), probably due to the
high number of data given by full-field measurements.

Assuming stability of the numerical identification, the reliability of identification
results has to be assessed. Frequently, authors link the reliability of the identified
parameters to the good agreement between experimental and simulated data. Never-
theless, some of them look at the standard deviation of the associated residual. In ref-
erence (Meuwissen et al., 1998) the authors validate their results from the similitude
between this standard deviation and that of the measurement noise. Unfortunately,
this is a global criterion. A study of the first order Gauss Newton approximation:
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∇T j$∇j$ is given in (Molimard et al., 2005). An “identifiability factor” defined
as the minimum eigenvalue normalised by the maximum eigenvalue allows the au-
thors to discriminate some residue choices. Another approach is that of references
(Hendricks, 1991), (Oomens et al., 1993) and (Van Ratingen, 1994), who checked the
stability of the results identification by introducing noisy displacements or systematic
relative uncertainties (Kajberg et al., 2004a; Kajberg et al., 2004b; Giton et al., 2006).
In addition to sensitivity analysis, the correlation between parameters could be studied
through the evaluation of the correlation matrix such that: Cij = cos(∂h$

∂θi
, ∂h$

∂θj
). If

all off-diagonal elements are close to 1, the parameters are highly correlated and tend
to be inaccurate (Forestier et al., 2002).

4.4.2. Applications in dynamics

In the field of structural dynamics, reference (Dascotte, 2007) recently made a
review of model updating and discussed the expected benefits of the full-field mea-
surements now available in dynamic testing: e.g. interferometry techniques such as
ESPI or DSPI, holographic interferometry, and Scanning Laser Doppler Vibrometry
(SLDV). These optical measurements can speed up the testing process, with high spa-
tial resolution and without adding masses to the structures under test, which is decisive
in many dynamic applications. Many experimental studies have been carried out in
order to obtain reliable dynamic quantitative measurements, and the major references
in this domain now mainly deal with the step of transforming the optical measurement
data into values that are meaningful from a FE point of view (Linet et al., 2001; Michot
et al., 2001; Piranda et al., 2003; Simon et al., 2003). For example, references (Michot
et al., 2001; Piranda et al., 2003) deal with modal analysis and correlation tools able
to handle the large quantity of data given by ESPI (typically several hundred thou-
sand data items). For updating the FEM of a car window, (Linet et al., 2001) used
a photogrammetry technique to obtain the correct geometry and validate the result-
ing numerical model by assimilating operating deflection shapes (measured by pulsed
laser ESPI) to normal modes shapes.

More recently, dynamic full-field measurements have been used in inverse me-
chanical problems to identify material parameters. (Cugnoni et al., 2007) evaluated
the elastic properties of multi-layered composite laminates based on extracted mode
shapes and natural frequencies of free thin and thick plates. The experimental tech-
nique combined a loudspeaker and an SLDV, while the finite element model used
an accurate shell element derived from higher order shear deformation theory. The
properties were estimated by a nonlinear least-square algorithm applied to an error
norm formed by combining several criteria (frequencies, modes shapes and orthogo-
nality results of a modal analysis with anti-resonance localisations). The overall pro-
cedure provides accurate identification of the 6 parameters in a single test. (Moreau
et al., 2006; Pagnacco et al., 2007) evaluated the possibility of determining the visco-
elasticity parameters of isotropic, moderately thick plates from a single experiment.
Measurements were performed using an SLDV and an automated impact device. In
this work, an extension of the force and displacement method, called a displacement
weighted force method, is proposed to handle the frequency response fields in the
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identification procedure. The visco-elastic parameters are the real and complex parts
of the Young’s modulus and the Poisson’s ratio, with their frequency dependence but
without any parameterisation.

5. Conclusion

A common problem of continuum mechanics, the so-called direct or forward prob-
lem, refers to the determination of outputs such as displacements, strains and stress
fields. For a well defined system, the solution is obtained from knowledge of the in-
puts such as the geometry of the solid, the constitutive parameters and a set of bound-
ary conditions. The identification of constitutive parameters, boundary conditions or
stress distribution is another type of problem, called the inverse or backward problem
in the literature. Among the numerical techniques proposed for solving inverse prob-
lems, the Finite Element method is the most commonly used. FEMU is a very flexible
technique that can be adapted to a wide range of situations and data types. The aim
of this article is to review the studies which have applied the Finite Element Model
Updating method to identify either the mechanical behaviour of materials or a set of
boundary conditions.

In addition, the tremendous expansion in the development of full field displace-
ment and strain measurement provides a large amount of information for the charac-
terisation of the mechanical responses of structures and materials. The possible com-
bination of multi-axially loaded structures with 2D or 3D-kinematic measurements
enables experiments to be designed using conditions that are much closer to those
encountered in practical situations, such as many industrial processes. The present
paper has given an overview of the applications of the FEMU method in which the
experimental data used were full-field measurements.

The FEMU method for material characterization is generally marked by the use of
field quantities in experimental situations where homogeneous stress and strain fields
can not be obtained. The method has proven to be effective for the characterization
of highly anisotropic and non-homogeneous materials and for structural components.
But some important tasks must be carried out in the future in order to make this method
accurate and exploitable by every potential user.

The accuracy depends of course on many factors including, but not limited to, opti-
cal components, image resolution and image processing. Thus, from the experimental
point of view, it is very important to gather accurate data on test geometry, the sup-
port of the specimen and boundary conditions. So, numerical simulations have to be
carried out to investigate the influence of the test setup and to evaluate the maximum
sensitivity of the procedure to the unknown parameters. Combined with the experi-
mental data, the resolution of the measurand can satisfy a compromise with the spatial
resolution, especially when considering heterogeneous strain fields. One major source
of error could be the choice of an inappropriate constitutive model for the material be-
haviour. Sources of error can also result from direct computation, which may be less
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accurate in the case of a non-linear problem. In all cases, it is difficult to discriminate
errors stemming from the measurements from those resulting from numerical process-
ing, undoubtedly because of the lack of a direct relation between these two entities.
The cost function and the associated minimisation algorithm seem to play a crucial
role in the procedure: the robustness and convergence time of the algorithm, the sta-
bility of the solution and the dependency on the initial parameter set are all questions
that must be considered in order to achieve a better use of the method.
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