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ABSTRACT. In experimental mechanics, the possibility of tracking on component surfaces the 
full-field stress and strain states during deformation can be utilized for many purposes such 
as formability limits determination, quantification of stress intensification factors, material 
characterization and so on. Concerning the last topic, an interesting application could be a 
direct identification of the elasto-plastic material response up to large deformation. It is well 
known, in fact, that with traditional measurement devices it is possible to retrieve the true 
equivalent stress versus true equivalent strain data from tensile tests only up to the onset of 
necking, where localization starts to occur. This work aims to show how from the knowledge 
of a tensile test full-field strain and of load data it will be possible to obtain the full-stress 
field as well as the complete material elasto-plastic behavior.  
RÉSUMÉ. En mécanique expérimentale, la possibilité d’avoir accès à des champs de contrainte et 
de déformation à la surface d’éprouvettes peut être utilisée de différentes manières telles que la 
détermination de courbes limites de formage, la quantification de facteurs d’intensité des 
contraintes, la caractérisation de matériaux, etc. En ce qui concerne ce dernier point, une 
application intéressante concerne l’identification directe de la réponse élasto-plastique de 
matériaux jusqu’à de forts niveaux de déformation. Il est bien connu qu’avec des moyens de 
mesure traditionnels, il est possible de déterminer la contrainte équivalente vraie en fonction de 
la déformation équivalente vraie à partir d’un essai de traction jusqu’à l’apparition de la 
striction, pour laquelle on observe une localisation de la déformation. Cet article a pour but de 
montrer qu’à partir de champs de déformation et de la mesure de la force appliquée, on peut 
obtenir le champ de contrainte ainsi que le comportement élasto-plastique complet du matériau. 
KEYWORDS: image correlation, full-field strain measurement, plasticity, large deformation, 
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1. Introduction 

Dealing with processes where large deformations are involved many modeling 
problems may arise. Using FE codes, there is the necessity to put particular care in 
all the phases needed to set-up the model equivalent to the process: element type 
formulation, material model choice, discretization strategy, exact application of 
boundary conditions and loads. Then, the correct options regarding plasticity 
theories, tensor formulation, taking into account large displacements and large 
strains effects and time step value must be well weighed up in order to obtain 
convergence and accuracy of the non-linear solution. Almost all of these choices are 
specific competences of any FEM user and are beyond the scope of this work.  

Nevertheless, aside from one’s modeling strategy, a correct description of the 
elastic-plastic constitutive relation up to high strains is always needed. It is also clear 
that the correctness of any numerical simulation at large strain depends on the 
fidelity of the chosen material model with respect to its real behavior. 

Hereafter, the study will be limited to isotropic material subjected to monotonic 
loading conditions. True-stress vs. true-strain curve must be provided to FE code in 
order to describe the correct elasto-plastic behavior. Apart from the analytical 
expression of the adopted model, the problem is to retrieve enough information from 
experimental data for calibration purposes. For an isotropic model, simple tensile 
tests are sufficient to identify the material constants. The main difficulties lie in the 
lack of useful stress-strain data in the post-necking regime.  

The data returned by a clip gage are only correct up to the onset of necking: after 
that, in fact, the stress state becomes triaxial. Thus a different strain measurement 
device is needed to retrieve useful data directly from the test at high deformations. 

A first answer to this problem is based on the use of Bridgman’s formulas 
(Bridgman, 1952, McClintock, 1966). Bridgman’s method is founded on an 
analytical description of the stress state in the minimum section of cylindrical 
specimen in the post-necking regime. The evolution of three quantities must be 
measured during deformation as shown in Figure 1a: load, minimum diameter and 
radius of curvature of the necking section.  

One major advantage of the Bridgman’s method is that parameter estimation is not 
required. Once load, minimum neck diameter and radius of curvature during 
deformation are available the entire post-necking stress-strain curve can be estimated. 
As an example, in Figure 1b, σ−ε curves for a typical stainless steel are shown. Tests 
have been performed on smooth cylinder specimens with the aid of the optical 
equipment to acquire specimen silhouette during plastic deformation. Load data come 
directly from load-cell, while, by means of a post-processing software, the necessary 
geometric data can be retrieved from the images grabbed and stored during the test. A 
comparison between clip gage values, mean axial stress-strain values and Bridgman’s 
corrected values is put forth. Clip-gage response fails after the onset of necking while 
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the difference between the approximated mean axial stress-strain data and the 
Bridgman’s correction is appreciable in the post-necking regime. 

A second different approach to describe the post-necking behavior is derivable 
from the use of inverse methods (Ling, 1996).  

R

F

2a

  
 (a) (b) 

Figure 1. Bridgman’s method, acquired data and comparison between clip-gage 
data, mean axial stress-strain data, corrected data up to high deformation 

 

Figure 2. Ling’s extrapolation: load-displacement best fit results on smooth 
cylinder specimens for a quenched and relieved steel for cold working applications 

Suppose to write a weighted linear combination of the linear tangent extrapolation 
and of the power law extrapolation of the experimental data till onset necking, and to 
use this σ−ε curve to perform a numerical simulation of the tensile test. Minimizing 
the difference between the load-displacement curve coming from the test with the 
corresponding FEM model response, the weight value of the linear combination can be 
achieved in a few iterations with a fairly good accuracy (see Figure 2). 
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The first method allows stress-strain determination from direct measures, but 
requires additional experimental equipment and a rather complex post-processing 
phase. Furthermore, some simplifying hypotheses in the analytical formulation of 
the stress state affect the result accuracy.  

The latter method instead (Ling, 1996), is more accurate in its prediction, and is 
more popular than the previous. The major disadvantages, reside in the complexity 
of the inverse procedure to be coded for fine tuning and in the additional effort due 
to the interaction with a FE code. Another key drawback is that local stress-strain 
behavior is retrieved from global data; doubts may arise that the information 
provided is sufficient for a unique characterization especially when the model 
depends on more than one parameter.  

Recent works instead (Cooreman, 2007, Grediac, 2002), have put forth how 
inverse methods could be applied to identify material parameters exploiting local 
data. In general, local information is gathered from experimental tests using digital 
image correlation analysis and later post-processed through different techniques. 
The works differ on the way the collected data are used; most of them minimize the 
difference between measured and estimated strain values. In any case, the advantage 
of local data availability is that much more information can be utilized for 
calibration purposes. Following the trend of these recent works, a procedure is 
proposed here, instead of use a stress-based approach, in order to identify material 
constants from local data. The main goals are: 

– obtaining stress-strain constitutive data directly from experiments, without any 
FEM support; 

– exploiting the higher amount of information possible, not discarding global 
quantities, but in addition relying on local data whenever possible. 

The procedure can be summarized as follows. At first, from a tensile test on flat 
specimens cut from the material under investigation, the full strain field is retrieved up 
to large deformation. This data are obtained by processing the sequence of digital 
images jointly and synchronously acquired along with the load during the uniaxial test. 
The local deformation field is then computed exploiting the white-light speckle image 
correlation technique (Broggiato, 2004, 2008) that will be explained in the next 
section. 

Once the strain field is available, it is possible to proceed in a FEM like fashion, 
using the equations governing the plastic flow to get the local stress field for the 
tested specimen. This task is quite simple assuming the knowledge of the complete 
stress-strain relation. But, also without this information, using the collected global 
experimental load data, it is achievable to obtain stress field and material 
constitutive relation concurrently. This is made possible providing a parameter 
dependent analytical expression for the uniaxial stress-strain curve, retrieving the 
unknown parameter dependent stress field and finally imposing global equilibrium 
conditions on properly chosen specimen cross sections. On each section axial force 
is computed summing up all local axial stress components.  
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An optimization algorithm handles parameter changes until a complete matching 
between computed and experimental axial load curves is reached, for all the sections 
simultaneously. Best fit parameters are returned. In this way all local information is 
utilized for material tuning purposed. It is important to underline how, for the method 
to work, the hypothesis of plane stress condition must be strictly obeyed. Only in this 
case, in fact, the retrievable surface stress state is representative of the whole field 
inside the material. For this reason, flat specimen geometry has been chosen, in order 
to maintain the plane stress conditions up to the higher deformation as possible. 

2. Digital image processing technique 

The strain measurement techniques based on image correlation, that were born a 
couple of decades ago (Sutton, 1983, Bruck, 1989, Cheng, 2002, Amodio, 2003, 
Besnard, 2006, Robert, 2007), have recently become quite popular because of the 
continuous improvement of CCD and CMOS sensors in photometric quality, 
resolution and speed, and for the contemporary availability of low cost computers able 
to process hundreds of pictures in a few minutes. These aspects are particularly well 
suited to face full-field measurement, where a large amount of data should be extracted 
from each image. In full-field strain measurement, the use of a “global approach” for 
image correlation is advisable. This method constrains the displacement field to be 
continuous across the entire image, so that the description of material behavior results 
more reliable (Broggiato, 2004). In fact, the image field is divided into sub-images in 
the same way as the element mesh is built for a finite element analysis. During the 
correlation computation, the elements on the deformed image cannot freely change 
their shape to match the elements on the undeformed image, but it is required that their 
displacements accomplish the congruency constraint caused by the shape functions 
that describe the deformation of each image element. 

Considering the correlation between two images, the evaluation of the 
displacements is carried out as follows: the undeformed picture is divided in a fixed 
and regular grid of square elements; the portion of the image that is framed by the 
four corner nodes of each element is associated to them. On the deformed image a 
similar operation is performed, but here the node grid is neither fixed nor regular. 

Consequently, to associate a square sub-image to each element of the deformed 
grid, their content has to be remapped into sub-images equal in size and shape to the 
undeformed ones. To perform the remapping operation, the deformed image is 
resampled on a distorted pixel grid: a bilinear shape function is used to locate the 
new sampling points and a bicubic interpolation scheme is adopted to estimate the 
gray level of the resampled pixels. 

The target of the global correlation algorithm is to arrange the nodes of the 
deformed grid so that the sub-images coming from the resampling operation look (in 
speckle distribution) as close as possible to the corresponding sub-images of the 
reference image.  
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This problem is solved minimizing (by the nonlinear least squares method) the 
difference between the element sub-images in the two configurations and using the 
deformed grid node coordinates as unknowns. At convergence, the displacement field 
is completely determined, thus at each node the strain components can be evaluated by 
means of the Cauchy-Green theory for large strain description (Amodio, 1995).  

A further development of the global approach in image correlation is the multi-
image correlation method. When a single tensile test is monitored collecting some 
hundreds of images, the spatial constraint, given by the global approach, can be 
extended to time improving the smoothness of displacement evolution and, 
consequently, the accuracy of measured data. Doing so, the shape function used to 
locate the new sampling points on deformed configuration becomes a function of both 
space and time that involves a set of typically 5 or 7 consecutive images in each 
correlation step.  

This method, originally introduced to measure the strain-rate field (Broggiato, 
2004), allows to improve the outcome accuracy of every numerical procedure that is 
not based on total strains but on strain component increments as require here (see 
next section, Equation [5]). From this point of view, the strain-rate and the stress 
components computations closely resemble each other. Additional details about this 
method can be found in (Broggiato, 2004). 

3. Large-strain material characterization procedure  

As a first step, the procedure to obtain the stress field starting from the strains 
measured on a thin sheet will be illustrated. It must be again underlined that plane 
stress condition is required. Specimen geometry has to be devised to ensure this 
hypothesis. Then, providing the true stress – true strain material response and the 
full-field strain evolution (which is available for the surface of the specimen only, 
but that in plane stress condition is also representative of the in-core stress state), the 
following Prandtl-Reuss formulas (Khan, 1995, Chung, 1988) provide the relation 
between deformation and tension. Here they are expressed in a general rate form, 
which allow full-stress field updating: 
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Being σH the hydrostatic stress and K the bulk modulus. Dealing with large strains 
elastic shape and volume changes can be neglected so that [1] and [2] reduce to: 
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Prandtl-Reuss equations have been intensively validated experimentally. The 
approximation is acceptable for almost all engineering applications. 

For plane stress conditions the above expressions can be specialized and easily 
inverted to provide stresses given the plastic deformation tensor: 
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where νp is the Poisson’s ratio in the plastic regime. This last operation does not take 
much computing time so that, if strain information is available in real-time, stress 
determination could be available in real-time as well.  

One computational disadvantage of a direct use of plastic flow equations is that 
stress state should be locally inquired to check if it falls inside or outside the previous 
yielding surface, so that elastic or plastic equations could be chosen accordingly.  

A valid alternative to overcome this drawback is to proceed relying on the radial 
return mapping algorithm. This procedure, which is the standard choice in FE codes, 
is quite simple: firstly the stress is updated assuming that the response is elastic and 
then, if it is outside the yield surface, the stress is projected back on to the closest 
point of the yield surface. Of course for a strain hardening material the yield surface 
is not constant, but expands during the plastic flow, so that the stress is to be 
projected on the updated current surface. The data available at the beginning of each 
radial return update are the previous stress, the equivalent plastic strain, and the 
strain tensor increment in the time-step. As output, the radial return procedure 
updates stress tensor and equivalent plastic strain at the end of the time-step itself. 
By this algorithm, both elastic and plastic domain can be handled automatically and 
elastic effects in the plastic region can be accounted for. In this works, the same 
level of accuracy of results have been found using both methods described above. 

Anyway, once the method for getting stress field from strains can be regarded as 
consolidated, let us now see how, if the strain field is acquired synchronously with 
global tensile load data, equivalent stress vs. equivalent plastic strain curve can be 
identified along with stress field. The constitutive curve has been modeled 
analytically as: 

2
0 )1( pp

B DCeA p εεσσ ε ++−+= −  [6] 

σ0 is the initial yield stress, the second term models the initial plastic zone while the 
last ones the large deformation region which for most materials is quite straight or 
slightly curved. The unknown parameters are A, B, C and D. For many materials D 
can be disregarded.  

Then, for some arbitrary specimen cross sections, local axial stresses are 
summed up to give global axial load. An error function, intended as the difference 
between experimental and (parameter dependent) computed global load data can be 
minimized by means of an optimization algorithm. Minimization is run on all 
deformation steps available simultaneously in order to exploit the maximum 
information possible. The outcome of the procedure is the unknown best fit 
parameter set. Doing so, the material constitutive law and stress-field can be 
concurrently built up.  
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Figure 3. Detail of the flat specimen used for material characterization 

A step by step description of the whole calibration process is now put forth: 
1. From speckle experimental data, grid node coordinates, connectivity and strain 

field are retrieved for each deformation step. Corresponding global data, load and 
displacement (from clip gage) are collected too. 

2. For each node, the appertaining area of the part of the continuum it represents 
is estimated. Then, area projection along the perpendicular to the axial loading 
direction is computed as well. 

3. Specimen cross-sections where plastic behavior is exhibited in greater extent 
are selected. Nodes lying on these sections (on the undeformed grid) are reorganized 
in subsets. The section evolution during all steps of the deformation is followed. 

4. First guess parameters for constitutive curve expressed by [6] are chosen. Here 
the choice is not a serious issue, since a good first attempt could be provided from 
the stress-strain curve, valid up to the onset of necking, easily determined from load-
displacement acquired data. No particular difficulty has been encountered anyway 
when starting from parameters retrieved from literature constitutive curves for the 
specific material. Given that, by Prandtl-Reuss equations or radial return, the 
subsequent first guess stress field is computed. 

5. From the knowledge of the stress field for each previously located section the 
global axial load is retrieved as:  

∑=
i

p
i

a
ia AF σ  [7] 
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where a
iσ  is the local axial component of stress, p

iA  is the previously determined 
projection of the area appertaining to the i-th node where the index i sweeps all the 
nodes of the section. Of course Fa is calculated for all the selected sections as well as 
for all the available time increments. 

6. An error vector is built up, expressed as the difference, section by section, and 
increment by increment, of the calculated and experimental axial load. A scalar error 
function is obtained evaluating the L2 norm of this error vector. 

7. Through an iterative procedure, an optimization algorithm varies the unknown 
parameters of the constitutive law until the error function is minimized. Here both 
zero order simplex method and first order non-linear least squares algorithms have 
been tested with success. The output of this phase is the optimum parameter set that 
provides the correct stress-strain relation up to large deformation as well as the final 
stress field in the material.  

4. Experimental tests and main results 

The experimental setup consists of a 250 kN servo-hydraulic MTS axial machine 
capable to perform tension tests on flat specimens as shown in Figure 3. The 
material under investigation is a high strength steel for thick tube applications. Axial 
load and deformation are acquired by a load-cell and a clip gage. The optical 
equipment is mounted on a frame clamped on a column of the testing machine (see 
Figure 4). The core element consists in a high-resolution (3000×2200 pixel) Pixelink 
A781 CMOS camera for image acquisition. It can be actuated vertically to follow 
specimen elongation to guarantee the image to be always centered within the region 
of interest. Optical and traditional data acquisitions are obviously synchronized. 
Tests are performed at a quasi-static constant speed controlling MTS actuator 
displacement. All tests ended at specimen failure. Snapshots of the specimen surface 
are collected at sampling frequency of 0.5 Hz. All other data are sampled at 50 Hz. 

To process the strain field, the specimen area framed in each image is divided in 
a 12×24 element grid. The dimension of each element is 128×128 pixels. Thus the 
displacement components are computed in 325 nodes. Typically, calculations last 
less than 2 seconds per image. 

Figure 5 shows acquired optical data at various levels of deformation. In 5a the 
image is taken at small constant strain (equivalent true plastic strain: ε = 0.02 m/m) 
before the onset of necking. In 5b strain localization has already started (εmax= 0.4 
m/m) while in 5c specimen is undergoing large strain and it is close to failure (εmax= 
0.7 m/m). 

In Figure 6 instead, the computed strains are represented. Overlapping of results 
on the correspondent raw image allows the immediate visualization of the local full-
strain field. The three images of Figure 6 are caught at same strain levels of 
Figure 5. 
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Figure 4. Optical acquisition experimental equipment 

     
 (a) (b) (c) 

Figure 5. Acquired optical data during test: a) pre-necking, small strain. b) onset of 
necking, strain localization. c) post-necking, large deformation 
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 (a) (b) (c) 

Figure 6. Equivalent total strain field from image correlation technique post-
processing: a) pre-necking, constant strain. b) onset of necking, strain localization. 
c) post-necking, large deformation 

Figure 7 shows the stress maps computed by applying the procedure presented in 
the previous section. Again the three contour maps refer to the same time steps of 
Figure 5. 

     
 (a) (b) (c) 

Figure 7. Von Mises equivalent stress field from the proposed technique post-
processing: a) pre-necking. b) onset of necking. c) post-necking 
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Figure 8. Multi section best fit calibration results. Load-displacement curves. 
Experimental, first guess and best fit comparison for 4 cross-sections 

The calibration procedure described above has been applied with success on the 
available experimental data. Main results are presented in Figures 8 and 9. In the 
former, a comparison in terms or global load-displacement curves is reported for 
4 equispaced cross-sections selected starting the specimen middle section and 
1.25 mm spaced. 

 
Figure 9. Stress-strain constitutive law. Experimental results up to the onset of 
necking compared with first guess and optimized curves up to large strains 
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This ensures that the region interested by large plastic strains can be “captured”. 
All comparisons are among experimental, first guess and best fit curves. It can be 
noticed how the response of the proposed procedure closely matches the 
experimental load curve. In the latter, the final stress-strain curve is reported and can 
be compared with the experimental one obtained up the onset of necking from a 
standard tensile test. Finally, Table 1 summarizes the first guess and best fit 
parameter sets. The D parameter (in this specific application where material curve 
can be approximated by a straight line in the large strain region) is redundant; 
therefore, it has been put equal to zero and excluded from the calibration. 

Table 1. First guess and best fit parameter sets 

Parameter First Guess Best Fit  

A 300 201 MPa 

B 30 42.98 - 

C 200 578.16 MPa 

D 0 0 MPa 

To conclude, by means of this method, using digital image correlation, it has 
been shown that it is possible to extend the knowledge of stress-strain relation far 
beyond the necking point directly from experimental data. This allows material 
characterization up to large strain and to correctly model it within FE codes for 
simulating of all processes where high deformations are expected. 

5. Conclusions 

The proposed method has been successfully implemented in a C++ programming 
environment. It has been verified on experimental tests performed on flat specimens 
derived from high-strength steel for thick tube applications. The procedure turned 
out to be robust and reliable both with the simplex and the non-linear least squares 
algorithms. In any case, isotropic hardening best fit parameters have been found. 

At the very end, the identification of the material constitutive law up to high 
strains has proven to be practicable, based only on experimental data collected from 
a standard tensile test on a flat specimen, on condition that the information coming 
from the image correlation technique are available. These additional data, allowed 
the elasto-plastic material model characterization by means of local data, unlike the 
conventional method, where the “tuning” relied on a global data basis. 

It must be again pointed out how, for the method to work, plane-stress condition 
assumption should be strictly verified. This restriction comes from an intrinsic limit 
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of the optical technique used, which can obviously investigate material deformation 
on the specimen surface only.  

As future developments, it is worthy to perform supplementary tests on different 
materials to ensure the procedure applicability on a general material behavior. Then, a 
validation phase should be accomplished, to confirm the transferability of the 
identified constitutive law on stress-strain conditions different from those used for 
calibration. Finally, a comparison with the traditional methods would be valuable too. 
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