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ABSTRACT. The basic principle of the described procedure for plastic material identification is 
the generation of a complex and heterogeneous deformation field, which is measured by 
digital image correlation (DIC) and compared to Finite Element (FE) simulations. In this 
paper two tests for the identification of the hardening behaviour and the yield locus of DC06 
steel are compared: a uni-axial test on a perforated rectangular specimen and a bi-axial 
tensile test on a cruciform specimen. The work hardening of the material is assumed to be 
isotropic and the yield locus is modelled by the anisotropic Hill48 criterion. The identification 
results for the different material parameters, based on both the uni- and the bi-axial test, are 
discussed and show a significant agreement. 
RÉSUMÉ. Le principe de la méthode décrite pour l’identification paramétrique d’un modèle 
plastique est de générer un champ de déformation complexe,  mesurée à l’aide de la corrélation 
d’image et comparée à un champ de déformation calculé par éléments. Cette publication traite 
de la comparaison de deux tests pour  l’identification de la loi de durcissement et la surface de 
plasticité d’un acier DC06 : un test uniaxial sur une éprouvette rectangulaire trouée et un test 
biaxial sur une éprouvette cruciforme. Le durcissement du matériau est décrit par la loi de Swift 
et la surface de plasticité  par le critère anisotropique Hill48. Les résultats de l’identification, 
basés sur les tests uniaxial et biaxial, sont discutés et s’avèrent similaires. 
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1. Introduction 

The motivation of the study of metals and their plastic mechanical behaviour is 
coupled to the industrial demand for lighter parts with higher mechanical resistance. 
The manufacturing process of these parts is a complex matter and the final quality of 
the product is coupled to a number of parameters. The shape and size of the 
processing tools, the applied loads, the obtained displacements, the lubrication 
conditions, the thickness of the sheet, the material anisotropy and elasto-plastic 
properties are just a few of the variables influencing the resulting product. Possible 
additional problems such as springback, wrinkles and earing behaviour can occur 
and should preferably be predictable. Therefore, accurate modelling of the different 
processes is a very important and indisputably cost saving activity. 

The numerical simulation of sheet metal forming processes in the automotive or 
aerospace industry has considerably evolved concurrently with computer 
performance and the development of computational methods like the Finite Element 
Method (FEM). It has proven to reduce tool costs in the design stage and to optimize 
existing processes. The behavioural laws implemented in these simulation codes not 
only need to be thermodynamically acceptable and fulfil the general mechanical 
principles, they have to be identifiable as well. It should therefore be possible to 
determine the inherent model parameters, based on a number of more or less 
complex mechanical tests. These parameters need to be identified so as to enable 
sufficiently realistic predictions of actual material behaviour. 

The elasto-plastic constitutive laws represent an important class of models used 
for the simulation of metallic structures. They are all based on: 

– a yield criterion, which determines the multi-axial stress state at which plastic 
deformation or yielding occurs; 

– a flow rule, offering a relationship between the components of the strain rate 
and the stress; 

– a hardening law, describing the evolution of the initial yield stress during 
plastic deformation. 

Two types of elasto-plastic laws exist. On the one hand there are the models 
based on an approximation of experimental data by an analytical function for the 
description of the yield function. These models are said to be “phenomenological”. 
On the other hand, models in which the elastic limit is calculated based on the 
crystallographic structure of the material can be considered as well. These models 
are called “texture-based” or “micro-macro”. For the latter type of models, instead 
of mechanical tests, texture measurements by X-ray diffraction are performed in 
order to identify the initial yield surface (Flores, 2006). This polycrystalline analysis 
predicts the relation between macroscopic stress and plastic deformation.  

The use of these texture-based models, however, is computationally expensive. 
The usual way to achieve faster solutions is to define explicit yield functions. In this 
paper, only the latter type of models is considered. The main reason to do so, is their 
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availability in most commercial simulation softwares. However, attention should be 
drawn to the fact that the validity of phenomenological models is limited to 
situations that are comparable to the range of experiments on which they are based 
(Boogaard, 2002). 

Accurate modelling is naturally coupled to an accurate identification of the 
inherent model parameters. Several tests (uni-axial tensile test, plane strain test, 
shear test, equi-bi-axial test) have been developed for the homogeneous 
identification of yield criteria and hardening model parameters. The term 
“homogeneous” is an indication of the nature of the obtained deformations. This is 
an assumption, which is however not always verified (Khalfallah, 2002). It is 
therefore more efficient to take into account possible heterogeneous straining. This 
is possible by the use of a full-field measurement technique coupled to inverse 
modelling. 

The use of inverse modelling, in its most general sense (i.e. not necessarily based 
on full field measurements), in the area of metal forming processes is of a recent 
date. In the first examples of the application of an inverse modelling strategy, 
standard experiments like tensile tests on axi-symmetric specimens were used and 
compared to FE-simulated results (Mahnken et al., 1997; 1999) and (Bruhns et al., 
1999). Other authors make use of notched cylindrical bars (Springmann et al., 
2005), uni-axial compression tests (Lam et al., 1998), torsion tests (Lam et al., 1998; 
Gavrus et al., 1996) or cyclic bending tests (Yoshida et al., 2003). In the cited 
references, the parameters of a selected plastic model are estimated by minimizing a 
weighted sum of squared differences between measured and calculated strains or 
displacements and the applied loads. 

Instead of using only simple practically homogeneous tests, several authors have 
performed experiments leading to non-uniform stress and strain fields. The idea 
residing in this approach is to make the simultaneous identification of a number of 
model parameters possible based on a single test. Related articles using non-
conventional specimen geometries can be found in (Kajberg et al., 2004; Meuwissen 
1998; Khalfallah, 2002; Mahnken et al., 1996; Grédiac et al., 2006) and (Pannier et 
al., 2006) By using non-standard experiments exhibiting inhomogeneous stress and 
strain fields, a more complete assessment of the model performance can be obtained. 
This assessment is even further enhanced if local or field information is measured in 
addition to global or boundary information. 

The elasto-plastic material model considered in this work, is based on an additive 
decomposition of the total strain increments into an elastic and a plastic part, 
coupled to the assumption of rate independent associative plasticity and using a 
large strains description. The hardening of the material is assumed to be isotropic 
and it is modelled by a Swift hardening law. The yield locus on the other hand is 
modelled by the orthotropic quadratic Hill48 yield criterion. These assumptions, 
together with the assumption of plane stress, yield six independent parameters to be 
identified. 



396     EJCM – 18/2009. Pictures and finite elements 

To this end, the measured loads are implemented as boundary conditions in the 
FE-model of the experiments and the different strain components obtained by digital 
image correlation are compared to the simulated values. Two types of tensile tests 
using more or less complex specimen geometries are proposed for the identification 
of the hardening behaviour and the yield surface of an interstitial free (IF) DC06 
steel: a uni-axial tensile test using a perforated rectangular specimen and a bi-axial 
tensile test performed on a perforated cruciform specimen. Both tests are compared 
based on the values of the obtained material parameters and based on the 
convergence behaviour of the corresponding iterative procedure. For each 
experiment, the difference between the experimental and numerical strains (εx, εy 
and εxy) is minimized in a least squares sense by updating the values of the different 
material parameters simultaneously. The sensitivities used to obtain the parameter 
updates are determined by finite differences, using small parameter perturbations. 
The applied optimization routine, is based on a constrained Newton-type algorithm.  

Paragraph two gives a description of both considered experimental set-ups: the 
uni-axial and the bi-axial tensile test. Paragraph three contains a brief description of 
the digital image correlation measurement technique. Paragraph four describes the 
applied numerical model. Paragraph five discusses homogeneous elasto-plastic 
material identification and paragraph six discusses the inverse modelling procedure, 
the numerical aspects of the optimization routine and the sensitivity analysis used. 
Finally, paragraph six evaluates the parameter identification results based on both 
heterogeneous experiments and compares them to the results obtained by standard 
homogeneous material tests. 

2. Experimental set-ups 

2.1. Bi-axial tensile test 

Different experimental techniques and specimens have been used to produce bi-
axial stress states. These techniques may be mainly classified into two categories 
(Zouani, 1996): (i) tests using a single loading system and (ii) tests using two or 
more independent loading systems. In the first category the bi-axial stress ratio 
depends on the specimen geometry – their main disadvantage – whereas in the 
second category it is specified by the applied load magnitude. Examples of the first 
category are bending tests on cantilever beams, anticlastic bending of rhomboidal 
shaped plates and bulge tests. Examples of the second category are thin-walled tubes 
subjected to a combination of tension/compression with torsion or internal/external 
pressure, and cruciform specimens under bi-axial loading (Dawicke, 2000). The 
most direct technique to create bi-axial stress states consists in applying in-plane 
loads along two perpendicular arms of cruciform specimens. The use of hydraulic 
actuators represents a very versatile technique for the application of the loads. The 
main difference between the existing techniques is the use of one or two actuators 
per loading direction. One actuator per loading direction (Chaudonneret, 1977) will 
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cause movements of the centre of the specimen causing a side bending of the 
specimen. This results in undesirable non-symmetric strains. Systems with four 
actuators (Makinde, 1992) with a closed-loop servo control using the measured 
loads as feedback system, allow keeping the centre of the specimen in the same 
position. 

The plane bi-axial test device using cruciform specimens developed at the Vrije 
Universiteit Brussel has four independent servo-hydraulic actuators with an 
appropriate control unit to keep the centre of the specimen explicitly still. The 
device (Figure 1) has a capacity of 100kN in both perpendicular directions, but only 
in tension. As no cylinders with hydrostatic bearing were used, failure or slip in one 
arm of the specimen will result in sudden radial forces which could seriously 
damage the servo-hydraulic cylinders and the load cells. To prevent this, four hinges 
were used to connect the specimen to the load cells and the servo-hydraulic 
cylinders to the test frame. Using hinges for each loading direction however results 
in an unstable situation in compression and consequently only tension loads can be 
performed. 

 

Figure 1. Plane bi-axial test device for cruciform specimens 

In an ideal situation no displacement of the centre point of the specimen should 
be observed. However, even when using four actuators, a small displacement might 
always occur in a real situation. This problem can be solved by quantifying the small 
load difference and using this as a control signal (Smits, 2006).  

The geometry of the material specimen is shown in Figure 2. The specimen has a 
thickness of 0.8 mm. The specimen’s arms are in alignment with the rolling (RD) 
and transverse direction (TD) of the metal sheet (see Figure 2). The shaded area 
indicated in Figure 2 is the zone in which the experimentally determined strains are 
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compared to the numerical strains (the strains are compared in the Gauss points of 
the elements of the FE model). 

During the test, the force on the 4 arms is increased up to approximately 4.25kN. 
The unknown parameters are determined iteratively by comparing the 
experimentally measured and the numerically computed strain fields at 7 different 
loading steps, namely 3511N, 3755N, 4019N, 4082N, 4136N, 4219N and 4253N. 

 

Figure 2. Geometry of the perforated cruciform specimen 

2.2. Uni-axial tensile test 

The second experiment consists of a uni-axial tensile test on the perforated 
specimen shown in Figure 3. The specimen has again a thickness of 0.8mm. The 
tensile direction is rotated by 45° with respect to the in plane material directions. 
The shaded area indicated in Figure 3 is the zone in which the experimentally 
“measured” strains are compared to the numerical strains. 

During the test the force is increased up to approximately 7.65kN. Again the 
strain data from 7 load steps is used to identify the unknown material parameters: 
6318N, 6543N, 6763N, 6987N, 7217N, 7432N and 7656N. 
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Figure 3. Geometry of the uni-axial, perforated specimen 

3. Digital image correlation 

Displacement and strain determination used on the perforated specimens is 
performed by digital image correlation (DIC). This technique allows studying 
qualitatively as well as quantitatively the mechanical behaviour of materials under 
certain loading conditions and has been used in various technological domains. The 
DIC technique has been developed in the 80’s and has since then extensively been 
evaluated (Knauss et al., 2003; Schreier et al., 2000; Sutton et al., 1988) and improved 
(Bruck et al., 1989; Sutton et al. 1986, Cheng et al. 2002, Yoneyama et al., 2006). 
However, the fundamental principles of the method remain unchanged and are well 
described by (Peters and Ranson, 1982; Sutton et al., 1983 and Chu et al. 1985). 

Each picture taken with a CCD camera corresponds to a different load step. The 
cameras used in the current set-up use a 1392x1040 pixel gray level 12-bit CCD 
sensor. Two images of the specimen at different states of deformation are compared 
by means of a correlation window or an image subset. The image correlation routine 
allows locating every subset of pixels in the initial image in the deformed image by 



400     EJCM – 18/2009. Pictures and finite elements 

means of a classic correlation function using the sum of the squared differences of 
the pixel values. The displacement result, expressed in the centre point of the subset, 
is an average of the displacements of the pixels inside the subset. The step size 
defines the number of pixels over which the subset is shifted in x- and y- direction in 
the selected image to calculate the next result. The size of a subset can be for 
example 9x9, 11x11, 13x13 pixels etc.; the step size can be 1, 2, 3 pixels etc.  

For the actual tests a subset size of 19 pixels and a step size of 5 pixels is used. 
In the available commercial DIC-systems the subset size is identical throughout the 
entire image. This means that once the subset size is chosen, it remains identical 
during the correlation calculation. The size of the subset depends on the type of 
deformation field to be expected. When dealing with homogeneous deformation 
(constant displacement gradients), the subset size should be as big as possible to 
enable noise filtering and thereby smoothing of the displacement data. However, in 
the case of heterogeneous deformations (variable displacement gradients), the subset 
size should be a trade-off between smearing out the displacement data (noise 
filtering) and correlation problems. When using large subsets, the displacement data 
is homogenized in an area that does not necessarily correspond to the heterogeneous 
character of the deformation field. When using small subsets, the grey value pattern 
is not always unique enough to avoid problems during the correlation calculation  

The choice of a 19x19 pixels subset size in this study is a fair compromise 
between the previously cited arguments. The step size on the other hand only 
determines the resolution of available displacement data. The smaller the step size, 
the larger the number of displacement data points and the longer the correlation 
calculation time. The chosen step size is a compromise between a fair CPU-time and 
the possibility to smoothen the displacement data within a given strain window. A 
strain window is defined by the number of identified displacement points. 

 

Figure 4. Digital image correlation technique 
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Figure 4 depicts the sequence of taking a picture of an object before and after 
loading, storing the images onto a PC through a frame grabber, performing the 
correlation of both images – i.e. locating the different undeformed subsets in the 
deformed image – and finally calculating the corresponding displacement of the 
centers of the subsets, which finally yields the desired displacement field.  

The strain field is calculated by numerical differentiation of the smoothened 
displacement field (Lecompte, 2007). In this study the experimental and FE-
calculated strains are compared as being the responses of the system to the boundary 
conditions. This means that the experimental strains have to be derived from the 
measured displacement field. As a step size of 5 pixels is used, an experimental 
displacement value is available every 5 pixels in both horizontal and vertical 
direction. The FE-strains are calculated at the Gauss points located in the FE-mesh 
elements. The objective is to calculate the experimental strains at the same location. 
A bilinear interpolation function is therefore fitted onto a square region of 5x5 data 
points (i.e. strain window size) around the coordinates of the Gauss-points in the 
experimental displacement data field. The choice of a region containing 5x5 data 
points is based on a trade-off between too much smoothing when a larger region is 
used and a higher noise influence when a smaller region is used. Once the analytical 
curve fit expression of the surface of the region is determined for both the horizontal 
and the vertical displacement components, it can simply be differentiated at the 
considered location in both directions, yielding the different strain components. 
When the elements of the FE-mesh contain only one Gauss point, which is the case 
in the present study, the strain values will be compared at a number of locations 
equal to the number of elements. 

4. Numerical model 

The numerical strain fields are computed with the commercial FE package 
Abaqus/Standard (Abaqus Inc. version 6.6). For both experiments, the specimen is 
modelled with S4R elements (linear shell elements with reduced integration), which 
is a valid representation since the out-of-plane shear stresses will be negligible. The 
average mesh size in the area of interest is about 1mm for the cruciform specimen 
and circa 0.75mm for the uni-axial specimen. The constitutive model, applied in 
Abaqus/Standard, is a hypoelastic-plastic formulation, assuming that the total 
logarithmic strain rate D can be additively split into an elastic and a plastic part: 

plel DD  D +=  [1] 

Moreover an associated flow rule is applied, assuming normality of the plastic 
strain rate to the yield surface: 

σ
Dpl

∂
Φ∂

λ=  [2] 
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with λ  the plastic multiplier, Φ  the yield surface and σ  the Cauchy stress tensor. 
The material is assumed to be elastically isotropic and plastically orthotropic. The 
elastic constants are evaluated from standard tensile tests. A Young’s modulus E of 
183 GPa and a Poisson coefficient ν of 0.35 were found. These values are 
considered to be known. This implies that the elastic material properties are not 
identified together with the other parameters. As the elastic strains for metals are 
very small, they can only be measured with very limited accuracy by digital image 
correlation. It is therefore chosen not to consider them as additional unknowns. 

The yield surface is represented by the Hill48 yield criterion. Since plane stress 
conditions were assumed, the Hill 48 yield criterion can be written as: 

( ) ( ) 0σ2Nσσ2HσσHFσHG 2
eq

2
xyyyxx

2
yy

2
xx =−+−+++  [3] 

in which the indices x and y indicate both orthotropic axes, with eqσ  the equivalent 
stress and 1HG =+ . The hardening behaviour is described by a Swift law: 

( )npl
eq0eq K ε+ε=σ  [4] 

with K the deformation resistance, 0ε  the pre-strain value, pl
eqε  the equivalent 

plastic strain and n the hardening exponent. It should be noted that neither kinematic 
hardening nor strain rate dependency are considered. Thus, a total of 6 material 
parameters have to be identified: n, K, 0ε , F, H and N. The initial parameter values 
are estimated as: n = 0.3, K = 600 MPa, 0ε  = 0.005, F = G = H = 0.5 and N = 1.5 
(i.e. assumption of isotropic behaviour). 

5. Homogeneous identification 

The orthogonal coordinate system defined for rolled material is based on three 
principal axes of that material, i.e. the rolling direction (RD), the transverse direction 
(TD) and the normal direction (ND). The local xyz-coordinate system for a tensile 
specimen cut out of a plate material is defined by the angle between the rolling 
direction and the specimens longitudinal axis. For a sheet metal sample, the x- and 
y-axis lie in the material plane and the z-axis is perpendicular to it.  

Traditionally the parameters of the hardening law are determined based on a 
tensile test, performed on a specimen cut out in the rolling direction. The parameters 
of the Hill48 yield criterion on the other hand are determined by the Lankford 
coefficients r0°, r45° and r90°. These coefficients represent the ratio between the 
transversal plastic strain rate and the through thickness plastic strain rate occurring 
during a tensile test in respectively the 0°, 45° and 90° direction from the rolling 
direction. As the thickness strain cannot easily be measured, it is calculated using 
the assumption of volume conservation during plastic deformation. It can be shown 
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that the relations between the Lankford coefficients and the different 2D Hill48 
parameters reduce to: 
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As the equivalent yield stress is equal to the stress in a uni-axial tensile test in the 
rolling direction, it can be stated that H+G=1.Together with this relation, equations 
5-7 lead to a fully determined system of equations allowing to determine the four 
unknown parameters F, G, H and N. 

 

Figure 5. Different stress states on the initial yield surface expressed in σx - σy - σxy - 
space defined by the axes of orthotropy 

Another possibility to identify the parameters of the yield criterion is by fitting 
the expression on a number of experimentally obtained stress states. To this end a 
number of standard tests can be performed: uni-axial tensile tests in the 0° and 90° 
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direction from the rolling direction; plane strain tensile test; in plane equi-bi-axial 
tensile test; pure shear test. The stress states corresponding to these tests can be 
represented in the σx - σy - σxy - space (Figure 5). The axes correspond respectively 
to the stress in the rolling direction, the stress in the transverse direction and the 
shear stress. These stresses are not necessarily the principal stresses. This is only the 
case when the shear component is absent. Information about the experimental 
equipment that can be used to attain the different stress states can be found in 
(Flores, 2006). Results of this type of initial yield surface identification are 
discussed in (Vegter, 2003 and Flores, 2006). All of the performed experiments in 
these references possess the same property: the obtained strain field has to be as 
homogeneous as possible to allow a straightforward determination of the stress and 
the strain values. The hypothesis of homogeneity however, is not always verified. In 
the next paragraph, a method is proposed based on the coupling between Finite 
Element simulation and full-field surface displacement data. In this case the 
homogeneity of deformation is not longer needed, it is even avoided. 

6. Inverse modelling 

6.1. Introduction 

A so-called “direct” problem is the classical problem where, in the field of 
mechanical engineering, a given process or experiment is simulated in order to obtain 
the geometry of the considered object and the stress-strain distribution in the final 
configuration as well as its evolution during the process of deformation. The success 
of such an analysis largely depends on the reliability of the applied constitutive models 
and on the accuracy of the estimates of the parameters in these models. 

Most standardized methods for the determination of constitutive material model 
parameters are based on the use of test specimens with a well-defined standardized 
geometry and loading, so as to induce particular conditions on the obtained stress 
and strain field, which are satisfied in at least a part of the specimen. Uni-axial 
tensile and compression tests, plane strain tensile tests, torsion and bending tests are 
suchlike experiments that allow the determination of the unknown material 
parameters. Relatively simple analytical relations can be used accordingly to 
determine the unknown material parameters from the measurement of variables such 
as forces, torques, displacements and twist angles. 

For many processes in e.g. metallurgical industry where materials are subjected 
to high strains and high strain rates, possibly in combination with high temperatures, 
the strain and stress distributions are not homogeneous at all. This implies that the 
use of conventional tests, with carefully designed test specimens, not always allows 
to correctly identify the actual material behaviour. This is why an increasing interest 
is found in so-called “inverse” methods, also known as “mixed numerical 
experimental methods”, which allow taking into account complex specimen 
geometries and loading conditions. 
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Figure 6. General flow-chart of an inverse modelling problem 

Figure 6 illustrates the general concept of an inverse modelling problem in the 
case of mechanical parameter estimation or parameter identification. In this example 
a bi-axial tensile test is considered as the system and the corresponding strain field is 
the system's response.  

6.2. Optimisation algorithm and sensitivity calculation 

The identification of the six considered unknown material parameters is based on a 
Gauss-Newton optimisation method. The cost function that is minimized is expressed 
in terms of an unweighted least squares formulation. Expression [8] shows the form of 
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cost function )(pC , in which p  is the vector of material parameters to be identified. 
The residuals in the function are formed by the differences between the experimental 
and the numerical strain components εx, εy and εxy expressed numerically as well as 
experimentally (as explained in Section 3) in the Gauss-point of every mesh element. 
The index “t” in expression [8] stands for the total number of elements and the index 
“s” stands for the total number of considered load steps. 
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Expression [9] has to be written for every single unknown parameter jp . 

As no explicit relationship between the numerical strain components and the 
different parameters exists, it is not possible to find an analytical solution for the 
optimal parameter values. The problem has to be solved iteratively by updating the 
parameter values. Therefore, the different strain components num

xε , num
yε and num

xyε  
are linearised around a given parameter set kp . This is done by developing a Taylor 
expansion of the simulated strains around that same parameter set and limiting the 
expression to the linear terms. The following expression [10] for num

xε is then 
obtained, in which ( )k

jj pp −  is the difference for a given parameter between the 
value k

jp  at the working point k and its new estimate jp . 
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When substituting this last expression into expression [9] and after rearranging some 
terms, the expression yielding the parameter updates is obtained [11]: 
 

( ) ( )( )knumexpt1t pεεSSSp∆ −=
−

 [11] 
  
in which the following elements are: 

p∆ : column vector of the parameter updates of y0σ , K, n, G, F and N 
expε : column vector of the experimental strains 
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)( knum pε : column vector of the finite element strains as a function of the 
different parameters at iteration step k 

kp : the three parameters at iteration step k 

S : sensitivity matrix 
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 [12] 

The sensitivity matrix (expression [12]) groups the sensitivity coefficients of the 
strain components in every element of the FE mesh with respect to the plastic 
material parameters.  

n

s
xyt

∂

ε∂

, in expression 16, is the partial derivative of the shear strain component of 
element number “t” at load step “s” with respect to parameter “n”. 

Obviously not the entire set of Gauss points is considered. Only those Gauss 
points in which the equivalent plastic strain pl

eqε is different from zero are 
considered. The elements in which plastic deformation at a given load step has not 
yet occurred, are simply not sensitive to the yield locus and the hardening 
parameters and are therefore not considered in the sensitivity matrix.  

The number of considered Gauss points not only depends on the load step. It is a 
function of the iteration step as well. When the identification routine is started, the 
first simulation is performed with a given value of the initial yield stress. The total 
number of gauss points in which plastic deformation occurs, then depends on the 
starting value of the pre-strain ε0. If in the next iteration step the value of pre-strain 
ε0 is updated to e.g. a lower value, then the total number of elements in which pl

eqε is 
different from zero will increase. This implies that during the identification routine 
not only the values of the sensitivities change. The size of the sensitivity matrix is 
subject to a variation as well. 
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Figure 7. Plots of the sensitivity of the strain component εyy with respect to the 6 
unknown parameters for load step 7 
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Figure 8. Plots of the sensitivity of the strain component εyy with respect to the 6 
unknown parameters for load step 7 
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Figure 9. Convergence plots of the different parameters as a function of the 
iteration step and the test set-up 
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As was already mentioned the sensitivity matrix is computed by means of finite 
differentiation. As a result each iteration requires 7 FE simulations. Every iteration 
takes about 1 hour of CPU time. Figures 7(a) to 7(f) and 8(a) to 8(f) show some 
plote of the sensitivity of the strain component εyy with respect to the six unknown 
parameters for load step 7 

7. Identification results and discussion 

7.1. Uni-axial experiment vs bi-axial experiment 

The final parameter values obtained through the inverse method for both the uni-
axial and the bi-axial experiments are summarized in Table 1. Figures 9(a) to 9(f) and 
Figure 10 plot the evolution of the unknown parameters and the result of the cost 
function during the updating procedure. Figures 11(a) to 11(f) and 12(a) to 12(f) 
compare the experimentally measured and the numerically computed strain fields for 
the biaxial experiment and the uni-axial experiment respectively at the end of load step 
7. As one can se, the experimental and the numerical strain fields are very similar. 

The results of both tests are quite similar, except for the pre-strain ε0 and the Hill 
parameter F. This section together with Section 7.2 attempts to explain these 
differences. 

The criterion to end the iterative optimization process is based on the values of the 
updates for the different material parameters: when the ratio of the value of the updates 
to the actual parameter values drops below 0.5% the routine is stopped. It should be 
mentioned that this criterion is never met in case of the uni-axial test, as can be seen in 
Figure 7 (a), which plots the evolution of the pre-strain ε0. The value of ε0 keeps 
varying between 0.00343 and 0.00373. However, Figure 8 shows that the cost function 
(red, dashed line) has already converged after about 5 iterations. Thus, the value of the 
cost function is almost independent of the value of ε0, at least at the current working 
point. This can probably be explained by the fact that no load steps at initial yielding 
(i.e. equivalent to small plastic strains) are taken into account in the inverse method. 
For large strains, the value of the pre-strain ε0 is less important. Since almost no data at 
initial yielding is available, it is rather hard to determine the pre-strain ε0. 

7.2. Inverse method vs homogeneous test 

The final parameter values obtained through the different identification methods 
are summarized in Table 1. It should be noted that there is quite some spreading on 
the values of the Hill parameters obtained through homogeneous identification. The 
results of the inverse methods and the homogeneous tests are quite similar, except 
for the pre-strain ε0. This was already explained in the previous section.  
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Figure 10. Cost function value as a function of the iteration step and the test set-up 

Table 1. Final parameter values obtained through the different identification 
methods 

Inverse methods 
Parameter Homogeneous tests 

Bi-axial test Uni-axial test 

ε0 0.0063 0.00253 0.00343 – 
0.00373 

K (MPa) 500 493 486 
n 0.25 0.257 0.267 

 Stress state 
fitting Lankford   

F 0.495 0.26 0.405 0.315 
H 0.505 0.665 0.633 0.69 
N 1.52 1.27 1.438 1.47 

Table 2. Cost function value for both test set-ups using the different sets of identified 
parameter values 

Parameter Identification 
Method Bi-axial experiment Uni-axial experiment 

Homogeneous tests + 
Stress state fitting 13.7e-5 3.8e-5 

Homogeneous tests + 
Lankford 16.1e-5 11.9e-5 

Bi-axial test 2.5e-5 3.5e-5 
Uni-axial test 3.9e-5 2.0e-5 
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Figure 11. Comparison of the experimental and the numerical strain fields for the 
biaxial experiment at the end of load step 7 
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Figure 12. Comparison of the experimental and the numerical strain fields for the 
uni-axial experiment at the end of load step 7 
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Table 2 gives the value of the cost function for the different sets of parameter 
values when applying those parameter values to simulate the uni-axial and the bi-
axial experiment. This table clearly shows that the inverse method does its job well: 
it determines the optimal parameter values to simulate that particular test. It also 
shows that the parameter values obtained by the bi-axial and the uni-axial test are 
rather equivalent: for both experiments these sets of parameter values yield the 
lowest result for the cost function.  

Finally, the inverse method fits the numerical material model to the available 
(measured) data. Different available strain data will result in different parameter 
values, because of the fact that the numerical material model does not perfectly 
describes the real material behaviour. This also explains the differences between the 
parameter values obtained through the different tests. 

8. Conclusions 

The proposed inverse method allows to determine simultaneously the parameters 
F, H and N of the Hill 48 yield surface and the parameters ε0, K and n of the Swift 
hardening law, based on the strain data available from a uni-axial tensile test on a 
perforated specimen and based on the strain data available from a bi-axial tensile 
test on a perforated cruciform specimen. 

It has been proven that the results obtained through homogeneous tests not 
necessarily yield the best results when applying them to a “real” deformation process 
(i.e. the experiments used in the inverse method). Thus, probably it will be necessary 
to choose the material test (to identify the unknown material parameters) in accordance 
with the subsequent deformation processes which have to be simulated. 

In the future other material tests will be performed and other material models 
will be applied. The influence of the number and the spreading of the load steps in 
the identification process will also be studied. 
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