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ABSTRACT. A special finite element based on Reissner’s mixed variational principle has been 
presented to model interface between two materials. The present element is a 7-node two 
dimensional mixed finite element with 5 displacement nodes and 2 stress nodes. The mixed 
interface finite element ensures the continuity of stress and displacement vectors at the 
interface on the coherent part and the discontinuity of this one on the cracked part. This 
element has been formulated starting from a parent element in a natural plane with an aim of 
modelling different types of interfaces with various orientations. This work is essentially 
devoted to the formulation of the interface element and the study of convergence and 
validation of this element. Results obtained from the present mixed interface element have 
been shown to be in good agreement with the analytical solutions. 
RÉSUMÉ. Un élément spécial basé sur le principe variationnel mixte de Reissner est présenté 
pour modéliser l’interface entre deux matériaux. C’est un élément fini mixte bidimensionnel 
à 7 nœuds avec 5 nœuds déplacement et 2 nœuds contrainte. Cet élément assure la continuité 
des vecteurs déplacement et contrainte sur la partie cohérente et la discontinuité de celle-ci 
sur la partie fissurée. L’élément proposé a été formulé à partir d’un élément de référence 
dans un plan naturel dans le but de modéliser les différents types d’interface avec leurs 
orientations. Ce travail a été consacré essentiellement à la formulation de l’élément 
d’interface et à l’étude de la convergence et de validation de ce dernier. Les résultats 
obtenus, avec l’élément d’interface présenté, montrent une bonne concordance avec les 
solutions analytiques. 
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1. Introduction 

The disorders observed in an existing civil engineering structure, have generally 
their origin in local phenomena which reveal the weak points of this structure. These 
critical zones are located, on the one hand in the links between materials or 
interfaces, on the other hand in singularly formed areas such as cavities, angles and 
cracks, locations for strong stress concentrations.  

In this paper, the mixed finite element method is used for the study of the 
interface in bimaterials. The mixed variational formulation has several advantages 
(Alturi et al., 1983; Mahapatra et al. 1988) over the conventional finite element 
formulations (specifically the displacement method), including direct evaluation of 
nodal stresses along with nodal displacements; improved accuracy of both 
displacements and stresses, and superior performance in capturing sharply changing 
stresses near stress-concentration zones; adequacy of lower-order elements (such as 
linear and bilinear elements), leading to elegant grids of discretization. 

The mixed finite element method developed by Herrmann (1966) for plate bending 
analysis has been extended to plane elasticity problems by Mirza and Olson (1980). 
An exhaustive literature on mixed finite element models has been compiled by Noor 
(1983). Aivazzadeh (1984) developed a family of rectangular mixed interface element 
using Reissner’s mixed variational principle. Habib (1989) presented various 
axisymmetric mixed element for studying bonded assemblies and laminate structure. 
Bichara (1990) and Sarhane-Bajbouj (1990) developed mixed finite elements for one 
or multi interfaces. Wu and Lin (1993) presented a two dimensional mixed finite 
element scheme based on a local high-order displacement model for the analysis of 
sandwich structure. Shi and Chen (1992) developed a three dimensional mixed finite 
element model based on global-local laminate variational model. Carrera (1996, 1998, 
1999) also presented various mixed models based on Reissner’s mixed variational 
principle. Ramtekkar et al. (2002) developed a three dimensional mixed finite element 
model using the minimum potential energy principle. This model has been used for the 
analysis of sandwich plates (2003). Desai and Ramtekkar (2002) presented a mixed 
finite element based on displacement theory satisfying fundamental elasticity relations. 
Bambole and Desai (2007) developed a two-dimensional hybrid-interface element 
based on the principle of minimum potential energy.  

In this work a mixed finite element model has been presented using Reissner’s 
mixed variational principle. The model takes into account the continuity of the 
interface on the coherent part (mechanical and geometrical continuity) and the 
discontinuity of this one on the cracked part (edge effect). This mixed finite element 
was developed by Bouzerd (1992) using a direct formulation: the shape functions of 
the displacement and stress fields are built directly starting from the real 
configuration of the element in a physical (x, y) plane. This element is employed 
only for the modelling of the rectilinear cracks (collinear), which limits its use. The 
nessicity to generalize its use for geometrical varieties of cracks and the need to 
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study very important problems of cracking such as the crack kinking, returns the 
passage to the mapped elements necessary.  

In the present paper, this element was reformulated starting from a parent 
element in a natural (ξ,η) plane. This formulation presents, in addition to the 
simplification of calculations, the enormous advantage of modelling different types 
of interfaces with various orientations. This work is devoted primarily to the 
formulation of a mixed interface element and its validation. The accuracy of the 
element has been evaluated by comparing the numerical solution with an available 
analytical solution or numerical ones obtained from other finite elements.   

2. Formulation of the interface element 

The stages of construction of the proposed interface element are schematized on 
Figure 1. The RMQ-7 (Reissner Modified Quadrilateral) element is a quadrilateral 
mixed element with 7 nodes and 14 degrees of freedom (Bouzerd, 1992). Three of 
its sides are compatible with linear traditional elements and present a displacement 
node at each corner. The fourth side, in addition to its two displacement nodes of 
corner (node 1 and node 2), offers three additional nodes: a median node (node 5) 
and two intermediate nodes in the medium on each half-side (nodes 6 and 7), 
introducing the components of the stress vector along the interface.  

The continuity of the displacement and stress vectors can be taken into account 
of the level on this particular side, which must be placed along the interface. In the 
cracked structures, the median node is associated to the point of crack; the two static 
nodes on both sides make it possible to meet two essential requirements of this 
situation, which are the free edge condition on the lips of the crack and the 
conditions of continuity along the coherent part. 

At the beginning, we start with Reissner’s mixed formulation with all 
displacements and all stresses like nodal variables to build the interface mixed 
element. There are thus surplus nodal variables. This formulation imposes too strong 
continuity, indeed the stress σ11 appears among the variables considered in the 
Reissner variational functional, but does not appear among the interface stresses 
(separation stress σ22 and shear stress σ12); therefore we will eliminate this stress 
(σ11) in the formulation of the interface element. 

2.1. Reissner mixed element  

It is an element with four nodes and five degrees of freedom by node (all 
displacements and all stresses). The formulation of this element is based on 
Reissner’s mixed variational principle (Reissner, 1950).  
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Figure 1. Stages of construction of RMQ-7 element 
 
 
The stress field in any point is written: 
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Further, the vector of nodal stresses and the matrix [ ]M can be stated respectively as 
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The shape functions are given by: 
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The displacement field is expressed by:          
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where [ ]N  is the matrix of interpolation functions for displacements.  
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The shape functions are 
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( )( ) ( )( )η+ξ−=η+ξ+= 11
4
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4
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The strains are obtainable from the strain-displacement equations in usual manner: 
 

{ } [ ] { }qB=ε   [11] 
 
where [ ]B  is the strain-displacement transformation matrix.  
and  
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The nodal approximation of the displacement and stress fields is expressed by:  
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Substitution of the expression [13] in the Reissner variational functional leads to the 
discretized form of the functional R (Bichara, 1990): 
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where [ ]eK  is the element matrix defined by: 
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Here         [ ] [ ] [ ][ ] e

A

t dAMSMeK
e
∫−=σσ     [16] 

and           [ ] [ ] [ ] e

A

t
u dABMeK

e
∫=σ  [17]  

where: e is the thickness, [ ]S  is the compliance matrix and eA  is the element area.  

The element equivalent forces vector is composed of two vectors: one corresponds 
to displacements { }e

uF ; the second vector corresponds to the stresses, { }eFσ  is equal to 
zero in the absence of initial strains. 
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{ }e
uF  and { }eFσ  are given by 
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where σL  : part of the contour L on which the tractions are prescribed, 
 
           [ ]N :  matrix of interpolation functions for displacements, 
 
          { }eT :  prescribed tractions on σL . 

2.2. Construction of the parent element RMQ-5 

The RMQ-5 element is obtained by adding a displacement node to the Reissner 
mixed element. It is a mixed element with 5 nodes and 22 degrees of freedom. It has 
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New shape functions are:  
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2.3. Construction of the RMQ-11 element  

The RMQ-11 element is obtained starting from the parent element RMQ-5 by 
relocalisation (Verchery, 1987) of certain variables inside the element and by 
displacement of static nodal unknown of the corners towards the side itself. It is an 
element with 11 nodes and 22 degrees of freedom. The displacements nodes are 
still unchanged either by number sum, or in position. Do the elements RMQ-5 and 
RMQ-11 present the same shape functions.  

The generalized approximation of the element stress field is written: 
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where polynomial base of the element is 
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and { }a  are the generalized variables.   
We have:        
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where [ ]nP  is the nodal matrix. 
Thus the approximation of the stress field according to the nodal variables { }τ  is:  
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In the configuration of Figure 1, the shape functions are given by: 
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The element stress 22σ  and 12σ  are given as follows: 
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In the configuration of Figure 1, the shape functions are given by: 
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Finally the stress field is given by: 
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and              
 

{ } { }9
12

8
12

7
12

6
12

9
22

8
22

7
22

6
22

11
11

10
11

9
11

8
11

t ,,,,,,,,,,, σσσσσσσσσσσσ=τ  [36] 
 

The element stiffness matrix is written in the form given by the expressions [15], 
[16] and [17]. This matrix can be evaluated by Gauss numerical integration scheme, 
with four points (2x2) on the element.  

2.4. Construction of the RMQ-7 element 

The four internal nodes of RMQ-11 element complicate the setting operation of 
data, and increase the size of the half-width band during the assembly, which causes 
an increase in the computing time. The method used for condensation of the internal 
degrees of freedom to contour is related to the general concept of reduction of the 
size of an equations system per elimination of a certain number of variables. 
Gallagher (1976) used this type of procedure in structural analysis. The static 
condensation procedure leads to the following reduced elementary matrix: 
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Here i indicate the intern static nodal variables and c the static nodal variable of 
contour.  
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The reduced stiffness matrix has a block *
uu ]K[ semi-definite positive, contrary 

to the non reduced form where this block is always equal to zero. The procedure of 
condensation enables us to obtain the RMQ-7 element having only 7 nodes with two 
degrees of freedom by node. The nodes 6 and 7 are stress nodes with the variables 

22σ  , 12σ  and the remains are displacement nodes.  

3. Numerical examples  

3.1. Eigenvalue analysis of the element matrix 

Mirza and Olson (1980) studied the convergence of the mixed element in the 
energy sense by defining an energy product and the associated energy norm directly 
in a selected space. The restriction imposed on the order of polynomials used for 
approximating displacements and stresses is similar to what is known as the 
consistency condition. It has found that in mixed finite element formulation, a 
violation of the restriction imposed on the order of the polynomial for approximating 
the dependent variables can lead to the mechanism resulting in non-unique solution 
(Mahapatra et al., 1988). An eigenvalue analysis for various combinations of 
polynomials for displacements and stresses would explain such mechanism. Thus 
eigenvalues furnish an important test of element quality, where the number of 
negative eigenvalues should always correspond to the number of stress degrees of 
freedom. The eigenvalue is equal to zero when the corresponding degree of freedom 
represents rigid body motion.  

A study on the nature and number of eigenvalues of the element matrix has been 
undertaken and is reported in Table 1. 

Table 1. Eigenvalues for various elements 

Degree of Freedom Eigenvalues Type of 
element Displacement Stress Total Sign Num. 

Composition of the 
eigenvectors 

Displacement 
element 
(4 nodes) 

8 0 8 
(-) 
(0) 
(+) 

- 
3 
5 

- 
εij= 0 

u1, u2 bilinear 

Reissner 
mixed 
element 
(4 nodes) 

8 12 20 
(-) 
(0) 
(+) 

12 
3 
5 

u, σ bilinear 
εij= 0, σij=0 
u, σ bilinear 

Present mixed 
element 
(RMQ-7) 

10 4 14 
(-) 
(0) 
(+) 

4 
3 
7 

σ bilinear, u quadratic 
εij= 0, σij=0 

σ bilinear, u quadratic 
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The result of evaluation of eigenvalues, which shows the correct number and 
appropriate signs including the expected number of zero eigenvalue, testifies the 
correctness of the formulation. Table 1 show that the RMQ-7 element checks well 
the criterion of representation of rigid modes.   

3.2. Tests of representation of homogeneous states  

The present mixed element will be studied in two loading cases generating of the 
homogeneous stress and strain states. These elementary tests constitute a 
preliminary study of validity of our interface element. An element (or elements) will 
be subjected to tests of uniform traction and pure shear with the following 
characteristics: E=1 N/mm², ν=0.25 and loading density p=1 N/mm². Figures 9 and 
10, in appendix, show the different case of loading for one element or two elements. 
Tables 2, 3, 4 and 5 present numerical results and theoretical values in the case of 
only one element or two assembled elements.   

Table 2. Comparison of results by the present element and theory for one element 
(uniform traction) 

Name of evaluated parameter at the node 

u1 (mm) u2 (mm) σ22 (N/mm²) σ12 (N/mm²) 
 

Case 1   
Node 5 

Case 2 
Node 2 

Case 1 
Node 5 

Case 2 
Node 2 

Case 1 
Nodes 

6 

Case 2 
Node 7 

Case 1 
Node 6 

Case 2 
Node 7 

RMQ-7  0.50 1.00 0.00 - 0.25 0.00 0.00 0.00 0.00 

Theory 0.50 1.00 0.00 - 0.25 0.00 0.00 0.00 0.00 

Table 3. Comparison of results by the present element and theory for one           
element (pure shear) 

Name of evaluated parameter at the node 

u1 (mm) u2 (mm) σ22 (N/mm²) σ12 (N/mm²) 
 Case 1   

Node 
5 

Case 2 
Node 

2 

Case 1 
Node 

5 

Case 2 
Node 

2 

Case 1 
Node 

6 

Case 2 
Node 

7 

Case 1 
Node 

6 

Case 2 
Node 

7 

RMQ-7  0.00 0.00 1.25 2.50 0.00 0.00 1.00 1.00 

Theory 0.00 0.00 1.25 2.50 0.00 0.00 1.00 1.00 

 
It can easily be seen that all numerical tests results of representation of 

homogeneous states check the theoretical values.  
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Checking this criterion is necessary owing to the fact that when the mesh is 
refined, the state of strain and stress is practically constant by element. It is then 
desirable that the approximation functions can represent this state. 

Table 4. Comparison of results by the present element and theory for two assembled 
elements (uniform traction) 

Name of evaluated parameter at the node 

u1 (mm) u2 (mm) σ22 (N/mm²) σ12 (N/mm²) 

 

Case 1   
Node 

9 

Case 2 
Node 

7 

Case 1 
Node 

9 

Case 2 
Node 7 

Case 1 
Node 

5 

Case 2 
Node 

6 

Case 1 
Node 

5 

Case 2 
Node 

6 

RMQ-7  0.75 1.00 0.00 - 0.125 0.00 0.00 0.00 0.00 

Theory 0.75 1.00 0.00 - 0.125 0.00 0.00 0.00 0.00 

Table 5. Comparison of results by the present element and theory for two assembled 
elements (pure shear) 

Name of evaluated parameter at the node 
u1 (mm) u2 (mm) σ22 (N/mm²) σ12 (N/mm²) 

 

Case 1   
Node 9 

Case 2 
Node 7 

Case 1 
Node 9 

Case 2 
Node 7 

Case 1 
Nodes 5 

Case 2 
Node 6 

Case 1 
Node 5 

Case 2 
Node 6 

RMQ-7 0.00 0.00 1.875 2.50 0.00 0.00 1.00 1.00 
Theory 0.00 0.00 1.875 2.50 0.00 0.00 1.00 1.00 

3.3. Convergence test of a plane beam    

In order to evaluate the validity and the credibility of the present element, a study 
of the convergence on a cantilever beam in bending is carried out. A cantilever beam, 
with dimensions and loading as shown in Figure 2, is subjected to two types of 
loading. The first type of loading corresponds to a uniform distribution of 
transversal load distributed on the end of the beam by respecting energy equivalence.  
The second type of loading corresponds to a pure test of bending.  

This problem has been solved by the present mixed element (for various meshes) 
to compare our result with the literature result, so as to gain additional confidence in 
the workability of the present element. Table 6 presents a comparison of deflections 
at the point A. 

Table 6 shows the good results obtained with the present mixed element 
compared with those of the analytical solution. Indeed, with a number of degrees of 
freedom definitely lower than those retained in the other comparative elements, 
excellent results are obtained. 
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Figure 2. Test of cantilever beam – Mesh 

Table 6. Comparison of deflection in a cantilever problem solved by various 
elements 

Deflection at point A (mm) 
Element type  Number of degrees of freedom 

Loading 1 Loading 2 

Displacement (4 nodes)  728 0.961 0.922 

Reissner(4 nodes) 1431 1.023 0.998 

Quad-1 Bichara (1990) 498 1.029 1.000 

Present mixed element 150 1.000 0.976 

Classical theory - 1.000 1.000 

Timoshenko theory - 1.030 1.000 

To see the convergence rapidity of the deflection at point A, several meshes are 
used.  All the results obtained are reported in Table 7 according to the number of 
elements and degrees of freedom.  

Table 7. Deflection in a cantilever problem solved by various meshes 

Deflection at point  A (mm) Number of 
elements 

Number of degrees  
of freedom  Loading 1 Loading 2 

4 30 0.501 0.577 
10 66 0.913 0.901 
20 126 0.999 0.974 
22 138 0.999 0.975 
24 150 1.000 0.976 

Loading 2  

x  

-1.5 N  

-1.5 N  

Loading 1  

-10 N  

10 N  

E=1500 MPa
ν= 0.25, e=1 mm

10 mm 

2 mm  

y  

A
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Figure 3 represents the convergence of the deflection. It is noted that the interface 

mixed element converges very quickly for a number relatively low of degrees of 
freedom.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Convergence of deflection in a cantilever beam 

3.4. Cantilever beam with distorted elements 

To highlight the effectiveness of the proposed element to model interfaces in any 
direction, we have taken the same example (cantilever beam) using different meshes 
with distorted elements (any quadrangular elements). 

Mesh 1 (Figure 4): It contains 20 elements (126 dof) with elements of interface 
oriented in ∆y (∆y=5% and 10% of the horizontal dimension of the element). 

 
 
 
 
 
 
 
 
Figure 4.  Mesh 1 

0
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Mesh 2 (Figure 5): It contains 20 elements (126 dof) with elements of curvilinear 
interface (∆y=5% and 10% of the horizontal dimension of element). 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Mesh 2 

Tables 8 and 9 show the results of the deflection to point A for the different 
types of meshes. 

Table 8. Deflection in a cantilever problem – Mesh 1 

Deflection at point A (mm)  
 ∆y (%) 

Loading 1 Loading 2 
5 0,982 0,959 

Present element (RMQ 7) 
10 0,935 0,918 

Classical theory - 1,000 1,000 
Timoshenko theory - 1,030 1,000 

Table 9. Deflection in a cantilever problem – Mesh 2 

Deflection at point A (mm)  
 ∆y (%) 

Loading 1 Loading 2 
5 0,962 0,943 

Present element (RMQ 7) 
10 0,872 0,867 

Classical theory - 1,000 1,000 
Timoshenko theory - 1,030 1,000 

Tables 8 and 9 show a good accuracy of results compared to the analytical 
solution. This confirms the capacity and efficiency of the element to model 
interfaces in any direction. 

 

10 mm 

2 mm  

A 

∆y 
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3.5. Sandwich beam   

Simply supported sandwich beam has been considered. This beam presents three 
isotropic layers and presenting coherent interfaces. A sandwich beam, with 
dimensions and material properties as shown in Figure 6, is subjected to uniform 
load and the interest is primarily centered on the study of transverse shear stresses 
and the deflection.    

 
 

 
 
 
 
 
 

 
 
 
 
 

 
 

                            

Figure 6. Sandwich beam analyzed 

To see the convergence rapidity of the transverse shear and deflection several 
meshes are used. Results obtained trough the present mixed element for various 
numbers of degrees of freedom are tabulated in Tables 10 and 11 where they have 
been compared with the elastic solutions given by Pagano (1970). Table 10 shows 
the deflection values obtained at x=L/2 according to the number of degrees of 
freedom. Variation of transverse shear at x = L/4 has been presented in Table 11. It 
can be seen that the results from the present mixed element are in very good 
agreement with the elasticity solution (Pagano, 1970).                              

Table 10. Deflection in a sandwich beam at x=L/2 solved by various meshes 

Element type Number of degree of freedom Deflection    u2 (mm) 
32 -0.105 
98 -0.200 

 
Present mixed element 

402 -0.209 
Pagano (1970) - -0.208 

 

hc =1,6mm 

hp =0,2mm 

hp =0,2mm 

L=24 mm 

H=2 mm 

q0 

x 

y

Face sheet material 
(aluminium): 
Ep = 70000 MPa, νp=0,34 

Core material  
(resin epoxy): 
Ec = 3400 MPa, νc=0,34 
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Table 11.  Transverse shear in a sandwich beam at x=L/4 solved by various meshes 

Transverse shear σ12 (MPa)  
Element type 

Number of 
degree of 
freedom  y = - hc/2 y = 0 y =  hc/2 

32 -3.026 - -3.001 
98 -3.135 - -3.258 

 
Present mixed 

element 402 -3.197 -3.314 -3.184 
Pagano (1970) -  -3.159 -3.431 -3.158 

 

0
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Figure 7. Convergence of deflection at x = L/2 
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Figure 8. Convergence of transverse shear at x=L/4 (y =- hc/2) 
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Figures 7 and 8 show the variation of the deflection and the transverse shear 
respectively with the number of degrees of freedom. It appears that the mixed interface 
element converges very quickly for a number relatively low of degrees of freedom.   

4. Conclusion 

The mixed finite element method is used to derive a special interface element. The 
mixed variational formulation proves to be a very accurate method of numerical 
analysis for the evaluation of displacements and stresses of boundary value problem. 
This formulation is considerably modulated by the requirement of a discretization grid 
with a lower number of nodal points, which can easily confer accuracy on a par with 
that achieved by displacement method with a finer mesh or higher-order elements. 

The present mixed element was built in order to answer as well as possible the 
conditions of continuity of displacement and stress vectors in the coherent part, and 
of discontinuity of displacements and effect edge on the cracked part.  In the 
formulation of this element, we used Reissner’s mixed variational principle to build 
the parent element.  The mixed interface finite element is obtained by successively 
exploiting the technique of relocalisation and the static condensation procedure. 
The formulation starting from a parent element in a natural plane present the 
enormous advantage of modelling different types of interfaces with various 
orientations. This work was especially centred on the formulation aspect, the 
convergence and validation of the present interface element through the study of 
simple’s examples. Economy of analysis is achieved when the present elements are 
included with a relatively smaller mesh and present sufficiently accurate results. 
The accuracy of the element has been evaluated by comparing the numerical 
solution with an available analytical solution or numerical ones obtained from 
others finite elements. Results obtained from the present mixed interface element 
have been shown to be in good agreement with the analytical solutions. 
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Appendix 

 
Figure 9. Test on one element  

 
Figure 10. Test on two assembled elements  



 


