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ABSTRACT. Nowadays, design based on purely deterministic analyses has been replaced by 
stochastic and reliability analyses which consider the uncertainties affecting the design 
parameters. But from a numerical point of view, these analyses become costly for industrial 
mechanical applications (modelled by finite elements method) because of their great number 
of freedom degrees. In this work, we take an interest in reducing the CPU time for stochastic 
and reliability analyses of an industrial mechanical application by the modal condensation of 
his numerical model with the component mode synthesis method. The example of a propeller 
is studied to validate the proposed methods. The results of this study tend to show the 
considerable gain in CPU which we save by the using of our methodology. 
RÉSUMÉ. De nos jours, la conception basée sur des analyses purement déterministes a été 
remplacée par des analyses stochastiques et fiabilistes qui prennent en considèration les 
incertitudes affectant les paramètres de conception. Mais d’un point de vue numérique, ces 
analyses deviennent coûteuses pour des applications mécaniques industrielles (modélisées par 
éléments finis) en raison de leur grand nombre de degrés de liberté. Dans ce travail, nous nous 
intéressons à la réduction du temps CPU pour des analyses stochastiques et de fiabilité d'une 
application mécanique industrielle par la condensation modale de son modèle numérique avec la 
méthode de synthèse modale. L'exemple d'une hélice est étudié pour valider les méthodes 
proposées. Les résultats de cette étude tendent à montrer le gain considérable en temps CPU que 
nous économisons par l’emploi de notre démarche. 
KEYWORDS: modal analysis, stochastic analysis, perturbation, reliability analysis, heuristic 
based reliability method. 
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1. Introduction 

The dynamic analysis of industrial mechanical systems is often costly and 
sometimes difficult due to the computer resources limitations. Furthermore, these 
mechanical systems are often made of several parts, which for organization reasons, 
are calculated and tested independently by different teams. The sub-structuring 
methods constitute often the only resolution strategy. The use of these methods is 
then justified by the numerical benefit and by taking organization constraints of such 
big projects into account. One of the most used dynamic sub-structuring strategies is 
based on a component mode synthesis. In the reference (Craig, 1995) we find a 
synthesis of these methods. One of the pioneer works on reduction model of 
repetitive structures is presented in (ElHami et al., 1996).  

One of the main hypothesises in the study of mechanical systems is that the 
model is deterministic. That means that the parameters used in the model are 
constant. However the experimental works show the limitations of such assumption. 
This is because there are always differences between what we calculate and what we 
measure due mainly to the uncertainties in geometry, the material properties, the 
boundary conditions or the load, which has a considerable impact on the vibrating 
behaviour of mechanical systems. This is why it is important to use numerical 
methods in order to take these uncertainties into count. The first methods were 
iterative (Shinozuka, 1972), whereas most recent are noniterarative. In (Impollonia 
et al., 2005; Kleiber et al., 1995; Muscolino et al., 1999; Van den Nieuwenhof et al., 
2003; Dessombz, 2000) we find many noniterarative approaches to treat mechanical 
systems with uncertain parameters. 

Nowadays, design based on purely deterministic analyses has been replaced by 
probabilistic-based reliability analyses which consider the uncertainties affecting the 
design parameters. In this context, reliability analysis intends to find the best 
compromise between cost and safety and to supply guidelines for carrying out 
reliable and cost-effective projects, accounting for the statistical variability of the 
design parameters. Many “efficient” methods have been devised as alternatives to 
Monte Carlo simulation. These methods include for example the first and second 
order reliability method respectively. These methods replace the original 
deterministic model with a computationally efficient analytical model in order to 
speed up the analysis (Haldar et al., 2000).  

Regarding optimization, it is well known that the solution of reliability analysis 
problems by using classical methods, such as first and second order reliability method, 
is a difficult task due to the existence multiple most probable points of the limit state 
functions, mainly in the cases where a large number of design variables are involved 
(Der Kiureghian et al., 1991). First and second order reliability methods (FORM and 
SORM, respectively) are based on the gradient reliability methods which uses 
Newton-Raphson (N-R) procedure (Haldar et al., 2000). Aiming to eliminate these 
difficulties, this paper suggests using a modified approach based on first and second 
order reliability method (FORM and SORM) for the determination of reliability index 
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and design points, based on ant colony optimization (ACO). In this context, an 
algorithm is proposed which is able to solve the global search optimization in 
reliability problems by using a Heuristic Based Reliability Method (HBRM) (Rojas et 
al., 2007). When compared with FORM and SORM methods, HBRM it’s different 
because not requires the initial guess and the computation of gradients of the limit state 
function because it’s based on multidirectional search. This algorithm is based on its 
ability to solve global optimization problems efficiently. The analysis methodology 
integrates a set of reliability analysis tools.  

2. Modal synthesis 

We suppose that we have a dynamical problem, divided into Ns sub-structure. In 
this paper, the exponents (and indices) “s” will designate the numbers of sub-
structures. Each sub-structure occupies a volume noted .sΩ  The interface 

'' ssssI Ω∩Ω=  designates the junction between the sub-structure s and the sub-
structure s’. Iss’ = ∅ if the two domains are not in contact. 

2.1. Equations for the sub-structures 

It is assumed that each sub-structure is elastic, linear, isotropic and without any 
initial stress or strain. In the absence of voluminal source, the equation which 
models their vibratory behaviors is given by: 

0. =ρ−σ∇ s
s

s u ,       s = 1, …, Ns  [1] 

s
s u,ρ  et sσ  are respectively the density, the displacement field and the 

constraints tensor of the sub-structure s. 

If we note s
uΓ  the borders of imposed displacement and s

fΓ  the borders of 
imposed external effort, the boundary conditions associated to the substructure s are 
written:  

ss uu
s
u

=
Γ

,       ss fn
s
f

=σ
Γ

.   [2] 

In the sub-structure/sub-structure interfaces (Iss’), the continuity of the 
displacements and the normal component of the constraints tensor must be assured. 
These conditions are written: 

( ) 0
'

' =−
ssI

ss uu  [3] 

( ) 0..
'

' =σ−σ
ssI

ss nn  [4] 
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2.2. Discretization by finite elements 

After application of the Finite Elements Method, we find the following algebraic 
form:  

[ ]{ } { }{ } { } { }∑
≠
=

+=+
Ns

ss
s

ss
I

ssss ffuKuM

'
1'

'��            s = 1, …, Ns  [5] 

The vector {us} contains all the unknown degrees of freedom associated to the 
structural displacements of the sub-structure s (the known degrees of freedom on the 
border s

uΓ , are not contained in this vector). [Ms], [Ks] and {fs} respectively 
designate the mass matrix of the sub-structure s, its stiffness matrix and its vector of 
the external equivalent forces (including the inherent excitations of imposed 
displacements on the border s

uΓ ). 

The term { }'ss
If  physically represents the interfacial forces exerted on the sub-

structure s by the adjacent sub-structure s’.  

We assemble the Ns substructures according to a total vector containing the all 
degrees of freedom, organized according to the following form: 

Nsuuuu …21=   [6] 

The assembly of the formulation [5] leads to the following algebraic system:  

[ ]{ } [ ]{ } { } { }IffuKuM +=+��  [7] 

where: 

[ ]









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2.3. Calculation of local modes  

The vector of the freedom degrees of each sub-structure s is partitioned 
according to the intern freedom degrees (index i) and those of junctions (index j). 



Stochastic and reliability analysis of a propeller     199 

These latter correspond to the degrees of freedom situated at the interfaces between 
the sub-structure s and the all other adjacent sub-structures. Then, we write:  

s
j

s
i

s uuu = ,       [ ]











= s

jj
s
ji
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ij

s
iis

MM
MM

M ,       [ ]







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


= s

jj
s
ji

s
ij

s
iis

KK
KK

K   [10] 

According to the Craig and Bampton method, the chosen local modes correspond 
to the modes with fixed interfaces Iss’. They verify the flowing eigenvalues problem:  

[ ]{ } { }02 =ψω− s
i

s
ii

s
ii MK        s = 1, …, Ns [11] 

These orthogonal modes are enriched by static modes of connection. These latter 
are defined as being the static deformation of the considered sub-structure, when a 
unit displacement is applied by turns to each of its junction degrees of freedom, the 
others being forced to 0. 

The local modal base of a sub-structure s is thus given by: 

[ ]


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 −Ψ=ϕ
−

s
jj

s
ij

s
ii

s
s

I
KK

0
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  [12] 

where [ ]sψ  represents the matrix of the modes with fixed interfaces retained after 
truncation and which are disposed in columns. The strategy of choice of the retained 
number of modes for each sub-structure consists in retaining the all modes contained 
in the multiple band of the useful frequency ( )uF , that is to say twice the useful 
band [ ]( )uF20  (El Hami et al., 1993).  

The physical degrees of freedom of each substructure can then be decomposed 
on their respective local modal base:  

{ } [ ]{ }sssu αϕ=        s = 1, …, Ns  [13] 

{ }sα  is the vector of the generalized coordinates associated to the sub-structure s, 
containing: 

– the coefficients associated to the fixed interfaces modes; 
– the junctions physical degrees of freedom. 

2.4. Model reduction 

The local decompositions [13] can be assembled, as follows: 

{ } [ ]{ }pu ϕ=   [14] 
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where: 
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Then, the equation [7] becomes after projection: 

[ ]{ } [ ]{ } { } [ ] { }I
t

ppp ffpKpM ϕ+=+��   [16]  

where: 

[ ] [ ] [ ][ ]ϕϕ= MM t
p ,       [ ] [ ] [ ][ ]ϕϕ= KK t

p ,       [ ] [ ] [ ]ff t
p ϕ=   [17] 

Now, it is necessary to take the continuity conditions at the structure/structure 
interfaces into account. Indeed, the degrees of freedom of {p} are not linearly 
independent. The linear relations between these degrees of freedom result from the 
equality of displacements at the structure/structure interfaces. They can be expressed 
by a connectivity global matrix [S]: 

{ } [ ]{ }qSp =   [18] 

where {q} contains only the linearly independent degrees of freedom. [S] characterizes 
the connectivity of the sub-structures between them. For the Craig and Bampton 
method, the matrix [S] is Boolean and easy to express since the junction physical 
degrees of freedom belong explicitly to the generalized unknown factors {p}.  

According to the conditions [4], there are the following equations of 
compatibility:  

{ } { } { }0'' =+ ssss ff   [19] 

Then, we can show that these equations imply: 

[ ] [ ] { } [ ] { } 0==ϕ I
t

I
tt fSfS   [20] 

Thus, the final system to solve is written:  

[ ]{ } [ ]{ } { }qqq fqKqM =+��   [21] 

with: 

[ ] [ ] [ ][ ]SMSM p
t

q = ,       [ ] [ ] [ ][ ]SKSK p
t

q = ,       [ ] [ ] [ ]p
t

q ff ϕ=   [22] 

Compared with the system [7], this model is considerably reduced since its size 
corresponds to the total number of orthogonal local modes retained after truncation, 
to which it is added the total number of junction degrees of freedom.  
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3. Stochastic study  

3.1. Monte Carlo Simulation  

The estimation of the natural frequency moments (average and variance) of a 
structure could be obtained by the Monte Carlo simulation (Shinozuka, 1972). This 
is a very widely used method in spite of its high cost of calculation, and it’s used as 
a reference for others approached calculation.  

The Monte Carlo method has the advantage of taking into account all types of 
uncertainties on the parameters of a mechanical system. However, one of its main 
disadvantages is the CPU time needed because of its iterative nature.  

3.2. Perturbation methods 

The perturbation methods are very widely used in the stochastic finite elements 
domain. They are based on a development in Taylor series of the F.R.F. 
(respectively the eigen frequencies or the temporal response) in relation to the basis 
random physical variables, mechanical properties, geometrical characteristics or 
applied forces (the random parameters must appear explicitly in the dynamic 
matrices). The perturbation methods calculate the average and the standard 
deviation of the F.R.F. of a mechanical structure that has uncertain parameters. This 
method is used in many areas in order to solve linear and non-linear problems, for 
either static or dynamic modes. 

The Muscolino perturbation method (Muscolino et al., 1999) could be used for a 
mechanical system whose the random parameters are independent. It is based on a 
development into a first-order Taylor series.  

For a structure with uncertain parameters, it is assumed that the mass matrix and 
the stiffness matrix are functions of the random variables { }( )Ppp ,.......,1=

α . And we 

note iλ  the ith natural frequency. 

The vector of the average parameters is defined by { }α , and the quantity dα is 
defined by { } { } { }α−α=αd . 

The following notation is used to simplify the writing: 

[ ] [ ]{ }α= AA 0 ,       [ ] [ ]
{ }αα∂

∂=
n

n AA   [23] 

[ ] [ ]nAetA 0  are deterministic. The repetition of the indice “n” two times 
implies a summation. 
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For a Muscolino perturbation method, we have: 

[ ] [ ] [ ] { }n
n dKKK α+= 0  [24] 

[ ] [ ] [ ] { }n
n dMMM α+= 0  [25] 

( ) ( ) { }n
n dFFF α+= 0  [26] 

The eigen values-vectors equation of 0 order is written:  

[ ] ( ) [ ]( ){ } 00000 =φλ− ii MK  [27] 
The eigen values-vectors equation of 1 order gives: 

( ) { } [ ] ( ) [ ]( ){ }
{ } [ ]( ){ }000

000

ii
t

i
n

i
n

i
t

n
i

M
MK
φφ

φλ−φ
=λ  [28] 

The average is given by: 

[ ] ( )0iiE λ=λ      [29]  

The variance is given by: 

[ ] ( )( ) ( )n
n

ii VarVar αλ=λ
2

     [30] 

If the Muscolino Perturbation Method is combined with a modal reduction 
method, it will lead to a substantial gain in CPU time. Nonetheless, this noniterative 
method has the limitation of not taking into account the geometry uncertainties 
which don’t appear explicitly in the dynamic matrices.  

3.3. Perturbation methods with modal synthesis 

For a mechanical system whose dofs are reduced by the modal synthesis method, 
it is assumed that the modal bases are deterministic for the Muscolino perturbation 
method. This assumption is justified, since the perturbation method is only applied 
to systems, whose parameters vary weakly. Therefore: 

[ ] [ ] [ ] [ ] [ ][ ]SMSM tt
q ϕϕ= 00     [ ] [ ] [ ] [ ] [ ][ ]SMSM nttn

q ϕϕ=      [31] 

[ ] [ ] [ ] [ ] [ ][ ]SKSK tt
q ϕϕ= 00       [ ] [ ] [ ] [ ] [ ][ ]SKSK nttn

q ϕϕ=  [32] 

4. Reliability analysis 

Since the design parameters are considered as random variables, the satisfactory 
performance of a system can not be absolutely guaranteed. However, it can be 
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expressed in terms of the probability of a certain failure criterion to be satisfied. In 
engineering terminology, this probability is called reliability and their counterpart, 
the fault probability. Thus, reliability is defined as the probability related to a perfect 
operation of a system (within the bounds specified by the design) during a pre-
defined period in normal operation conditions. 

Defining the design variables iX  of the structure and a performance function 
expressed or limit state function as ( )iXgZ =  which delimits the surface of failure 
(defined by the condition 0=Z ), the safe region ( 0>Z ) and unsafe region 
( 0<Z ), of the design space in which the failure occurs, the failure probability is 
calculated as in (Haldar et al., 2000): 

( )
( )
∫
<

=
0iXg

iXf dxXfP   [33] 

where ( )iX Xf  is the joint probability density function (PDF) of the design 
variables. 

In practice, it is impossible to obtain the joint PDF in Equation [33] because of 
scarcity of statistical data. Even in the case where statistical information may be 
sufficient to determine these functions, it is often impractical to perform numerically 
in the integration indicated in Equation [33]. Moreover, the number of random 
variables is high; these variables do not appear explicitly in the performance 
function and there may be correlation among the design variables. These difficulties 
have motivated the development of various approximate reliability methods 
(Fiessler et al., 1979). 

The main approaches to solve this equation are direct integration of PDF 
over the failure domain, analytical approximations such as the first and second order 
reliability methods (FORM and SORM, respectively). These methods use an 
optimization approach which is close to the methodology presented in this paper. 
Because of that, they are briefly reviewed in the following section. 

4.1. Reliability index estimation as a general optimization problem 

In traditional deterministic design optimization, the optimization problem is 
generally formulated in the physical space of the design variables and consists in 
minimizing or maximizing an objective function subjected to geometrical, physical 
or functional constraints in the form: 

{ }( )yfmin  [34] 

subjected to { }( ) 0≤ygk , where { }y  designates the vector of deterministic 
design variables. 



204     European Journal of Computational Mechanics. Volume 18 – No. 2/2009 

In reliability analysis, which involves random variables { }x , the deterministic 
optimal solution is not considered the exact solution of the optimum design but is 
one of the most probably design. In this case, the failure surface or limit state 
function is given by { } { }( ) 0, =yxG . This surface defines the limit between the safe 
region { } { }( ) 0, >yxG  and unsafe region of the design space. The failure occurs 
when { } { }( ) 0, <yxG , and the failure probability is calculated as 

{ } { }( )[ ]0, ≤= yxGprobPf . 

The reliability index β  is introduced as a measure of the reliability level of the 
system and is estimated in the so-called reduced coordinate system, where the 
random variables { }u  are statistically independent with zero mean and unit standard 
deviation.  

Thus a pseudo-probabilistic transformation { } { } { }[ ]yxTu ,=  must be defined for 
mapping the original space into the reduced coordinate system (Wang et al., 1996). 
Considering that the probability density in the reduced space decays exponentially 
with the distance from the origin of this space, the point with maximum probability 
of failure (most probable point) on the limit state surface is the point of minimum 
distance from the origin. The reliability index is thus defined as the minimum 
distance between the origin of the reduced space and the hyper surface representing 
the limit state function { } { }( )yuH , . Hence, it is possible to find the most probable 
point or design point by solving a constrained optimization problem that is: 

∑
=

=β
n

i
iu

1

2min  [35] 

subjected to safety constraints: { } { }( ) 0, =yuH  By formally introducing a cumulative 
density function (Φ ) of the normal probability distribution function, the first order 
approximation (tangent plane at the MPP) to fP  can be written as (Haldar et al., 
2000): 

( )β−Φ=fP  [36] 

This corresponds to the substitution of the hyper surface by the hyper plane 
passing through the point defined by iu . 

4.2. Assessment of first and second order reliability methods 

FORM and SORM can be considered as gradient-based methods since they 
demand the evaluation of the partial derivatives of the limit state function with 
respect to the random variables at each iteration step. 
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FORM is based on linear (first order) approximation of the limit state surface 
tangent to the most probable point of the failure surface to the origin of a reduced 
coordinate system. Thus, the random variables are transformed to reduced variables in 
a reduced coordinate system. For estimating the reliability index based on FORM one 
can use the algorithm suggested by (Rackwitz et al., 1978) in which the limit state 
function does not need to be solved because a Newton-Raphson type recursive 
algorithm is introduced to find the design point (Der Kiureghian et al., 1991). This 
algorithm has been widely used in the literature (Haldar et al., 2000). 

SORM estimates the probability of failure by using a nonlinear approximation of 
the limit state function by a second order representation. The curvatures of the limit 
state function are approximated by the second-order derivatives with respect to the 
original variables. Thus, SORM improves FORM by including additional 
information about the curvature of the limit state function through of a curvature 
parameter. SORM was explored by (Fiessler et al., 1979) using quadratic 
approximations. In this work the authors use a simple closed-form solution for the 
computation of failure probability using a second-order approach given by 
(Breitung, 1984) based on the theory of asymptotic approximation. 

It is important notice that the most probable point of FORM and SORM is the 
same. Additionally, SORM uses as initial value the reliability index value estimated 
through FORM. Zhao and Ono (Zhao et al., 1999) and Rojas (Rojas et al., 2006) 
give more details about these classical techniques. 

4.3. Reliability assessment by heuristic based method 

The solution of the optimization problem given by Equation [35] by using classical 
gradient-based optimization methods is not a simple task due to the existence of local 
minima in the design space and the necessity of computation of the gradients (partial 
derivatives). As result, accuracy, convergence and computational effort are relevant 
issues. The existence of multiple MPPs is similar to multiple local minima in 
optimization. The solutions of many problems in structural optimization can be 
considered to be satisfactory once a local minimum is reached. However, this is an 
unacceptable procedure in reliability analysis since the local MPP may not represent the 
worst failure scenario and the actual failure may occur below the predicted level. Hence, 
only the global MPP represents the actual structural reliability (Wang et al., 1996). 

Another difficulty that must be remembered is that traditional methods FORM 
and SORM require an initial guess of the solution (reliability index and random 
variables) and it is not always possible to assure global convergence. These aspects 
has motivated the authors of this paper to explore an alternative approach for 
estimation of reliability index, which do not require the computation of gradients of 
the limit state function and are intrinsically based on multidirectional search. In this 
work the authors use the approach that uses Finite Element analysis to evaluate 
implicit limit state functions and is based on a HBRM, which allows the use of 
optimization methods such as Genetic Algorithms (GA) (Michalewicz, 1994) and 
(Haupt et al., 2004)), Particle Swarm Optimization (PSO) (Kennedy et al., 1995) 
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and Ant Colony Optimization (ACO) (Venter et al., 2002). It is believed that such 
approach can circumvent some of the difficulties mentioned above, and thus can 
lead to improved results of reliability analysis.  

Figure 1 shows a scheme of HBRM algorithm when each heuristic method has 
stop criteria. The parameters γλ,  and C are the penalty factors used in the 

optimization procedure. ( )
ii xxixG σµ,  and '

ix  represent the limit state function, 

mean, standard deviation and design variables in the reduced coordinate system, 
respectively. (Rojas et al, 2007) and (Rojas, 2008) give more details of HBRM. 

Taking into account the performance of HBRM, it was observed that this 
methodology is able to handle multiple limit state functions based on numerical 
models and probabilistic variables related to geometrical, load and material 
properties parameters. Rojas (Rojas et al., 2007) give more details of HBRM 
specifically the numerical applications use the ACO. The following section 
discusses the main ideas about this heuristic technique. 

A scheme of the reliability analysis methodology that couples reliability tools 
(FORM, SORM and HBRM) with the finite element models of a structure is shown 
in Figure 2. In the reliability procedure it is possible to choose a reliability method. 
The evaluation of the limit state function is made through an interface between 
mechanical and reliability procedures. In this work the structural responses used in 
the reliability analysis are the natural frequencies of a structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. HBRM algorithm 
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Figure 2. Reliability analysis methodology 

Numerical applications for HBRM use the ACO. The following section discusses 
the main ideas about this heuristic technique. 

4.4. Ant colony optimization 

ACO, introduced by Marco Dorigo in his doctoral thesis in 1992 (Dorigo, 1992), 
is a probabilistic technique for solving computational problems, which can be 
reduced to find good paths through graphs. This technique follows some basic 
concepts, as presented below (Socha et al., 2004): 

– search performed by a population of ants, i.e., by simple independent agents in 
a incremental construction of solutions; 

– probabilistic choice of solution components based on stigmergic information of 
pheromone. A stigmergic process is the process through which the results of a 
worker insects activity acts as a stimulus to further activities; 

– no direct communication between ants. 

Design variables, statistical 
parameters and limit state 

functions 

Structural responses:  
Natural frequencies 

Finite element model of 
propeller structure 

FORM SORM HBRM

GA PSO ACO 

Limit state function 
evaluation 

fP,βNo Yes Stop criteria of the 
reliability method Design variables, 

reliability level 

Mechanical 
procedure 

Reliability 
procedure 



208     European Journal of Computational Mechanics. Volume 18 – No. 2/2009 

ACO is inspired by the behavior of real ants and their communication scheme by 
using pheromone trails (Dorigo, 1992). A moving ant lays some pheromone on the 
ground, thus marking the path. The collective behavior that emerges from the 
participating agents is a form of positive feedback where the greater the number of 
ants that follow a trail, the more attractive that trail becomes. When searching for 
food, real ants start moving randomly, and upon finding food they return to their 
colony while laying down pheromone trails. This means that, if other ants find such 
a path, they return and reinforce it. However, over time the pheromone trail starts to 
evaporate, thus reducing its attractive strength. When a short and a long path are 
compared, it is easy to see that a short path gets marched over faster and thus the 
pheromone density remains high. Thus, if one ant finds a short path (from the 
optimization point of view, it means a good solution) when marching from the 
colony to a food source, other ants are more likely to follow that path, and positive 
feedback eventually encourages all the ants to follow the same single path. 

The idea behind ACO is to mimic this behavior by using artificial ants. The 
outline of a basic ACO algorithm is as follows: 

1. Define the ACO parameters (trail weight, initial trail value, etc.). 
2. Create an initial colony (it just allocates memory). 
3. Put the entire colony in the nest. 
4. For all ants do a complete tour (go from nest to food). 
5. Update the pheromone trail. 
6. Go to step 3 and repeat until the stop criteria is achieved. 

Details about how ACO is implemented can be obtained from Dorigo, 1992), 
(Socha et al., 2004) and (Pourtakdoust et al., 2004). 

5. Industrial application  

In order to validate the suggested methods, we studied the dynamic behavior of a 
boat propeller. The geometrical model of this propeller (Figure 3) was designed by 
means of “SolidWorks” and “Ansys”. The mesh as well as the geometrical sub-
structuring (Figure 4) was carried out with “Ansys”. whereas the processor part was 
carried out on the one hand with “Ansys” for deterministic calculation without dofs 
reduction (the result of this calculation will be regarded as reference), and on the 
other hand with codes elaborated with “Matlab” (on the basis of the mesh carried out 
with “Ansys”) for deterministic, stochastic and reliability analysis, with and without 
dofs reduction.  

The mesh was made with tetrahedral elements. For calculation with modal 
synthesis (dofs reduction) we divided the propeller into four sub-structures. 
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Figure 3. Boat propeller 

 

Figure 4. Mesh and sub-structuring 
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5.1. Deterministic modal Analysis 

In the Table 1, the modal analysis of the propeller is exposed, and its six first 
natural frequencies calculed with:  

– « Ansys » without dofs reduction (Reference) ; 
– « Matlab » without dofs reduction ; 
– « Matlab » with dofs reduction (synthesis modal). 

are compared. The Calculations are made by supposing that the material parameters 
are fixed:  

[ ]PaeE 111.2= ,    [ ]3m/Kg7860=ρ     and    3.0=ν  

Table 1. The six first natural frequencies of the propeller (and the errors in relation 
to the reference solution) 

 Direct 
calculation 

Calculation with Modal 
Synthesis 

mode with Ansys (reference) with Matlab with Matlab 
1 100 100     (0.0 %) 100     (0.0 %) 
2 295 295     (0.0 %) 295     (0.0 %) 
3 346 346     (0.0 %) 346     (0.0 %) 
4 915 914     (0.1 %) 914     (0.1 %) 
5 1225 1224     (0.1 %) 1224     (0.1 %) 
6 1519 1518     (0.1 %) 1518     (0.1 %) 
 2286 dofs 96 dofs 

The time that calculation with « Matlab » required:  

– for direct calculation   : 6 min 30 s 
– for calculation with modal synthesis : 62 ms 

This result shows us how much we save in time CPU, when we carry out a 
model reduction by modal synthesis. 

5.2. Stochastic modal analysis 

After the deterministic modal analysis, we passed to the modal analysis in the 
case where the Young modulus and the density of the structure are normal random 
variables which we know the averages and the standard deviations:  
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Table 2. Random variables and statistics parameters of the propeller 

 Distribution Mean Standard deviation 
E (Pa) × e11 normal 2.1 0.021 
ρ (Kg/m3) normal 7860 78.60 

Computer codes were elaborate with « Matlab » to calculate the moments 
(averages and standard deviations) of the first 6 natural frequencies of the propeller, 
with 3 different methodologies: 

– Procedure 1 (classical procedure): direct calculation with Monte Carlo 
simulation (for 100 samples; 

– Procedure 2: direct calculation with Muscolino perturbation method; 
– Procedure 3 (proposed procedure): modal synthesis with Muscolino 

perturbation method. 

Let us note that “Procedure 1” is a classical Procedure which we will use as 
reference. 

Table 3. The means of the six first natural frequencies of the propeller (and the 
errors in relation to the reference solution) 

mode 
Procedure 1 (reference) 
- Classical procedure - Procedure 2 Procedure 3 

- Proposed procedure - 
1 100 100     (0.0 %) 100     (0.0 %) 
2 295 295     (0.0 %) 295     (0.0 %) 
3 346 346     (0.0 %) 346     (0.0 %) 
4 914 914     (0.0 %) 914     (0.0 %) 
5 1224 1224     (0.0 %) 1224     (0.0 %) 
6 1519 1518     (0.1 %) 1518     (0.1 %) 

Table 4. The standard deviation of the six first natural frequencies of the propeller 
(and the errors in relation to the reference solution) 

mode 
Procedure 1 (reference) 
- Classical procedure - Procedure 2 Procedure 3 

- Proposed procedure - 
1 12 12     (0.0 %) 12     (0.0 %) 
2 35 35     (0.0 %) 35     (0.0 %) 
3 41 41     (0.0 %) 41     (0.0 %) 
4 109 109     (0.0 %) 109     (0.0 %) 
5 146 145     (0.7 %) 145     (0.7 %) 
6 181 180     (0.5 %) 180     (0.5 %) 

The time that the calculation of the 6 first natural frequencies moments of the 
propeller with « Matlab » required: 
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– Procedure 1 : 17 h 36 min 
– Procedure 2 : 26 min 30 s 

– Procedure 3 :  234 ms 

The propeller example shows that the saving in CPU time is very important, 
when we dynamically analyze a structure with uncertain parameters by the modal 
synthesis method allied to the Muscolino perturbation method.  

5.3. Reliability calculation 

The reliability analysis methodology (illustrate in Figure 2) used in this numerical 
application integrates a set of reliability analysis tools (based on FORM, SORM and 
HBRM) developed under MATLAB® with finite element analysis using the 
commercial software ANSYS®. In the numerical applications, the reliability analysis 
takes into account the design parameters considered in deterministic and stochastic 
analysis. Table 2 summarizes the design parameters and their statistical moments 
considered in this example. The study of reliability analysis is based on a single state 
limit function which considers the first natural frequency ( 1f ) of the propeller, such as:  

( )
lim

11,
f
f

EG −=ρ , where 98lim =f  Hz 

Table 5 summarizes the results obtained by Newton-Raphson in FORM and 
SORM approaches and ACO in HBRM. The limit state function is evaluated by 
FEM method. The Table 5 and Table 6 shows the reliability analysis which is 
carried out with in without modal reduction: 

Table 5. Reliability results without modal reduction 

 FORM SORM HBRM (LIT) 
E (Pa) × e11 2.16 2.16 2.13 
ρ (kg/m3) 7580.5 7580.5 7571.7 

β 3.8745 3.8747 3.33 
Pf (%) 5.34 e-3 5.34 e-3 0.043 

Reliability 
(%) 99.99 99.99 99.96 

Time (min) 
Time(FORM) +Time(SORM) =  

138.6 
Time(FORM) < Time(SORM) 

230.1 

FORM and SORM results depend strongly on the initial guess and its CPU time 
it is very similar because SORM is based on FORM results for improve the first 
order approaches. It is important to remember that FORM results are initial solution 
for SORM algorithm. Therefore, in this application, SORM can not improve FORM 
approximations. 



Stochastic and reliability analysis of a propeller     213 

Table 6. Reliability results with modal reduction 

 FORM SORM HBRM (LIT) 
E (Pa) × e11 2.16 2.16 2.13 
ρ (kg/m3) 7580.5 7580.5 7571.7 

β 3.8745 3.8747 3.33 
Pf (%) 5.34 e-3 5.34 e-3 0.043 

Reliability 
(%) 99.99 99.99 99.96 

Time (min) 
Time(FORM) +Time(SORM) =  

21.5 
Time(FORM) < Time(SORM) 

34.9 

When compared to FORM and SORM, HBRM is advantageous since it requires 
neither the initial guess nor the computation of gradients of the limit state function 
and must powerful to find global minimums. Indeed, several studies in the literature 
show that heuristic methods are more efficient than methods based in the calculation 
of gradients regarding the calculation of global minimums. 

The obtained results exhibit that the predicted reliability levels using HBRM are 
accurate in comparison with similar approaches that uses FORM and SORM to 
evaluate implicit limit state functions. The results obtained show the potentialities of 
HBRM despite the large time CPU compared with FORM and SORM counterparts. 

Numerical comparison between FORM, SORM and HBRM showed in the 
preceded tables demonstrate that reliability results are satisfied for all approaches. 
Modal synthesis combined to classical methods and HBRM have a good 
performance. Considering its characteristics, we remark that the HBRM has a better 
performance in relation to classical reliability techniques despite a small time 
differences.  

Reliability study with methods combined to the modal synthesis method leads to 
a very important gain in CPU time. Where the interest to carry out a reliability 
analysis by the HBRM with modal reduction. 

6. Conclusion 

In order to be able to make stochastic and reliability analysis for large structure 
dynamical problems with a reasonable computing time, we proposed to combine the 
modal synthesis method (sub-structuring method) with the Muscolino Perturbation 
method for stochastic analysis and with the HBRM for reliability analysis. The 
proposed methodology were applied to a propeller whose the Young modulus and 
the density are random variables. The results are very hopeful and tend to show the 
effectiveness of our methodology.  
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