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ABSTRACT. The lattice Boltzmann method based on the BGK model has been used to simulate
laminar natural convection in a heated rectangular cavity on the uniform grid. The hydrody-
namic and thermal fields are solved by using the double populations approach. A general
benchmark has been carried out to show the effects of secondary parameters at their wide
range. Excellent agreement is obtained by comparison with available literature.
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1. Introduction

The lattice Boltzmann method (LBM) derives from the lattice Boltzmann equa-
tion and the result is a discrete distribution function which represents a probability
of finding particles with a certain range of velocities at certain range of locations at a
given time (Succi, 2001; Sukop et al., 2005; Dubois, 2006; Mohamad, 2007).

The LBE is a mesoscopic approach that presents many features. First, it is based
on the kinetic equations and statistical physics, unlike of the conventional methods
which are based on the continuum mechanics; second, it can recover the hydrody-
namic behaviour at the macroscopic level (mass, momentum and energy conserva-
tion) in second order of accuracy in time and space; third, it is unconditionally stable
(CFL=e.0t/0x=I based on the lattice units dt=0dx=1) and presents a linear form in
its scheme (algebraic operations) which overcome CFL condition of stability and the
drawback of the non-linear form of the Navier-Stokes equations (which leads gener-
ally to algebraic equations); forth, the particularity of local collision step goes with
new technology of parallel computers.

For its efficiency and accuracy, the LBM has received a considerable attention in
the earlier years by fluid dynamic researchers (Zou et al., 1997; Chen et al., 1998;
Guo et al., 2000),. This new approach has proved the ability to simulate large vari-
ety of fluid flows (Mezrhab et al., 2007; Jami et al., 2007) and has expressed a flexi-
bility and simplicity to simulate both 2D (Bouzidi ef al., 2001) and 3D (D’Humiéres
et al., 2001) and to handle complex geometries (Bouzidi ef al., 2001; Lallemand et
al., 2003).

The first investigations using LBM concern the hydrodynamic character. How-
ever, the thermal flows are almost always encountered in industrial applications.
(Massaioli et al. 1993) attempt the first investigation of thermal LB model; they
have developed first the thermal LBM and now there are three thermal LBM mod-
els. The multispeed approach (Chen et al., 1998), the passive scalar approach
(D’Orazio et al., 2004) and the double population approach (He ef al., 1998).

An extension of the passive-scalar thermal model, where viscous and compres-
sive heating are neglected, was recently proposed by introducing the Internal Energy
Density Distribution Function (IEDDF model). So, the omitting of the viscous heat
dissipation and compression work done by pressure in macroscopic energy equation
can be reflected by dropping out the gradient term in the evolution equation for the
new distribution function, since such gradient term is mainly used to recover these
terms through the Chapman-Enskog expansion (Hou et al., 1995). Following the
work of (Peng ef al., 2003) a simplified thermal distribution model is proposed. This
model was proved to fully recover the energy equation at the macroscopic level
incorporating work and heat dissipation correctly and particularly, it keeps the fea-
ture of standard LBM.

Now, the efficiency and the accuracy of the LBM reside on its ability to model
complicated flows such as multiphase flow, chemically reacting flows, micro-flows
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in 2D and 3D isothermal and thermal flows on uniform and non uniform grid (Shu et
al., 2002-2005) and (Semma et al., 2008).

Natural convection in heated square cavity (insulated from below and above, the
vertical wall are maintained at a fixed temperature) was not only an ideal case for
testing numerical models intended for solving Navier-Stokes equations, but also it is
present in many fields such as that of aeronautics, electronics, heat transfer, in build-
ings and it concerns also the application of solar energy collectors and double glazed
windows. In other way, it was shown in literature that several parameters can influ-
ence the dynamic and thermal behaviours within the heated cavity the effect of the
Rayleigh number, as a monitoring parameter of the convection, was almost con-
trolled and its values criticizes signs of transitions were encircled (de Gassowski et
al.,2003), heated square cavity. Various numerical simulations have been performed
to study the major effects of the different parameters (Prandtl number, the orienta-
tion of the cavity and the aspect ratio (4r=W/H: width/height)) on the structure of
the flow, but few studies are conducted using LBM and also the coupled effects of
these parameters are not examined and discussed by thermal LB models.

The purpose of this article is to validate the model through its application to the
configuration of heated square cavity (Figure 1) and to establish a general bench-
mark reproducing the former results corresponding to the effect of each parameter in
a wide range of the Rayleigh number values (10° < Ra <10"), the Prandtl num-
ber(0.025 < Pr <6), the inclination of the cavity from the horizontal plane

(0<y<3m/4) and the aspect-ratio (1/8 < Ar < 8) .The present study investigates

also the mutual effects on the heat transfer expressed by the Nusselt number, some
correlations will be therefore established. The fluid is assumed to be incompressible,
the Boussinesq approximation stays valid and the radiation effects are neglected.
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Figure 1. Natural convection problem in a square cavity
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The remaining part of the paper is organized as follow. Section 2 introduces a
brief description of the lattice Boltzmann method in presence of buoyancy force.
Dimensionless parameters and implementation of boundary conditions are also pre-
sented. Section 3 presents a validation of the model through its application to exhibit
dynamic and thermal behavior in heated differentially air-filled square cavity. Order
of accuracy of the model is demonstrated. In section 4, the effects of a quite number
of secondary parameters linked to fluid, configuration and orientation are studied
separately at first and then coupled.

2. Brief description of the simplified thermal lattice Boltzmann model
2.1. The thermal lattice Boltzmann model

The well known Boltzmann equation takes the following form:

%+§.fo +aV.f =Q(f .f) [1]

where f =f(x,&,t), a and Q are the single particle distribution function, the
body force and the collision term. x,£ and ¢ denote position, velocity and time.

The complicated collision term makes the Boltzmann equation difficult to solve. Af-
ter the popular BGK (Bhatnagar-Gross-Krook, 1954) and (Welander, 1954) approxima-
tions (Mohamad, 2007), which plays a major role in the theory of the lattice Boltzmann
equation, the collision term is well simplified and takes the new form:

1 o
QBGK __z(f _f ) [2]

where Ais a typical time-scale associated with collisional relaxation to the local
equilibrium.

The exploitable discrete form of the lattice Boltzmann equation, after introducing
BGKW approximation, becomes:

Lo e AL A = (6 s0) = (o (0 ) —f 5 (x 1) +e, AL, [3]
T

14

where F, is the external body force in the direction of the lattice discrete velocity
e,, T,=A/At ,and f . the equilibrium distribution function.
The philosophy of discrete velocity defines a terminology to the LB equation

that is the lattices and arrangements noted as DnOm. Here n and m represent the
dimension of the problem and number of streaming direction. In the case of our two
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dimensional problem, the D2Q9 square lattice is used. Such model is characterized
by nine discrete velocities defined as:

(0,0) a=0
e, =< (cos[(a-Dz/2],sin[(ax-1)7/2]) a=1,2,3,4 [4]
(cos[(a-5)r/2+m/4],sin[(-5)w/ 2+ 7w/ 4])2c ©=5,6,7.8

and an equilibrium distribution function defined as:

(3]

where w =4/9,w,=1/9 for ¢=1,2,3,4 w, =1/36 for ¢=5,6,7,8are a
weight factors, ¢ = Ax /At the lattice streaming velocity and V = (u,v).

The sketch of the nine-velocities model is shown in Figure 2.

Figure 2. The nine-velocities LBM model on 2D square lattice

The macroscopic fields, density and velocity, are computed using the zero’th and
first momentum of the density distribution function as follows:

p=>1.
o =Def, [6]

In the assumption of low Mach number (Ma =||V||/c, <<1) invoked as the nearly

incompressible limit is approached, the macroscopic continuity and Navier-Stokes
equations can be recovered from the evolution equation of the density distribution
function through the Chapman-Enskog expansion. The final forms of the continuity
and Navier-Stokes equation are:
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V.0 )=0(5)
. V -
OV +V WV =L W +0(8) [7]
0
where J is a small parameter proportion to Knudsen number (Hou et al., 1995),

p = pcl is the pressure from the equation of the state for the ideal gas, c =c/~3is
the sound speed and the kinetic viscosity is given by (He ef al., 1998):

2z, -1) (6x)’
S b
6 ot

(8]

The new 2D thermal model proposed by (Peng ef al., 2003), is based on the idea
of omitting the viscous heat dissipation and compression work done by pressure,
while this term remains in the thermal model formulated by (He ef al., 1998). More-
over, the energy equation can be recovered through the Chapman-Enskog expansion
in second order of accuracy, more details for the derivation process can be found in
(Peng et al., 2003).

The evolution equation for the Peng’s energy distribution model is:

g, (F+E,8t,t +5t)—g,(X,1) = —i(ga(x“,x)—g;‘f (¥,1)) [9]
7.

c

The correspondent equilibrium energy distribution function following the work
of (He et al., 1998) is:

g = wap{—xé” :V )+3(&—1] @) +2(é“'z/) } [10]

2¢ 2¢° ¢’ 2 ¢

where € = DRT /2, R is the gas constant and D is the spatial dimension. Then the
macroscopic temperature is computed simply by:

pe=) g, [11]

As for the continuity and Navier-Stokes equation and following the works of
(Hou et al., 1995) the Chapman-Enskog expansion for the new thermal energy dis-
tribution function can recover the macroscopic energy equation, the final result is as
below:

0 (0e) +V.(pV €)= PV (pe) + O(MST) [12]



Natural convection computation using LBM 223

and the diffusivity jy is determined by:

(6x)’
ot

Z=§(27c -1 [13]

2.2. Buoyancy force and dimensionless parameters

For natural convection flows, the additional body force term, £/, can be formu-
lated by the Boussinesq approximation. The Boussinesq approximation considers
that all the properties of the fluid are constant, except the fluid density given by
p=p (1-B -T)), where p is a reference fluid density, £ is the thermal coeffi-
cient expansion of the fluid and 7 is a reference fluid temperature, then the external
buoyant force ,0,,@ =-p.B(T -T.)g appearing in Navier-Stokes equations will be
expressed in equation [1] as:

G.(c,-V) .
F, =c—2 r [14]

Following these considerations” V” <<c,, f
nal form of the external body force is:

Y =w _p(x,t),and T =0, the fi-

a

F, =3w_.p(x,t)g, BT (x,0)c,, [15]

To guarantee the incompressible limit, we choose a characteristic velocity flow
U =(gBATH)" , where AT =1 and H denotes the number of nodes in the vertical
direction. The Prandtl number and Rayleigh number are defined as:

v ATH
pr=" ra=SPATH [16]
X |74
thus, the kinetic viscosity v is related to H (number of nodes) as:
\/g Ra
H=—,|—wv [17]

Ma \ Pr

Means that after choosing the appropriate Mach number value and for a given

Rayleigh number, it is required a minimum value of the viscosity v to ovoid insta-
bilities as mentioned in (Miller, 1994).

To investigate the enhancement of the thermal transfer, the average Nusselt
number, Nu and the left Nusselt number Nu_, are estimated using the following
formula:

0°
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oy, T)
Nu =1+ ——— [18]

( ) denotes the average value on the whole domain.

2.3. Implementation of the boundary conditions

The bounce-back rule of the non-equilibrium distribution function proposed by
(Zou et al., 1997) is used for the boundary condition. At the hot wall (left), for in-
stance, the outgoing distribution functions (from the flow to the wall) f;, f;, 13, fs and
f7 are determined by the streaming process and the incoming ones (from the wall to
the flow) f;, f5 and fs obey to the bounce-back treatment. These density distribution
functions at the boundary should satisfy the following condition:

fr = [19]

where ¢, and ¢ have opposite directions. The energy distribution function at the

boundary satisfies:

g =ef =g, =¢,f ") [20]

The wall temperatures are used for the calculation of the internal energy equilib-
rium functions.

The Dirichlet boundary condition at the stationary walls is transformed to Neu-
mann boundary condition using the popular second order accurate relation:

T, =T, _Tz,,»)/3 [21]

3. Simulation the differentially heated square cavity
3.1. Convergence criteria and convergence rate

In the simulations, the 2D was mapped using a square lattice, where ox =Jy
(0x =0y =Ax =Ay ) for the D2Q9 model. The aspect ratio Ar =W /H was
equal to the unit. The Prandtl number was assumed to be constant with a value 0.71
and the Rayleigh number varies from10’ to10° .
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In our calculations, we opt for the coarser mesh sizes that allow a deviation
around or smaller than 1% when the steady state is reached, it is found to be 482,

807, 128 and 176" for respectively 10°,10*,10° and 10°.

To ensure the computation convergence we opt, two criteria is defined as follows

Nu (t)~Nu (¢ +5000)
Nu(t)

| <10° [22]

means that Nu changes less than 10 after 5000 time-step

In addition, (Paolucci ef al., 1989) monitored the oscillations in u, v and T at the
location(x /H,y/ H) = (0.1032, 0.8036) . To show, also, the achievement of
steady state we will use the same monitoring point.

The grid independency is checked for Ra=10* using several grid sizes varying

from 327 t0224”. In this test case, we compute the relative error in Nu and we
suppose the next relationship between the relative error £ and the lattice step Ax .

E =C.(Ax)" [23]

Here C is a constant, a is the order of accuracy of the model, Ax =1/r and n is
the number of nodes for each direction of the square cavity.

The results of In(£) versus In(Ax) are plotted in Figure 3, the equation of the

obtained fitting curve shows that a=1.95. Then, as first result of this part, it is clear
that the Nusselt number solution converge at the rate of second order. The slightly
distortion via a=2 (the order of accuracy of LBM for recovering N-S equations) may
be attributed to the bounce-back scheme used at the boundaries (first order accurate),
the truncation error in the equilibrium distribution function and the round-off error
(in formula [15] for example).

In this study we have seen that when the number of nodes in each direction in-
creases, the calculated value of Nu approaches the benchmark result, and further

more, when the number of nodes increases from 176 to 224, there is not much effect
on the result. Hence, the grid independency is a second view of this part.
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Figure 3. Numerical error versus lattice spacing for square cavity

3.2. Laminar flow

Table 1 shows the numerical solutions of the maximum horizontal velocity at the
mid-height and the maximum vertical velocity at the mid-width (u __and v __ re-

spectively) normalized by the reference velocity y / H , the maximum stream func-
tion magnitude and the average Nusselt number value Nu of the whole of the cavity.

Through the Table 1 we can say that the present results are in excellent agree-
ment with those obtained by (de Vahl Davis, 1983). The maximum relative devia-
tions are 1.069% and 0.988% obtained for v__and Nu (resp.) at Ra=10°, and
elsewhere the deviation is smaller than 0.767%.

Furthermore we can observe that the Nusselt number obtained by this model is
slightly smaller than the Navier-Stokes result, this is certainly due to the truncated
equilibrium distribution function by the so-called low-Mach number approximation
(O(Ma)®).

Figure 4 shows the contour maps of the streamlines (a), which shows the flow
pattern, and the temperature field (b) for Ra = 10°,10*,10° and 10°.

These plots agree well with results obtained by (Shu ez al., 1998), in addition it is
visibly that the property of symmetry which was well studied by (de Gassowski et
al., 2003) is highly shown through the layouts of the streamlines and of tempera-
tures, this proves that the LBM is a tool able to represent the convection problems
with high order of accuracy.

In the other side, it is plotted in Figure 5 the horizontal velocity u vs y at mid-width
(a) and the vertical velocity v vs x at mid-height (b) for the four Rayleigh numbers. At
first, we can say that the property of symmetry is also present for the velocity fields. In
other side, it is clear that when the Rayleigh number increases the location of
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|v e |moves to the wall, this agrees with the stretched streamlines near the heated and
cooled walls Figure 4. However, the location of |um | moves to the top and bottom
walls until Ra=10° but bounces for Ra=10°, this will be discussed below.

Table 1. Comparison of the present results at different Rayleigh numbers with re-
sults of Ref. [a] !

Ra 10° 104 10° 10°
Upax Present 3.634 16.134 34.662 64.511
Ref. [a] 3.649 16.190 34.736 64.775
Vinax Present 3.674 19.526 68.216 218.281
Ref. [a] 3.698 19.638 68.640 220.640
|l// ' Present 1.165 5.053 9.614 16.767
e Ref. [a] 1.1742 50711 9.612 16.750
N_ Present 1.115 2.226 4.508 8.713
u Ref. [a] 1.118 2.243 4.519 8.800

I

Figure 4. Contour maps of streamlines (a) and temperature field (b) at (from left to
right) Ra=10°, 10", 10° and 10°

1 . de Vahl Davis (1983)
2 . value corresponding to I\l
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Figure 5. Plots of u;5(v) (a) and v,,(x)(b) for Ra=10°, 10°, 10° and 10°

It is worthy to explain some working phenomena and behaviors that caused by
increasing the Rayleigh number. For the Rayleigh number range from 10° to 10*, a
circular cellular structure dominates the stream-function field as illustrated in Figure
4(a). For higher values of the Rayleigh number, one can observe a temperature un-
dershoot and a stationary wave-like structure form, at the up-left and low-right cor-
ners where the flow discharges from the thin vertical boundary layer into the core
flow, this is due to the fact that high Rayleigh number enhances the fluid motion. In
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addition, the thermal and dynamic boundary layer thicknesses decrease with icreas-
ing Rayleigh number. This process of shooting is clearly remarked for Ra=10°. In-
deed , the upper-left corner of the streamlines is filled by a stretched lines that will
be, later, rejected far from the middle of the upper wall, and this is the reason of
behind the bounce of the location of |u, | cited above. One can also see the estab-
lishing lamellate thermal structure when increasing the Rayleigh number, thus we
say that the flow presents a stratified structure. The overshoot and undershoot of the
flow patterns between the vertical boundary layers and the core region become more
pronounced when Ra increases and will induce a large core region and a divergence
of the horizontal wall boundary layers. The main flow is moving along the hot and
cold wall and leaves the adiabatic side walls before it reaches the isotherm walls.

Through these funding, one can say that the LB results have a very good agree-
ment with those of other methods in both qualitative and quantitative senses at little
for the laminar flow.

3.3. Relationship between heat transfer and convection intensity

Formers numerical and experimental works in square cavity showed that the Nus-
selt number and the Rayleigh number are related by the power law Nu o (Ra)’ in
which “b” is generally close to 0.3. In the present study, the plot of the best-fitted
curve of Nusselt numbers Nu versus the Rayleigh number in the range
10° <Ra <10°is found to lie along straight line when plotted as log( Nu ) versus
log(Ra) and then, the power relationship Nu = 0.1429Ra"" is obtained. The present
obtained correlation are in good agreement with these established by Berkovsky and
Polevikov in (Bairi et al., 2007) which is rectified by Catton for laminar natural con-
vection in rectangular cavities. In our computations corresponding to Ar=1, we have
observed  thatNu = Nu,, where Nu is left Nusselt number and
also Nu,, = 0.1478Ra"** . This result can be explained by the fact that, in steady state,
the heat flux given at the hot wall is transferred within the domain and is received at
the cold wall. Moreover, the average Nusselt number is slightly little then the left one
because of the adiabatic walls effects, the average Nusselt number profile changes (a
decrease) along x-direction near insulated walls. In other side the exponent of the
power law is generally taken 1/3, in this case we obtain Nu, =0.0906Ra'", this
new power law agrees well with the experimental result of (Ozoe ef al., 1998) where
Nu =0.109Ra"", then a small deviation 0.43% in Nu, for Ra=10°.

4. Effects other secondary parameters

Several parameters can influence the dynamic and thermal behavior in a differ-
entially heated cavity. We study in this part the effect of the geometry of the cavity,
of its configuration and the effect of the nature of the fluid modeled respectively by
the aspect ratio Ar, the angle of inclination of the cavity y and the Prandtl number
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Pr. In this section, first we study the effects of these parameters separately, on the
left Nusselt number, and then we treat the coupled effects. The Rayleigh number is
chosen to be10*, 10" and 10 for all the simulations for the fact that the convection
mode is preponderant and to be far from instabilities phenomena.

4.1. Effect of the aspect ratio Ar

The effect of the aspect ratio on flow and heat in air-filled cavity has been men-
tioned in full with former works, this geometry find its application in melting phe-
nomena. When the solid part starts to melt, the aspect ratio W/H increases and one
has a tall/slender cavity, on the contrary, one will have a shallow cavity. The change
of geometry induces the change of critical thresholds, such as the critical Rayleigh,
Ra,, of transitions to time-dependence and chaotic flow.

These transitions occur at broadly different values of Ra, indicating a strong in-
fluence of the aspect ratio on which various works are undertaken.

12 -

10k Ar
—_— 8
—__ 4

& r —— 2
—e— 1

Nu, 6 | —— 05

—— 0.25
—a— 0125

4k

2 b

0

25 3 3.5 4 4.5 5 55

Logy(Ra)

Figure 6. Aspect ratio effect on heat transfer for 10°< Ra <, 10°

For Ra =10’ and 4r=0.5 the plot of the temperature field shows vertical lines, then
the heat transfer is purely conductive. This can be concluded also from the value of
average Nusselt number Nu which is close to 1, but Nu, =2.026 and increases too
with the decrease of Ar. On the contrary when Ar increases ( >1) Nu_ decreases and
Nu increases excessively, the heat transfer is obviously purely convective. These
remarks are in conformity with the results obtained by (K.A.R. Ismail et al., 2000).
The plots of Nu, versus Ra for each aspect ratio are shown in Figure 6.
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The major idea of this subsection is to show that there is an aspect ratio (=0.25)
where the Nusselt number is almost independent from the Rayleigh number in this
range. Likewise the dependence is strict.

4.2. Effect of the used fluid

The Prandtl number formula shows a balance of “volatility” between the velocity
and the temperature field. Then, the nature of the fluid can also affect the heat and
fluid flow. Figure 7 presents the evolution of the Nusselt number versus the Prandtl
number in the range 0.025 < Pr < 6 for different values of Rayleigh number.

6 =
5 L
4t
N L
3 Pr
2 -6
——0.71
—=0.025
1 F
0 1 1 1 1 1 J
2,5 3 35 4 4,5 5 5,5
Log(Ra)

Figure 7. Prandtl number effect on heat transfer at various Rayleigh numbers

One can see that heat transfer increases with increasing Prandtl number from
0.025 (corresponding to the liquid metal, such as gallium and mercury) to 6 (charac-
teristic of water). A fixed Rayleigh number, the heat transfer pattern remains rela-
tively unchanged for moderately large values of the Pr (up to 1). This goes well with
the question of volatility: for high Prandtl number the ( y <<v ) the temperature is
less volatile then the velocity.

4.3. Effect of the inclination

The present part provides numerical simulations of natural convection flow in a
wide variety of orientations. Only the momentum equation will be affected by the
change of the angle of inclination at Boussinesq term. The configuration of an in-
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clined cavity is presented in Figure 8. The Rayleigh number is chosen to be 10°. The
results show agreements with previous work in quantitative sense.

W

Figure 8. Configuration of the inclined heated cavity

The results for Ar=1 are plotted in Figure 9 and are found to reproduce the same
profile as that obtained by (Ozoe et al., 1975). One can observe that heat transfer
increases when the angle y increases to a value close to 15°, the correspondent Nus-
selt number is 4.7. In such configuration and for the earlier inclinations, the y-
buoyancy component decreases (cos(y) ) and the x-buoyancy component increases
(sin(y) ); thus, it enforces the convective motion between the isothermal walls. With
further increasing of ¥, the value of Nu decreases considerably to achieve a mini-
mum at a critical angle between 90° and 100°. The correspondent Nusselt number of
Rayleigh-Bénard configuration (90°) is 3.85. When y increases more, Nu increases
to exceed the value obtained at y = 0° and certainly to reach again the value 4.7 at
7 =165°. Once more, ¥ increases but Nu decreases clearly to be the unit in a
configuration of enclosure heated from above (y = 270°).

This value implies pure diffusive heat transfer. In this configuration, the density
of the particle heated at the top of the cavity decreases, but the tendency of the parti-
cles is to ascend again, thus the agitation will be located at the top, so the whole
convective heat decreases.

In order to show the flow structure, a number of configurations are presented in
Figure 10. The inclination angles are 0°, 45°, 90°, 225° and 270°. We note here that
in Figure 10, from 0° to 270°, a step of 45° is chosen, but the plots corresponding to
135° and 180° will not be sown for symmetry raison. The case of y=0°, the thermal
structure expresses a stratification tendency. Increasing y to 45°, we observe that
the thermal transfer is concentrated near the adiabatic walls; however a flatten struc-
ture is obtained for the dynamic structure. For the Rayleigh-Bénard case, a rotating
motion dominates the core of the thermal structure and the transfer is more pushed
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to the walls, which decreases the convective transfer between the isothermal walls.
The dynamic pattern is a concentric circles with two small vortices at the coins.

Nusselt

1] 30 60 20 120 150 180 210 240 270

Angle

Figure 9. Coupled effects of aspect ratio and inclination on the Nusselt number for
Pr=0.71

Increasing y to 225°, the conductive effects begin and no stretched thermal
boundary layers, and moreover at ¥ = 270° which corresponds to a cavity heated
from top, so, a purely conductive regime take place. In this case, the isothermal lines
become strict horizontal lines. The heat transfer is the least.

4.4. The coupled effects

Modeling phenomena is a engineering tool. For such technique previous re-
searches using standard Navier-stokes solvers have been interested to establish cor-
relations for Nusselt number as a function of the different parameters cited above
(Robert, 1999). In this part we are interested to study the coupled effects of the in-
clination and the aspect ratio at the same time on heat transfer without establishing
correlation. Two aspect ratios 0.5 and 2 are investigated. The results obtained are
reported in Figure 9.

For A4r=0.5 no change observed in the thermal behavior of flow, the same profile is
obtained but quantitatively the Nusselt number increases and the profile is translated
due to the conductive effect. However, for 4r=2 the flow becomes periodic at
¥ =90°. The dynamic flow structure changes many times at one period and the di-
mensionless frequency is close to 15.86 (in unit of H ?/y ). The correspondent time-
averaged Nusselt number at the isotherm wall is close to 3.16. Figure 11 shows the
Nusselt number time-historic when the regime is established. The flow is also periodic
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for y=100°, the dimensionless frequency is 21.93 and the time-averaged Nusselt
number is 2.06; The streamlines show a small cell near the hot wall and a great cell
near the cold wall which is three times the small one. At y =105° the flow is found to
be chaotic; however, for ¥y =110° the flow becomes steady and it remains steady
for ¥y >110°. The result will certainly change if the Rayleigh number values change.

Figure 10. Inclination effects on dynamic and thermal behaviors, stream function
(left) and isotherms (right) for y=0°, 45°, 90°, 225° and 270°
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Figure 11. Dynamic behaviour under coupled effect of aspect-ratio and inclination

The effect of the angle of inclination comes to be perceptible with the increase of
the aspect ratio. As it is shown in Figure 9 heat transfer depends strongly on the
aspect ratio. The Nusselt number decreases with the aspect ratio. In the other side
the coupled effect coming from the increase of the aspect ratio(upper to unit) and the
increase of the angle of inclination (upper to 90°) is expressed by the displacement
of angle at minimum and maximum transfer (Nusselt number) towards the limit
180°. As a better result of this part is to show that for 47=0.5 (or slightly different)
the heat transfer is quasi-independent from the angle of inclination from 15 to 90°.

For low aspects ratio the isotherm walls become approached (H=1, W<I), the
heat transfer is in the majority conductive and will be less influenced by changing
the inclination even for ¥ near 90°, the Reyleigh-Bénard rolls establish and move
the flow. However, for high aspects ratio (H=1, W>1), the heat transfer is in the
majority convective (driven by velocity). The flow regime changes to periodic at
y=90° and y=100°, it is chaotic at y=105°, and then it is more influenced by chang-
ing the inclination.

5. Conclusion
The LBM is used to simulate an incompressible natural convection flow of Bous-

sinesq fluid within a differentially heated rectangular cavity. The LBM is found to be
an effective and convenient alternative to simulate laminar flow in confined space.
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To show the accuracy of this LB model, we have conducted a comparative study
on heat and fluid flow in heated square cavity. The chosen grid sizes yields to the
same order of accuracy as the other solvers and shows that high monitoring numbers
needs high grid resolution to get accurate solutions.

The effects of the secondary parameters (geometry, configuration and fluid proper-
ties) on the heat and fluid flows have been carried out. The results of the LBM are
found to be in good agreement with former works. It has been found that dynamic and
thermal behaviour in heated differentially rectangular cavity depends greatly on aspect
ratio, low Prandtl numbers and inclination but marginally on high Prandtl numbers.
The coupled effects of these parameters can change completely the regime of the flow.

In our study we are limited to low Rayleigh numbers. High Rayleigh numbers
are characterized by thin boundary layers, so a grid refinement or more nodes are
needed. In other side, the common problem in simulating fluid flows is the modeling
of turbulence (more details in (Succi, 2001; Huidan Yu, 2005) and (Shu, 2006)). An
efficient tool for handling arbitrary meshes and turbulent state and to be combined
with various models of turbulence is TLLBM, a meshless efficient tool recently
developed by C. Shu. The next step in our works is to introduce, first, a grid refine-
ment using the TLLBM approach and, second, a large eddy simulation modeling of
turbulence.
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