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1. Introduction

Cardiovascular disease remains the leading cause of mortality in industrialized na-
tions. An increase in arterial wall stiffness appears to be a common pathological path-
way for the many factors that lead to initiation and progression of the vascular changes
associated with cardiovascular disease. An accurate measurement of this stiffness is
therefore of real interest. Such a measurement is however difficult to separate from
the measurement of blood viscosity as both parameters are the main ones affecting the
form of blood flow in the arteries.

Numerical models are increasingly commonplace in the field of biomechanics.
The simulation of blood flow (Maurits et al., 2007) or of artery deformations (Li et
al., 2006) is essential for understanding phenomena such as plaque formation and fai-
lure. For that, accurate estimates of the mechanical properties governing the artery
deformations and blood flow are required. The aim of this paper is to present a no-
vel method that can provide these properties in a non intrusive way using Magnetic
Resonance Imaging (MRI).

Classically, different ways exist for characterizing arterial wall stiffness (Hansen
et al., 1995; Fronek et al., 1976; Asmar et al., 1995; Stephanis et al., 2003; Liepsch,
2002). The most common way is to use the pulse wave velocity (PWV), deno-
ted cr, which satisfies, within the framework of a few assumptions, the Moens-
Korteweg equation: c2

r = Eh/2ρR0, where E is the Young’s modulus of the arterial
wall; h is the wall thickness; R0 is the arterial radius (at rest); ρ is the blood density
(McDonald, 1974). The PWV is calculated from measurements of pulse transit time
and the distance travelled by the pulse between two recording sites, using manome-
ters. When pressure measurements are not possible, ultrasound or MRI can be used
for measuring the diameter of the artery and the velocity of the blood. These measu-
rements have sometimes been coupled to pressure measurements in the literature for
deriving the PWV. For example, with ultrasound, the measurement of the diameter or
the velocity (Doppler) can improve the identification of the PWV, and help to assess
both R0 and h (Maurits et al., 2007; Selzer et al., 2001; Hardt et al., 1999). But no
experimental studies have been found where the PWV and consequently the artery
elastic modulus could be identified without using pressure measurements.

We show in this study that it is possible to measure these quantities with only
shape and velocity measurements, and show a practical application. A more sophisti-
cated model, still compatible with the Moens-Korteweg equation, is used. Moreover,
a technique to identify the blood viscosity along with the elastic modulus of the ar-
tery will be proposed. The non-intrusive identification of blood viscosity is original.
Indeed, blood viscosity is a very important parameter, usually measured using visco-
meters (Shin et al., 2002). This means that blood needs to be taken from the human
body before being tested, requiring the use of anticoagulants for avoiding blood coa-
gulation. The effects of the anticoagulants on blood viscosity are almost unknown
(Shin et al., 2002). Accordingly, there is a potential interest in characterizing blood
viscosity in its real environment thanks to medical imaging.
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The main measurement techniques that are available in clinics are MRI and ultra-
sound. MRI can provide a much higher resolution than ultrasound imaging (Draney
et al., 2002; Li et al., 2006; Moreno et al., 1998). Comparing the velocity profiles
(Maurits et al., 2007) with the ones shown further in this paper demonstrates that the
accuracy of velocity measurements using ultrasound is typically worse than that which
can be obtained with Phase-Contrast Magnetic Resonance Imaging (PC-MRI). Mo-
reover, the local spatial resolution of ultrasound imaging techniques is still not high
enough to reach a sufficient accuracy for the wall elasticity (Maurits et al., 2007).
Ultrasound transducers are much more widespread than MRI scanners so this may ex-
plain why studies using MRI are so scarce. However, the recent proliferation of MRI
scanners in clinics, hospitals and research centres may induce an increase of the use
of MRI in the domain of cardiovascular medicine. Moreover, the measurement time is
not really an issue with modern MRI scanners as the whole velocity data required in
our approach can be obtained in less than five minutes. For all these reasons, PC-MRI
was chosen as the measurement technique to provide the data required for an accurate
identification of blood viscosity and wall stiffness in the carotid.

2. Basic equations of blood flow in the carotid

2.1. Definitions and equations of the artery wall motions

The model used here is based on the assumption of homogenous, Newtonian, in-
compressible (with constant density ρ) fluid (Lighthill, 2002; Lagrée, 2000). The vis-
cosity µ is also assumed constant. These assumptions may be appropriate for blood
if the arteries are wide enough (Lagrée, 2000) and if we neglect density fluctuations
of the blood (incompressibility is very often considered as a relevant assumption for
modelling blood flow).

The flow is assumed to be axi-symmetrical and gravity effects are neglected. The
flow is described by the longitudinal U(r,x, t) and the radial V (r,x, t) components of
the velocity vector u. Coordinates x and r denote respectively the longitudinal and
axial coordinates, whereas t denotes time.

The pressure in the fluid is assumed constant across any slice of the artery, only
depending on x and t. It is denoted p(x, t). The local radius of the artery is denoted
R(x, t). Both are linked by the elasticity of the artery wall. The artery wall behaves,
to a first approximation, like an elastic membrane in plane stress with a Young’s mo-
dulus denoted E. The acceleration forces of the artery wall are neglected compared
to the tension forces. Using standard force balance arguments for pressurized elastic
cylindrical pipes (Lagrée, 2000), one ends up with the the following equation linking
R and p:

1
R

∂R
∂p

=
R0

hE
[1]
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2.2. General form of blood flow

Gradients are assumed to remain small so that the equations can be simplified
by linearization. The following Navier-Stokes equations are obtained in cylindrical
coordinates:

the linearized momentum equation: the local continuity equation:

ρ
∂U
∂t

=−∂p
∂x

+µ
[

∂2U
∂r2 +

1
r

∂U
∂r

]
∂U
∂x

=−1
r

∂(rV )
∂r

[2]

where µ is the blood viscosity.

The problem to solve is a problem with moving boundaries, as R changes with
the pressure variations according to Equation [1]. For solving this problem coupling
artery deformation and the blood flow, one has to introduce equations figuring fluid-
structure interactions. On the assumption that there is no slippage at the artery wall,
the boundary conditions at r = R are U = 0 and V = ∂R/∂t for all x and t. This means
that there is no slippage at the artery wall.

Due to the heart beats, U , R and p are forced to vary periodically with t and x
(forced regime). U is a periodic function of t and x, and one may therefore write it as
a Fourier series. Using this Fourier decomposition, Womersley (Lagrée, 2000) found
the following solution:

U(x,r, t) = U0[1− (r/R)2]+2R





+∞

∑
n=1

pn

ρc

1− J0(i3/2αnr/R)
J0(i3/2αn)

1− 1
J0(i3/2αn)

exp
[

2inπ
T

(t− x/c)
]




[3]

where R means “the real part” of a complex number, i is the square root of -1, T is
the pulse period, J0 is Bessel’s function of first type and αn is the Womersley number
corresponding to order n: αn = R0

√
2πnρ/(µT ); c is the complex celerity: its real part

is the PWV denoted cr and its imaginary part, denoted ci, accounts for the decay of
the travelling wave due to viscous effects (Lagrée, 2000).

The pn’s are, up to a multiplicative constant, the Fourier coefficients (complex
numbers) of the pressure variations that may be written:

p(x,r, t) = p0 +g0x+2R





n=+∞

∑
n=1

pn

1− 1
J0(i3/2αn)

exp
[

2inπ
T

(t− x/c)
]

 [4]

where g0 is a constant pressure gradient. The first term in Equation [3] is constant in
time (the dc term). It is the steady solution found by Poiseuille (Lagrée, 2000) for a
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Newtonian fluid flowing with the constant pressure gradient g0 in Equation [4]. The
factor of 2 before the fundamental and harmonics in Equations [3] and [4] accounts
for the fact that Fourier coefficients corresponding to negative n are omitted (even
function). The U0 coefficient in Equation [3] and the g0 coefficient in Equation [4]
are linked by the following equation: U0 = g0R2/(4µ). Therefore, if g0 was known,
it would be very easy to deduce the blood viscosity µ. However, we cannot measure
the pressure gradient g0 in the carotid using standard manometers, so another way of
identifying µ will be proposed.

2.3. Identification of blood viscosity

Let us assume that a measurement of the velocity profiles through a given slice
at abscissa x0 is available throughout a pulse period. MRI measurements can provide
these profiles, as will be shown later. Let U(x = x0,r, t) denote the measured velocities
at any r and t. A finite number of relative radii η = r/R, evenly distributed between 0
and 1, is defined. At each η, U is Fourier transformed along the time axis, providing
the Fourier coefficients Ûn(η). Then, for a given value of blood viscosity, the deviation
between the derived Ûn(η) and the Fourier coefficients of Equation [3] is minimized
in the least-squares sense, for any η and any n > 0 (limited to n≤ 8 in practice), yiel-
ding the pn’s. These pn values only depend on the arbitrary choice of µ. Subsequently,
model velocity profiles that have the form of Equation [3] are reconstructed with the
deduced pn. Accordingly, the remaining deviation between the modelled velocity pro-
files and the measured ones only depends on µ. This deviation is then minimized in
the least-squares sense, with µ being the controlling variable. The minimization of this
cost function is achieved using the Nelder Mead algorithm, providing blood viscosity
µ in no more than 20 iterations in practice.

2.4. Identification of the PWV and the arterial wall stiffness

By integrating the equation of continuity (Equation [2]) over a whole slice of the
artery, and using the equality ∂/∂t =−c∂/∂x (valid in the forced regime, see (Lagrée,
2000)), one obtains:

∫ R

0

∫ 2π

0
U(x0,r, t)rdrdθ = J(x0, t) = cS(x0, t)+K [5]

where J(x0, t) is the arterial flow and S(x0, t) is the area of the arterial cross section.
Equation [5] is a classical equation of fluid dynamics in elastic pipes (Lighthill, 2002).
Then, by minimization in the least squares sense, it is possible to identify c from the
data if both J and S are measured at different times between two heart beats. One has
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to bear in mind that c should be a complex number (Lagrée, 2000). The resolution is
achieved in the real space by minimizing over a period the following cost function:

F (γ,τ,K) =
1
T

∫ T

0
[J(x0, t)− γ S(x0, t− τ)+K]2 dt [6]

where γ is the scaling coefficient between J and S (magnitude of complex c), τ is the
time delay between J and S (2πτ/T is the angle of complex c) and K is a constant.
In practice, U and R are obtained from the MRI data. Then, the values of J and S
are deduced from U and R. After the minimimization of F (γ,τ,K), the PWV can be
deduced straight forwardly as being cr = γcos(2πτ/T ).

Knowing the PWV, the elastic modulus of the arterial wall can be deduced using
the Moens-Korteweg equation (McDonald, 1974).

3. Artery wall tracking and blood velocity measurements using MRI data

3.1. Principle of Flow Sensitive Phase-Contrast MRI

Phase contrast MR angiography was used to quantify flow velocity (Hornak,
2007). In this sequence, the flow is encoded in the phase rather than the magnitude
of the MRI signal. Between Radio-Frequency (RF) excitation and imaging, velocity
encoding is performed by applying two equal and opposite gradients with a short de-
lay between them. If the material within a voxel is stationary, then the phase shift
caused by one gradient will be cancelled by the equal and opposite phase shift due to
the other, and the net phase change measured will be zero. However, if material moves
along the direction of the gradient, then it will gain a net phase shift proportional to
this component of velocity.

Blood and the vessel wall also have distinct T1 and T2 relaxation parameters, gi-
ving clear contrast in the magnitude images in the sequence (MacRobbie et al., 2003).
We used this to estimate the location of the artery contour, and to generate a mask to
remove all voxels outside it. The mask was applied to the phase maps for investigating
the velocity profiles and identifying the elastic and viscous parameters. Although it is
also possible to generate a mask from the phase images, we found that in the magni-
tude images the gradient at the vessel wall was higher and the signal outside the artery
less noisy, enhancing contour estimation.

3.2. Geometry and velocity measurements around a volunteer’s carotid

The scanner used in our study was a 3T Siemens Tim Trio system (MRC Cognition
and Brain Sciences Unit, Cambridge, UK). A 2D spin-echo FLASH sequence was
used to acquire a single 3 mm thick slice of a lying volunteer’s neck with a matrix size
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of 240×256 giving in-plane dimensions 0.39×0.39 mm2. A cine sequence, with one
segment per cycle was used to acquire the temporal evolution of the flow throughout
the pulse. Heart beats were detected by the measurement of blood flow in a patient’s
finger with near infrared spectrometry. The cine data were reconstructed to give 50
snapshots evenly distributed throughout the cardiac cycle, corresponding to a mean
sampling frequency of 61.5 s−1 (T =0.81s). The repetition time was TR=64 ms and
the echo time was TE=5.4 ms. The velocity encoding gradient was 70 cm/s per π rad
in the direction perpendicular to the plane (e.g., head-foot). The phase of the signal
was digitized with a 12 bits resolution (integer numbers between 0 and 4095) and
the magnitude 16 bits (0-65535). The magnitude images were used to characterise
geometry and the phase images the velocity at each moment in time.

(a) Whole neck cross-section (black-
blood sequence)

(b) Frames of signal magnitude

Figure 1. Images of the MRI signal magnitude

3.3. Definition of the artery mask

The magnitude of the signal is well suited for determining the edges of the artery
because, due to the large quantity of blood flowing in the artery, the magnitude of the
signal is larger inside the artery than outside (Figure 1b).

Thanks to this profile, the contour of the artery is detected for each frame using the
following method in which we assume a cylindrical shape for the artery, for consis-
tency with the assumed flow model. The assumed image model is a “top hat”: a
constant signal of magnitude M1 inside the circular contour and constant signal of ma-
gnitude M2 outside the contour. We neglect blurring due to finite point spread function
of the imaging system in the model. The problem is to choose the centre, the radius,
and the values of M1 and M2 so as to minimize the least-squares deviation between
the data and the “top hat” model. Minimisation is achieved using the Gauss-Newton
method.
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The masks deduced for all frames were applied to the signal phase maps, which
have been also unwrapped and scaled to velocity for all the frames. The deduced
velocity maps are shown in Figure 2a.

(a) 50 velocity frames in the carotid
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(b) Profiles of the velocity for a few frames.

Figure 2. Measured velocity profiles during a heart beat and comparison of the pro-
files with the identified model for a few frames

4. Results and discussion

4.1. PWV identification

Plotting J against S for all the frames, one obtains a loop (Figure 3a). Because of
the viscous behaviour of blood, J and S are not in phase, which explains the loop shape.
Accordingly, c is a complex number; its real part is the PWV and its imaginary part
accounts for the decay of the travelling wave due to viscous effects (Lagrée, 2000).
The minimimization of F defined in Equation [6] leads to the value cr = 2.73 m/s.

There remain deviations between the experimental values of J and the supposedly
modelled values J = cS+K (Figure 3). This may mean that the phase lag between flow
and area is frequency dependent. We would need to analyze the Fourier components
of J and S to investigate this point further, but this is beyond the scope of this paper.

The value cr = 2.73 m/s is fairly consistent with values that are reported in the
literature. The PWV ranges usually between 3 and 10 m/s for the femoral artery or the
aorta (Lagrée, 2000), and thus it is expected to be slightly lower for the carotid due
to its smaller size. The consistency of the result is promising regarding the relevancy
of the assumptions made for deriving the model, especially the assumption of the
forced regime. Tests on other patients are envisaged in the near future to check on the
repeatability of the identified value of cr.

Variations of J through a heart beat have been plotted in Figure 3b. Two peaks
are apparent: a large one at t = 530 ms, and a smaller one at t = 800 ms. The large
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one corresponds to the pulse wave induced by the opening of the sigmoid valve in the
heart, with the smaller one corresponding to the pulse wave induced by the closing of
the sigmoid valve. This shape of blood flow is common and in agreement with other
published data (Liepsch, 2002).
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Figure 3. Variations of global blood flow in the carotid

4.2. Reconstruction of modelled velocity profiles

The modelled profiles that best fit the data in the least squares sense have been
derived. The corresponding viscosity parameter is µ = 0.0073 Pa.s. It has been checked
that the value of µ = 0.0073 Pa.s constitutes the only minimum of the cost function. It
corresponds to a Womersley number for the fundamental mode (n = 1 in Equation [3])
of α1 = 3.1. The modelled flow reconstructed with µ = 0.0073 Pa.s has been plotted in
Figure 4a (maps for the 50 frames).

The residuals between the measured velocities and the modelled ones are shown in
Figure 4b. They prove that the model and the data are in reasonable agreement, except
between frames 31 and 40. For those particular frames, corresponding to the time
when the pulse wave induced by the opening of the sigmoid valve is passing, it seems
that there is an asymmetry in the velocity profile. This asymmetry is not compatible
with the Womersley model, so it could not be reproduced analytically. The asymmetry
may be induced by local curves of the artery axis, or by a bifurcation, that are not
taken into account in the model (the model assumes that the artery axis is a straight
line).

Asymmetry of the flow after a bifurcation has already been observed using nu-
merical models (Liepsch, 2002). Computational Fluid Dynamics (CFD) would be ne-
cessary to take the bifurcation into account in the model. This would mean that the
resolution of the inverse problem would be numerical and not analytical any longer.
This prospect may have to be investigated in the future, by measuring the velocity in
different slices and reconstructing a 3D model of the carotid and the blood flowing in
it.
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4.3. Blood viscosity and artery elasticity identification

The obtained result µ = 0.0073 Pa.s is consistent with values found in the litera-
ture regarding blood viscosity: values of µ varying between 0.003 and 0.03 Pa.s have
been reported (Shin et al., 2002). However, it is reported in the literature that µ can
significantly vary with the shear strain rate, and also with blood composition. Un-
fortunately, these variations, involving a non Newtonian behaviour of blood, cannot
be characterized with our approach. Our approach only provides an average value of
blood viscosity in the conditions within which the measurements are achieved.

Nevertheless, the measured profiles and the identified blood viscosity can be em-
ployed for quantifying the shear stresses acting on the artery walls. The values of the
shear stresses are of great interest for clinical purposes as they may directly affect the
possible development of plaques in the artery (Li et al., 2006).

From c and the artery wall thickness h = 0.5 mm (measured from the “black blood”
image in Figure 1a), the artery wall elastic modulus was estimated using the Moens-
Korteweg equation and gave the value E = 99 kPa. This is somewhat lower than the
values from other studies. Using a B-scan method, (Stephanis et al., 2003) found a
Young modulus of about 300 kPa. (Selzer et al., 2001) found moduli of about 600 kPa
on various patients. (Selzer et al., 2001) showed that the obtained modulus values
could have a standard deviation of about 250 kPa.

However, there is a large uncertainty on the parameter h (wall thickness), as this
parameter was not measured precisely during the MRI sequences. It is more relevant
to compare the coefficient of elasticity k = Eh/R0 which took the value of 14.9 kPa
for our volunteer. For comparison, (Stephanis et al., 2003) found a coefficient of elas-
ticity of about 15 kPa. Therefore, it seems likely that the underestimation of E in our
results is mainly induced by errors in the estimation of the wall thickness. An accurate
measurement of this quantity will be required for further experiments.

Our results should also be verified by repeating the measurement on the same
volunteer, for characterizing the repeatability and the robustness of the method. Mo-
reover, an application of our approach on several volunteers and also on different
locations of the carotid would be required for a more complete validation.

5. Conclusion

This study has shown that it is possible to identify simultaneously the wall stiff-
ness and the viscosity of blood in the carotid by using velocity profiles provided by
PC-MRI. The approach is based on an analytical model of the flow derived from a
particular solution of the Navier-Stokes equations, assuming blood as a Newtonian
fluid and the artery as a linear elastic cylindrical pipe.

The approach requires a measurement of both the field of blood velocities and the
variations of the artery radius during a heart beat. Both measurements were obtained
from magnitude and phase maps provided by a spin-echo pulse sequence with a ve-
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locity encoding gradient. Eventually, the identified values of blood viscosity and wall
stiffness, obtained on a single volunteer, were in good agreement with values repor-
ted in the literature. This is promising for the development of our approach, even if
repeatability studies are now required.

The accuracy of the approach can be improved by refining the spatial resolution
in further measurements. MRI sequences providing a better spatial resolution can be
found in the literature (Draney et al., 2002; Li et al., 2006). Reproducing one of the
sequences employed in (Draney et al., 2002) or (Li et al., 2006) would significantly
improve the accuracy of our identification approach. The measurement of accurate
in-plane velocities could also be targeted. This would provide measurements of the
arterial wall deformation throughout a heart beat, and make possible an extension of
our approach to arteries that are not round, and even to arteries with plaques.

(a) Modelled velocity profiles (b) Deviation between data and model

Figure 4. Modelled velocity after identification of the blood viscosity and comparison
with the experimental data
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