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The current contribution proposes a six-node prismatic solid–shell denoted as (SHB6). The
formulation is extended to geometric and material non-linearities, and focus will be placed
on its validation on non-linear benchmark problems. The resulting derivation only involves
displacement DOF, as it is based on a fully 3D approach. The motivation behind this is to
allow a natural mesh connexion in problems where both structural and continuum elements
need to be used. Another major interest is to complement meshes that use hexahedral finite
element, especially when free mesh generation tools are employed. The assumed-strain
method is combined with an in-plane one-point quadrature scheme in order to reduce both
locking phenomena and computational cost. A careful analysis of possible stiffness matrix
rank deficiencies shows that this reduced integration does not induce hourglass modes.

Cet article propose un élément fini de coque volumique prismatique à six nœuds, noté
(SHB6). La formulation est étendue à des nonlinéarités géométriques et matériau, et l’ac-
cent est mis sur sa validation sur des cas tests non linéaires. L’élément obtenu n’a que des
DDL de déplacements, puisqu’il est basé sur une approche purement 3D. La motivation est
de permettre une connexion naturelle dans des problèmes où des éléments de structures et
3D doivent cohabiter. Un autre intérêt majeur est de compléter des maillages utilisant des
EF hexaédriques, spécialement lorsque des outils de maillage libres sont utilisés. La méth-
ode de déformation postulée est couplée à une intégration réduite dans le plan pour diminu-
er à la fois les phénomènes de verrouillage et les coûts de calcul. L’analyse détaillée du
noyau de la matrice de raideur montre que cette sous-intégration ne génère pas de modes
de sablier.
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non-linear benchmark problems
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1. Introduction

Accuracy and efficiency of finite elements (FEs) are the main features expected with the
ever-growing resort to FE-based software packages. In particular, for the 3D analysis of
structural problems, the development of effective eight-node solid–shell FE has been a
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major objective over the past decades as revealed by several recently published contribu-
tions (Abed-Meraim & Combescure, 2002; Belytschko & Bindeman, 1993; Hauptmann &
Schweizerhof, 1998; Legay & Combescure, 2003; Wall, Bischoff, & Ramm, 2000). How-
ever, with the advent of free mesh generation tools that do not only generate hexahedrons
and in order to automatically mesh arbitrarily complex geometries, the development of pris-
matic solid–shell elements has been made necessary. Such a solid–shell concept is particu-
larly attractive since it combines in a single formulation the essential useful features of
shell FE and the well-recognised advantages of solid FE. Besides the avoidance of complex
and elaborate shell kinematics, one of the main interests of the solid–shell approach is to
enable a straightforward connection between structural and continuum elements in real-life
structures where thin structural components commonly coexist with thicker 3D parts. Note
that most of the methods developed earlier were based on the enhanced assumed-strain
method proposed by Simo and Rifai (1990), Simo and Armero (1992) and Simo, Armero,
and Taylor (1993), and consisted of either the use of a conventional integration scheme
with appropriate control of all locking phenomena or the application of a reduced integra-
tion technique with associated hourglass control. Both approaches have been extensively
investigated and evaluated in various structural applications, as reported in various contribu-
tions (Dvorkin & Bathe, 1984; Klinkel, Gruttmann, & Wagner, 1999; Klinkel & Wagner,
1997; Puso, 2000; Reese, Wriggers, & Reddy, 2000; Wriggers & Reese, 1996; Zhu &
Cescotto, 1996). The current paper proposes the formulation of a six-node solid–shell FE
denoted as (SHB6). It consists of a continuum shell derived from a fully 3D approach, in
which the displacements are the only degrees of freedom and provided with a special direc-
tion designated as the “thickness”. The assumed-strain method is adopted together with an
in-plane reduced integration scheme using an arbitrary number of integration points – with
a minimum of two – located along the thickness direction. The 3D elastic constitutive law
is also modified, so that a shell-like behaviour is intended for the element in order to alle-
viate shear and thickness-type locking.

Because reduced integration schemes are known to introduce spurious mechanisms associ-
ated with zero energy, an adequate hourglass control is generally needed. An effective treat-
ment for kinematic modes was proposed by Belytschko and Bindeman (1993) with a physical
stabilisation procedure to correct the rank deficiency of eight-node hexahedral elements. As
the SHB6 is also under-integrated, a detailed eigenvalue analysis of the element stiffness
matrix has been carried out. We demonstrate that the kernel of this stiffness matrix only
reduces to rigid body modes and hence, in contrast to the eight-node solid–shell element
(SHB8PS) (Abed-Meraim & Combescure, 2002, 2009), the SHB6 element does not require
stabilisation. Nevertheless, we propose modifications, based on the well-known assumed-
strain method (Belytschko & Bindeman, 1993), for the discrete gradient operator of the ele-
ment in order to improve its convergence rate.

Indeed, as revealed by numerical evaluations of the SHB6 element, its original displace-
ment-based version, without modification of its discrete gradient operator, suffered from shear
and thickness locking. To attenuate these locking phenomena, several modifications have been
introduced into the formulation of the SHB6 element following the assumed-strain method
adopted by Belytschko and Bindeman, (1993). Finally to assess the effectiveness of the new
formulation, a variety of non-linear benchmark problems has been performed and good results
have been obtained when compared to other triangular-based elements available in the litera-
ture. In particular, it is shown that this new element plays a useful role as a complement to
the SHB8PS hexahedral element, which enables us to mesh arbitrary geometries. Examples
using both SHB6 and SHB8PS elements demonstrate the advantage of mixing these two
solid–shell elements.
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2. Formulation of the SHB6 FE

The SHB6 is a six-node prismatic continuum shell with only three displacement degrees of
freedom per node. It is provided with a special direction called the “thickness”, normal to the
mean plane of the triangle. A reduced integration scheme is adopted with a user-defined num-
ber nint of integration points along the thickness (with a minimum of two) and only one point
in the in-plane directions (see Figure 1). Accordingly, the element is intended to be used in
structural problems (thin or moderately thick structures), where the special “thickness” direc-
tion of the element is set parallel to that of the structure that is being modelled.

2.1. Kinematics and interpolation

The SHB6 is a linear, isoparametric element. Its spatial coordinates xi and displacements ui
are, respectively, related to the nodal coordinates xiI and displacements uiI through the linear
shape functions N = (N1, N2, … ,N6) as follows:

xi ¼ xiINIðn; g; fÞ ui ¼ uiINIðn; g; fÞ ð1Þ

Above and hereafter, unless specified otherwise, the implied summation convention for
repeated indices will be adopted. Lowercase indices i vary from one to three and represent
spatial coordinate directions. Uppercase indices I vary from one to six and correspond to ele-
ment nodes. The tri-linear isoparametric shape functions NI are:

Nðn; g; fÞ ¼ 1

2

ð1� fÞð1� n� gÞ
ð1� fÞn
ð1� fÞg

ð1þ fÞð1� n� gÞ
ð1þ fÞn
ð1þ fÞg

2
666666664

3
777777775
; with

n ¼ ½0; 1�
g ¼ ½0; 1� n�
f ¼ ½�1; 1�

0
B@

1
CA ð2Þ

2.2. Discrete gradient operator

Using some mathematical derivations, similar to the procedure for the SHB8PS development
(Abed-Meraim & Combescure, 2009), we can explicitly express the relationship between the
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Figure 1. Reference geometry of the SHB6 element and its integration points.
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linear part of the strain field and the nodal displacements. Combining (1) and (2) leads to the
following expansion for the displacement field:

uiðn; g; f; x; y; zÞ ¼ a0i þ a1ixþ a2iyþ a3izþ c1ih1 þ c2ih2
i ¼ 1; 2; 3 h1 ¼ fg; h2 ¼ fn

�
ð3Þ

Evaluating this last equation at the element nodes yields the following three six-equation sys-
tems:

di ¼ a0isþ a1ix1 þ a2ix2 þ a3ix3 þ c1ih1 þ c2ih2; i ¼ 1; 2; 3 ð4Þ

where the six-component vectors di and xi, respectively, denote the nodal displacements and
coordinates and vectors s and ha ða ¼ 1; 2Þ are given by:

sT ¼ ð1; 1; 1; 1; 1; 1Þ
hT
1 ¼ ð0; 0;�1; 0; 0; 1Þ

hT
2 ¼ ð0;�1; 0; 0; 1; 0Þ

8<
: ð5Þ

Let us now consider the derivatives of the shape functions evaluated at the origin of the refer-
ence frame:

bi ¼ N;ið0Þ ¼ @N
@xi n¼g¼f¼0j

i ¼ 1; 2; 3 Hallquist Form ð6Þ

Explicit expressions of vectors bi can be derived by algebra together with some useful orthog-
onality relations:

bT
i � ha ¼ 0; bT

i � s ¼ 0; bT
i � xj ¼ dij

hT
a � s ¼ 0; hT

a � hb ¼ 2dab
i; j ¼ 1; . . . ; 3 a; b ¼ 1; 2

8<
: ð7Þ

These orthogonality conditions allow the constants aki and cai to be determined by scalar
products:

aki ¼ bT
k � di; cai ¼ cTa � di

where : ca ¼ 1
2 ha �

P3
j¼1 ðhT

a � xjÞbj

h i(
ð8Þ

which, combined with (3), lead to the following convenient form for the displacement field:

ui ¼ a0i þ ðx1bT
1 þ x2b

T
2 þ x3b

T
3 þ h1c

T
1 þ h2c

T
2 Þ � di ð9Þ

The strain field (i.e. symmetric part of the displacement gradient) is then obtained by differen-
tiating this last equation:

rsðuÞ ¼ B � d ð10Þ
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rsðuÞ ¼

ux;x
uy;y
uz;z

ux;y þ uy;x
uy;z þ uz;y
ux;z þ uz;x

2
6666664

3
7777775
; d ¼

dx

dy

dz

2
4

3
5;B ¼

bT
x þ ha;xcTa 0 0

0 bT
y þ ha;ycTa 0

0 0 bT
z þ ha;zcTa

bT
y þ ha;ycTa bT

x þ ha;xcTa 0
0 bT

z þ ha;zcTa bT
y þ ha;ycTa

bT
z þ ha;zcTa 0 bT

x þ ha;xcTa

2
66666664

3
77777775

ð11Þ

This form of the discrete gradient operator B is very useful because it allows each of the non-
constant strain modes to be handled separately to build an appropriate assumed-strain field. In
addition, it can be shown that the ca vectors involved in this operator satisfy the following
orthogonality relations:

cTa � xj ¼ 0; cTa � hb ¼ dab ð12Þ

These conditions will prove to be helpful in the subsequent analysis of stiffness matrix rank
deficiencies.

2.3. Variational principle

The expression of the weak form of the Hu–Washizu mixed variational principle, as extended
to non-linear solid mechanics by Fish and Belytschko (1988) reads for a single FE:

dpðv; _�e; �rÞ ¼
Z
ve

d _�e
T � rdvþ d

Z
ve

�rT � ðrsðvÞ � _�eÞdv� d _d
T � f ext ¼ 0 ð13Þ

where d denotes a variation, v is the velocity gradient, _�e is the assumed-strain rate, �r is the
interpolated stress, r is the stress evaluated by the constitutive equations, _d is the nodal
velocities, f ext is the external nodal forces and rsðvÞ is the symmetric part of the velocity
gradient. In the simplified form of this principle, as described by Simo and Hughes (1986),
the assumed stress field is chosen to be orthogonal to the difference between the symmetric
part of the velocity gradient and the assumed-strain rate, leading to:

dpð _�eÞ ¼
Z
ve

d _�e
T � rdv� d _d

T � f ext ¼ 0 ð14Þ

Therefore, the discrete equations only require the interpolation of the displacement and the
assumed-strain field. The latter is expressed in terms of a �B matrix projected starting from the
standard B operator:

_�eðx; tÞ ¼ �BðxÞ � _dðtÞ ð15Þ

Replacing (15) in the variational principle (14) leads to the following expression for the inter-
nal forces:

f int ¼
Z
ve

�B
T � rð _�eÞdv ð16Þ
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This formulation is valid for problems involving non-linear material models, in which r is a
function of the time history of the assumed-strain field and other internal state variables:

r ¼ Fð _�e; a; . . .Þ ð17Þ

For linear elastic problems, the element stiffness matrix takes the following simple form:

Ke ¼
Z
ve

�B
T � C � �Bdv ð18Þ

Note that similar to the SHB8PS element (Abed-Meraim & Combescure, 2009), an improved
plane-stress type constitutive law is adopted here to enhance the element immunity with
regard to thickness locking.

2.4. Hourglass mode analysis

Hourglass mechanisms are spurious zero-energy modes generated by the reduced integration.
Therefore, the analysis of hourglass modes is equivalent to the investigation of stiffness
matrix rank deficiency. Within a displacement-based approach, a zero-energy mode is a vector
hg that satisfies:

BðfIÞ � hg ¼ 0; I ¼ 1; . . . ; nint ð19Þ

We can easily demonstrate that the following (ei, i= 1,…,18) vectors are linearly independent,
and hence, they form a basis for the vector space of the discretised displacements:

e1 ¼
s

0

0

0
B@

1
CA; e2 ¼

0

s

0

0
B@

1
CA; e3 ¼

0

0

s

0
B@

1
CA; e4 ¼

x

0

0

0
B@

1
CA; e5 ¼

0

x

0

0
B@

1
CA;

e6 ¼
0

0

x

0
B@

1
CA; e7 ¼

y

0

0

0
B@

1
CA; e8 ¼

0

y

0

0
B@

1
CA; e9 ¼

0

0

y

0
B@

1
CA; e10 ¼

z

0

0

0
B@

1
CA;

e11 ¼
0

z

0

0
B@

1
CA; e12 ¼

0

0

z

0
B@

1
CA; e13 ¼

h1

0

0

0
B@

1
CA; e14 ¼

0

h1

0

0
B@

1
CA; e15 ¼

0

0

h1

0
B@

1
CA;

e16 ¼
h2

0

0

0
B@

1
CA; e17 ¼

0

h2

0

0
B@

1
CA; e18 ¼

0

0

h2

0
B@

1
CA ð20Þ

Assuming that vector hg belongs to the stiffness kernel, one can expand it in terms of the
above base vectors:

hg ¼
X18
i¼1

ciei ð21Þ
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Combining (21), (19) and (11), and taking advantage of orthogonality conditions (7), one
obtains:

c4 þ h1;xðfIÞc13 þ h2;xðfIÞc16
c8 þ h1;yðfIÞc14 þ h2;yðfIÞc17
c12 þ h1;zðfIÞc15 þ h2;zðfIÞc18

c5 þ c7 þ h1;yðfIÞc13 þ h1;xðfIÞc14 þ h2;yðfIÞc16 þ h2;xðfIÞc17
c9 þ c11 þ h1;zðfIÞc14 þ h1;yðfIÞc15 þ h2;zðfIÞc17 þ h2;yðfIÞc18
c6 þ c10 þ h1;zðfIÞc13 þ h1;xðfIÞc15 þ h2;zðfIÞc16 þ h2;xðfIÞc18

0
BBBBBB@

1
CCCCCCA

¼ 0; I ¼ 1; . . . ; nint

Evaluating the above equation at the nint different integration points of the SHB6 implies that:

c4 ¼ c13 ¼ c16 ¼ 0
c8 ¼ c14 ¼ c17 ¼ 0
c12 ¼ c15 ¼ c18 ¼ 0

8<
: ;

c5 þ c7 ¼ 0
c9 þ c11 ¼ 0
c6 þ c10 ¼ 0

8<
: ð22Þ

and hence:

hg ¼ c1

s
0
0

0
@

1
Aþ c2

0
s
0

0
@

1
Aþ c3

0
0
s

0
@

1
Aþ c5

�y
x
0

0
@

1
Aþ c6

�z
0
x

0
@

1
Aþ c9

0
�z
y

0
@

1
A ð23Þ

This last equation reveals that the kernel of the stiffness matrix only consists of the usual six
rigid body modes (three translations and three rotations), and thus no rank deficiency is
observed. It should be noted that this formulation of the SHB6 element is valid for any set of
nint integration points located along the same line nI ¼ gI ¼ 1

3; fI ; I ¼ 1; :::; nint; and compris-
ing at least two integration points ðnint � 2Þ.

2.5. Assumed-strain formulation for the SHB6

In this section, the discrete gradient operator B will be projected onto an appropriate subspace
in order to eliminate different locking phenomena; the projected operator will be denoted as
�B. It has been shown in the literature (see Simo & Hughes, 1986) that this assumed-strain
method is consistent, from a variational perspective, with the Hu–Washizu principle as long
as the stress interpolation is appropriately chosen. However, this variational justification of
the assumed-strain method does not provide a general and systematic way to derive adequate
assumed-strain fields, and a specific analysis of locking must be conducted for each new ele-
ment developed based on this approach. For this purpose, we propose a projection scheme
that is both effective and simple (see Belytschko & Bindeman (1993) for further details). In
the contribution of Belytschko and Bindeman, (1993), two eight-node hexahedral elements
named ASQBI and ADS were developed on the basis of specific projections. In a similar
way, yet leading to a quite different projected operator �B, the SHB8PS solid–shell formulation
has been derived (Abed-Meraim & Combescure, 2009). In the two contributions above, the
additive split of the discrete gradient operator was primarily dictated by the hourglass part of
the B operator. However, because the SHB6 element is shown to be free from spurious
modes, the projection process is found here to be more difficult than for the eight-node coun-
terpart. Taking advantage of the experience gained through the SHB8PS formulation, the dis-
crete gradient operator B is first decomposed into two parts:
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B ¼ B1 þ B2 ð24Þ

In this additive decomposition, the first part, B1, contains the gradients in the element mid-
plane (membrane terms of the deformation) as well as the normal strains, whereas the second
part, B2, incorporates the gradients associated with the transverse shear strains:

B1 ¼

bT
x þ ha;xcTa 0 0

0 bT
y þ ha;ycTa 0

0 0 bT
z þ ha;zcTa

bT
y þ ha;ycTa bT

x þ ha;xcTa 0
0 0 0
0 0 0

2
6666664

3
7777775

ð25Þ

B2 ¼

0 0 0
0 0 0
0 0 0
0 0 0
0 bT

z þ ha;zcTa bT
y þ ha;ycTa

bT
z þ ha;zcTa 0 bT

x þ ha;xcTa

2
6666664

3
7777775

ð26Þ

Then, from numerical experiments, it is observed that the main locking effects in the SHB6
element originate from the transverse shears. Accordingly, we choose an integration scheme
that enables us to reduce the associated fraction in the total strain energy. To this end, matrix
B2 is projected as follows:

�B2 ¼ eB2 ð27Þ

where e is a shear scaling factor (0 � e � 1). By introducing the additive decomposition (24)
of matrix B into (18) and making use of projection (27), the stiffness matrix becomes:

Ke ¼
Z
ve

BT
1 � C � B1dvþ

Z
ve

BT
1 � C � �B2dvþ

Z
ve

�B
T
2 � C � B1dvþ

Z
ve

�B
T
2 � C � �B2dv ð28Þ

which can be simply written as: Ke ¼ K1 þK2. The first term, K1, which is not affected by
projection, is evaluated at the integration points as defined above:

K1 ¼
Z
ve

BT
1 � C � B1dv ¼

Xnint
I¼1

xðfIÞJðfIÞBT
1 ðfIÞ � C � B1ðfIÞ ð29Þ

The second term, K2, embodies all the projection and reads:

K2 ¼
Z
ve

BT
1 � C � �B2dvþ

Z
ve

�B
T
2 � C � B1dvþ

Z
ve

�B
T
2 � C � �B2dv ð30Þ

The particular choice of the above additive decomposition (24) together with projection
(27) yields a simplified form for the second part of the stiffness matrix K2. Indeed, with these
choices the first two terms, i.e. cross-terms, in the right-hand side of (30) vanish, and matrix
K2 simply reduces to:
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K2 ¼
Z
ve

�B
T
2 � C � �B2dv ð31Þ

Note that the extreme values of e are 0 and 1 and correspond, respectively, to a vanishing B2

operator and to the absence of projection. In the first case (e ¼ 0), no transverse shear strains
are taken into account, which not only is likely to lead to improper results, but also to hour-
glass mechanisms and singularity of the stiffness matrix. The second case (e ¼ 1) corresponds
to the absence of projection, and the associated unmodified SHB6 version (i.e. without
assumed-strain projection) is shown to be much less accurate than that using projection (see
the benchmark tests presented in the next section).

The identification of the shear scaling factor e in (27) has been carried out through numer-
ical experiments, and the selected value for this parameter is found to be one half. This value
is motivated by extensive testing on a variety of linear and non-linear popular test problems.
Although not physically motivated, this choice of projection leads to reasonably good behav-
iour for the element in most of the representative benchmark problems that have been tested.

2.6. Geometric stiffness matrix

In this section, the geometric stiffness matrix for the SHB6 element is derived. For instance,
this geometric stiffness matrix Kr has to be added to the regular tangent stiffness matrix Ke

in a usual structural stability analysis. Note that the geometric stiffness matrix originates from
the linearisation of the virtual work principle and is due to the non-linear (quadratic) part of
the strain tensor. In its continuum form, it reads:

Krðdu;�uÞ ¼
Z
ve

r : rduT � r�udv ¼
Z
ve

r : eQðdu;�uÞdv ð32Þ

Making use of the vector form of the stress tensor and the quadratic part of the strain ten-
sor, respectively, Equation (32) can be rewritten as:

Krðdu;�uÞ ¼
Z
ve

rT � eQðdu;�uÞdv ð33Þ

with:

r ¼

rxx

ryy

rzz

rxy

ryz

rxz

2
66666664

3
77777775
; eQ ¼

eQxx
eQyy
eQzz

eQxy þ eQyx
eQyz þ eQzy
eQxz þ eQzx

2
666666664

3
777777775

ð34Þ

and the components of the quadratic part of the strain tensor are given by:

eQij ðdu;DuÞ ¼
X3

k¼1

duk;iDuk;j ¼ duk;iDuk;j ð35Þ
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Using the discrete form of the displacement gradient, as given in Equation (11), one
obtains:

duk;i ¼ ðbT
i þ ha;icTa Þ � ddk ¼ BT

i � ddk

�uk;j ¼ ðbT
j þ ha;jcTa Þ ��dk ¼ BT

j ��dk

�
ð36Þ

The components of the non-linear part of the strain tensor can be discretised as:

eQij ðdu;�uÞ ¼
X3

k¼1

ðddT
k � BiÞðBT

j ��dkÞ ¼ ddT � BQ
ij ��d

where : BQ
ij ¼

BiB
T
j 0 0

0 BiB
T
j 0

0 0 BiB
T
j

2
64

3
75; dd ¼

dd1

dd2

dd3

2
4

3
5; �d ¼

�d1

�d2

�d3

2
4

3
5 ð37Þ

With these quadratic discrete gradient operators BQ
ij , the contribution krðfI Þ at integration

point fI to the overall geometric stiffness matrix is given by:

krðfIÞ ¼ rxxðfIÞBQ
xxðfIÞ þ ryyðfIÞBQ

yyðfIÞ þ rzzðfIÞBQ
zzðfIÞ þ rxyðfIÞðBQ

xyðfIÞ þ BQ
yxðfIÞÞ

þ ryzðfIÞðBQ
yzðfIÞ þ BQ

zyðfIÞÞ þ rxzðfIÞðBQ
xzðfIÞ þ BQ

zxðfIÞÞ ð38Þ

The geometric stiffness matrix is finally obtained using the integration points as:

Kr ¼
Xnint
I¼1

xðfIÞJðfIÞkrðfIÞ ð39Þ

2.7. Numerical aspects for non-linear analyses

In this section, the main features of the implementation of the SHB6 element are briefly
described. For this purpose, the incremental, non-linear and implicit FE code ASTER has
been used. In this process, the updated Lagrangian strategy is adopted. For the stress and
internal variable updates, the well-known co-rotational formulation is used. The equilibrium
equations are solved step-by-step using an iterative procedure based on the Newton–Raphson
scheme. These iterations are performed until the residual load vector is sufficiently small,
using a constant tangent stiffness matrix built at the beginning of the current time step. For
structural instability problems involving either a load-limit point (snap-through) or a deflec-
tion-limit point (snap-back), as well as for material instability (softening behaviour), the path-
following Riks algorithm, which is based on an arc-length control parameter (Riks, 1979), is
adopted.

For coupling with non-linear behaviour models, an elastic–plastic constitutive law with
isotropic hardening and associative plastic flow rule has been used. As previously mentioned,
the standard 3D elastic constitutive law has been specifically modified for this element formu-
lation, and this must accordingly be taken into account for the time integration of the set of
constitutive equations. This is the main modification with respect to the classical radial return
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mapping algorithm based on Newton–Raphson’s iterative procedure. The associated yield cri-
terion is defined by:

F ¼ req � ryð�e pÞ 6 0 ð40Þ

where req is the von Mises equivalent stress and ry is the yield stress, which can be
described by a non-linear function of the equivalent plastic strain �ep. Note that for isotropic
hardening, Equation (40) can be regarded as a geometric transformation for the yield surface,
in which this surface, whose current size is ry, expands homogenously without distortion in
stress space.

3. Evaluation on benchmark problems

In this section, the evaluation of the SHB6 element will be carried out through several popu-
lar linear and non-linear benchmark problems. For each test problem, the obtained results are
compared with the reference solution from the literature, and when relevant, they are addi-
tionally compared with either the solutions given by both the standard 3D six-node prism ele-
ment PRI6 and the unmodified SHB6 element (i.e. without assumed-strain projection) or
those yielded by the hexahedral solid–shell element SHB8PS. For the sake of clarity, the
assumed-strain projected version of the SHB6 will be denoted as SHB6bar. The first prelimin-
ary linear test problems are mainly intended to assess the performance of the element in
bending-dominated problems and to illustrate the benefit of mixing hexahedral and prismatic
solid–shell elements such as the SHB6bar and SHB8PS. In all numerical tests, a single ele-
ment is used through the thickness, unless prescription of boundary conditions requires using
two layers of FE. For elastic problems, only two integration points are used, whereas for elas-
tic–plastic tests, five integration points are used through the thickness. In the reported results,
the meshes are indicated by the number of subdivisions in each direction (length and width),
and the total element number is then doubled, since each rectangle is divided into two
triangles.

3.1. Buckling of a cylinder under external pressure

In this test, a linear stability analysis of a thin cylinder, which is free at its ends and subjected
to a uniformly distributed external pressure, is carried out. This problem also allows the veri-
fication of the formulation of the geometric stiffness matrix Kr. Indeed, in this linear buck-
ling analysis, the Euler critical pressure is determined along with the corresponding buckling
mode. This critical state is associated with the lowest pressure that makes the global stiffness
matrix singular and is classically obtained by solving the eigenvalue problem:

ðKe þ kcKrÞ � Xc ¼ 0 ð41Þ

in which kc is the critical buckling load and Xc is the associated buckling mode. The geomet-
ric and material parameters are shown in Figure 2.

The reference solutions used for comparison are analytical, given by Brush and Almroth,
1975; Timoshenko and Gere (1966). Owing to the symmetry, only one-eighth of the cylinder
is modelled, and symmetry boundary conditions are applied, which in turn restrict the
analysis to symmetric buckling modes (i.e. modes 2, 4 and 6 as shown in Figure 3). The
corresponding critical pressure Pcr is given by the analytical expression: Pcr ¼ En2=12ð1�
m2Þðe=RÞ3, with n= 2, 4, 6.
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The results obtained for the three modes (n= 2, 4 and 6) are reported in Table 1 in terms
of critical pressure, normalised with respect to the analytical solution. These reveal that the
assumed-strain version SHB6bar has a better convergence rate than the SHB6 and PRI6
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Figure 2. Buckling of a thin cylinder under uniform external pressure.
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Figure 3. Buckling modes n° 2, 4 and 6; a (20� 30� 1)� 2 mesh using SHB6 elements.

Table 1. Normalised critical pressure for the thin cylinder under uniform pressure.

Analytical critical pressure Mesh layout

PðnÞ
cr =P

ðnÞ
crðref Þ, (n = 2, 4, 6)

PRI6 SHB6 SHB6bar

Pð2Þ
crðref Þ ¼ 73; 260 (20� 30� 1)�2 10.56 1.40 1.25

(20� 40� 1)�2 6.45 1.21 1.13
(20� 50� 1)�2 4.55 1.13 1.08
(20� 60� 1)�2 3.53 1.09 1.05
(20� 70� 1)�2 2.91 1.06 1.03

Pð4Þ
crðref Þ ¼ 293; 040 (20� 30� 1)�2 10.56 1.42 1.26

(20� 40� 1)�2 6.44 1.22 1.13
(20� 50� 1)�2 4.55 1.14 1.08
(20� 60� 1)�2 3.52 1.09 1.05
(20� 70� 1)�2 2.91 1.06 1.03

Pð6Þ
crðref Þ ¼ 659; 340 (20� 30� 1)�2 10.56 1.46 1.28

(20� 40� 1)�2 6.43 1.24 1.14
(20� 50� 1)�2 4.54 1.15 1.08
(20� 60� 1)�2 3.52 1.10 1.05
(20� 70� 1)�2 2.90 1.07 1.03
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elements, and represents a significantly improved alternative to the PRI6, which exhibits lock-
ing and very slow convergence rate.

3.2. Pinched hemispherical shell with mixed hexahedral and prismatic FE

This test problem, which is often used to assess the 3D inextensional bending behaviour of
shells, has become very popular and has been adopted by many authors since it was proposed
by MacNeal and Harder (1985). Figure 4 shows the geometry, loading and boundary condi-
tions for this elastic thin shell problem (R/t= 250). In this example, a mixture of SHB6 and
SHB8PS elements is used, in which the SHB6 elements are located at the top of the hemi-
sphere.

Owing to the symmetry of the test, only one quarter of the hemisphere is meshed using a
single layer of elements through the thickness and with two unit loads along the directions
Ox and Oy. According to the reference solution (MacNeal & Harder, 1985; Trinh, Abed-Mer-
aim, & Combescure, 2011), the displacement of point A along the x-direction is wref = .0924.
Note that in order to compare the performance of solid–shell elements to that of standard 3D
elements, SHB6 elements are mixed with SHB8PS elements and PRI6 elements are mixed
with their 3D counterpart HEX8, which are the standard, full integration eight-node hexahe-
dral elements. The normalised results reported in Table 2 reveal a very good convergence rate
when the SHB6bar is mixed with the SHB8PS, whereas the conventional linear solid elements
show too stiff behaviour in this test problem. This confirms the interest of mixing hexahedral
and prismatic solid–shell elements.

3.3. Cantilever beam subjected to a conservative end shear force

This problem has been widely used by many investigators and considered as a benchmark test
for large deflection analysis (see, e.g. Sze, Liu, and Lo, (2004), among others). Figure 5 gives
the geometric and material properties as well as an example of mesh using SHB6 elements.
One end of this thin beam is clamped and the other is subjected to a vertical shear force. An
accurate reference solution was tabulated by Sze et al. (2004), which was obtained by means
of the Abaqus shell element S4R with a converged mesh of 16� 1 elements.

Figure 6 shows the normalised load–deflection curves obtained with different FEs. For the
same mesh (100� 10� 1)� 2, with a single element through the thickness, the results given
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Figure 4. Pinched hemispherical shell problem with a mixture of prismatic and hexahedral elements:
the SHB6 elements are located at the top and the SHB8PS elements are arranged over an angle of 75°.
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by the SHB6bar, SHB6 and PRI6 are compared to the reference solution. One can observe
that the plots given by the SHB6bar element are the closest to the reference solution, while
the two other elements (especially the PRI6) show a stiffer response in this test problem.

3.4. Pull-out of an open-ended cylindrical shell

This test problem consists of an elastic thin cylindrical shell with free edges subjected to a
pair of diametrically opposite radial forces. The geometric and material properties as well as
the boundary conditions and loading are described in Figure 7. Only one octant of the cylin-
der is modelled, due to the symmetry, with a single element along the thickness.

The reference results for this test were given by Sze et al. (2004), using the Abaqus shell
element S4R with a converged mesh of 24� 36 elements. The results shown in Figure 8 cor-
respond to the following meshes: 24� 36 S4R, (45� 45� 1)� 2 SHB6bar and 20� 30� 1
SHB8PS elements, and represent the normalised load vs. the radial displacements at points A,
B and C. These reveal that the results of the proposed solid–shell elements are in good agree-
ment with the reference solution.

Table 2. Normalised displacements at point A for the pinched hemispherical shell problem: mixed
meshes.

Number of elements
PRI6 +HEX8 SHB6+SHB8PS SHB6bar +SHB8PS

w/wref w/wref w/wref

36 .001 .703 .785
100 .002 .880 .960
156 .004 .929 .983

Figure 5. Cantilever subjected to end shear force: example of a (100� 10� 1)� 2 mesh with SHB6
elements; initial and deformed configuration under maximum force.
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3.5. Snap-through and snap-back instability of a thin elastic panel

This is a popular benchmark test that has been widely considered in the literature (see, e.g.
Killpack & Abed-Meraim (2011); Leahu-Aluas & Abed-Meraim (2011); Sze et al. (2004)
among many others). Figure 9 shows the initial and deformed configurations, geometric and
materials properties, boundary conditions and loading. Owing to the symmetry, only one
quarter of the structure is modelled.

The panel is hinged at its edge BC (mid-surface of the panel), free at its edge CD, and
subjected to a concentrated force P at point A along the vertical direction Oz (see Figure 9).
It is noteworthy that this test is very sensitive to the particular location of the prescribed
boundary conditions (mid-surface, upper or lower edge), and the corresponding responses
show significant differences. Therefore, to reproduce shell boundary conditions (i.e. on the
mid-surface), two layers of 3D elements need to be used along the thickness. Also, to be able
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to capture the snap-through behaviour and to follow the curve beyond the limit-point, the
Riks path-following strategy has been adopted (Riks, 1979). The results plotted in Figure 10
correspond to the following discretisations: (25� 25� 2)� 2 SHB6bar, 20� 20� 2 SHB8PS
and 24� 24 S4R elements; the latter represent the converged mesh providing the reference
solution (Sze et al., 2004). This comparison reveals that the SHB6bar results are in very good
agreement with the reference solution.

3.6. Limit-point buckling of a thick elastic panel

This test is the same as the previous one with the exception of the thickness, which is now
twice as large (h= 12.7). Similarly to its thin counterpart, this non-linear benchmark problem
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has been extensively investigated in the literature. The geometry, material properties, bound-
ary conditions and loading can be seen again in Figure 9. Also, by virtue of symmetry, only
a quarter of the panel is modelled for the FE simulations. Two layers of 3D elements need to
be used along the thickness of the panel, so that the prescribed shell boundary conditions can
be consistently reproduced. In the same way, the solution procedure makes use of the Riks
path-following strategy, which enables both to predict the snap-through behaviour of the
structure and to follow the curve beyond the limit-point.
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For this test problem, an accurate reference solution has been given by Sze et al. (2004),
using the Abaqus shell element S4R with a converged mesh of 24� 24 elements. Therefore,
the three prismatic FEs (i.e. SHB6bar, SHB6 and PRI6) can be compared to this reference
solution. The obtained results are shown in Figure 11 in terms of plots of the applied load vs.
the vertical displacement at the load point A. These correspond to the following meshes:
24� 24 S4R (for the reference solution) and (30� 30� 2)� 2 for the three elements
SHB6bar, SHB6 and PRI6. Again, it can be seen from Figure 11 that the results given by the
proposed solid–shell are in better agreement with the reference solution than those yielded by
the PRI6 element.

3.7. Elastic–plastic buckling of a thick cylindrical panel

The elastic version of this test having been analysed in the previous section, we consider here
an elastic–plastic version in which both types of non-linearities, geometric and material, are
included. For this new elastic–plastic benchmark test, we had first to build the associated ref-
erence solution. The latter was obtained using Abaqus S4R5 shell elements, for which con-
vergence was achieved with a mesh of 20� 20 elements. The geometric and material
parameters are given in Figure 12. The elastic–plastic constitutive equations correspond to the
Voce non-linear saturating isotropic hardening law, which is associated with the von Mises
yield surface F ¼ req � Y � 0 such that: Y ¼ ry þ Rsatð1� expð�CR�e pÞÞ, where ry is the
initial yield stress, Rsat, CR are the material parameters and �ep is the equivalent plastic strain.

Owing to the symmetry, only one quarter of the structure is modelled. The lateral, straight
sides are hinged, while the two other curved sides are free. As discussed before, two layers
of 3D elements are used along the thickness in order to reproduce shell boundary conditions,
and the Riks path-following strategy is adopted to follow the curve beyond the limit-point.
The results shown in Figure 13 correspond to the following meshes: 20� 20 S4R5,
(20� 20� 2)� 2 SHB6bar and 15� 15� 2 SHB8PS FEs. In Figure 13, the applied load is
plotted vs. the vertical displacement at the load point A. It can be observed that the elastic–
plastic behaviour decreases the first limit load, which is here about 75% of its elastic value.
These results are in good agreement with the reference solution obtained with Abaqus S4R5
shell elements, which confirms the ability of the proposed solid–shell FE to predict such criti-
cal points and the associated post-buckling response.
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4. Discussion and conclusions

A new solid–shell element SHB6bar has been developed and implemented into the FE code
ASTER. The key idea of this development is the adequate combination of a reduced integra-
tion rule with the well-known assumed-strain method. An interesting feature of this approach
is the convenient fully 3D framework on which this solid–shell element is based (six-node
prism with only three translational degrees of freedom per node). Also it has been shown that
no zero-energy modes arise from the adopted reduced integration scheme, and thus no stabili-
sation procedure is required. As revealed by the benchmark problems, the SHB6bar element
brings significant improvements compared to the standard 3D six-node prismatic element
denoted PRI6. The projection using the assumed-strain technique makes the quality of the ele-
ment even better under combined bending and shearing. This type of element blends naturally
with the eight-node hexahedral solid–shell element SHB8PS, thus enabling one to analyse
any structural geometry quite easily, which is the main motivation behind the development of
the present SHB6bar element. Recall that meshing arbitrarily complex geometries is not per-
mitted using only hexahedral elements. Due to the better performance of quadrangular-based
elements, it is advisable to mesh with SHB8PS solid–shell elements, wherever possible, and
to keep the SHB6 element for the only purpose of completing the meshes.
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