Parametric modal analysis
of the brain-CSF-skull system

Influence of the fluid-structure interaction

Adil El Baroudi — Fulgence Razafimahery
Lalaonirina R. Rakotomanana

IRMAR (UMR CNRS 6625)
263 Avenue Général Leclerc
Campus de Beaulieu
F-35042 Rennes cedex

ABSTRACT. Dynamical behavior of the head during an impact is important for analyzing the
induced local damage or diffuse damage in the brain tissue. We determine in the present
study the natural frequencies and the modal shapes of the system of brain, cerebro-spinal
fluid and skull. Two models are presented in this work: an elastic-acoustic model assuming a
rigid skull and an elastic-acoustic-elastic model assuming a deformable skull. It is shown that
natural frequencies and more significantly the modal shapes are strongly influenced by the
interaction between solid phases (brain and skull) and the cerebro-spinal fluid.

RESUME. Le comportement dynamique de la téte lors d’un impact est de prime importance
pour analyser les conséquences dans les lésions locales ou diffuses du cerveau. Nous
déterminons dans ce travail les fréquences et modes propres d’un systeme formé par le
cerveau, le liquide céphalo-rachidien et le crdne. La premiére partie de I’étude est consacrée
a un modele ou le crdne est supposé rigide (modéle élastique-acoustique). La seconde partie
présente un modele dont le crdne est déformable. L’étude a montré que les fréquences
propres et surtout les modes propres de vibrations sont trés influencés par l'interaction entre
les phases solides, le cerveau et le crane et le fluide céphalo-rachidien.
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1. Introduction

On the one hand, brain injuries constitute one of the majoseaf death in road
accidents. To understand how the brain gets injured durngcaident, the mechan-
ical response of the contents of the head during an impactchae known. The
consequences of the skull's vibrations are still poorlyenstbod. It is probable that
the low-frequency skull vibrations (beld®®0 H z) mainly cause deep cerebral lesions,
while higher frequency vibrations have more consequeneéisesuperficial cerebral
structures e.g. (Willingeet al,, 1996). Due to the presence of a thin layer of the
cerebro-spinal fluid (CSF) between the brain and the skeliative motion can oc-
cur and may explain many types of brain injury. First, intnabral hematomas may
appear due to bridging veins rupture. Then, contusionsuisibg is likely to occur
when the brain hits against the inner surface of the skulst,L@up and contre-coup
injuries can happen when the head is suddenly accelerabedcdup injury is caused
by the brain hitting the interior of the skull; the contreaganjury occurs directly op-
posite the blow due to a process called cavitation. One ddiffieulties to apprehend
the trauma brain injury (TBI) is the lack of informations aitéhe stress distribution
within the brain, the CSF and the skull because of the preseha fluid phase. Solv-
ing fluid-structure mechanical interaction is thus expedtefurther improving our
understanding of the impact of the head during an accident.

On the other hand, the knowledge of the flow dynamics andlagoits of the
CSF in the intra-cranial space plays an important role feiows human pathology
in the everyday activities. Magnetic Resonance Imagingadito capture pulsation
of CSF in vivo (Kaoet al., 2007), showing that main pulsations are respiratory mod-
ulated. More recent studies on the brain tend more and mapeiit out the role of
wave within the brain tissue e.g. (Wt al,, 2007). They experimentally showed that
synchronization responses of brainwaves to periodic andgtimuli had three com-
ponents corresponding to different spectra: low frequesiti— 5H z], intermediate
frequencie$3 — 8 Hz], and higher frequencid$l — 44H z|. In addition, mechanical
vibrations also play important role during measurementiffsiglon Tensor Imaging
by means of Magnetic Resonance Imaging. Recent studieseshitwat the mechan-
ical vibrations cannot be ignored and they should be consiiehen choosing the
sequence parameters for Diffusion Tensor Imaging e.g.tuitinet al, 2006). All
these observations suggest us to better determine theahtequencies and modal
shapes of the brain, the CSF and the skull. Analytical metheere conducted to
determine the frequency spectrum of the head-neck sysignm(@haralambopoulos
et al, 1997). Finite element method has been intensively usedttehthe head im-
pact e.g. (Kleiven, 2002). Most of them neglected the meicharole of the CSF. A
basic question remain : what would be the role of the cerspioal fluid for free and
forced vibrations of the brain-CSF-skull system at low fregcies< 200H z? Nu-
merical aspects of fluid-structure problems have beenetidithe past e.g. (Morand
et al, 1979). Most classical methods use the modal shapes of lidgpgbase for de-
riving the dynamical behavior of the whole (solid and fluicdhtiins). In a general
manner, classical methods may be sufficient if we are onbrésted in searching for
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the natural frequencies. However, these methods do notiprmbtain the modal
shapes of the whole system which is essential for applyiagrtbdal projection when
facing dynamical situation (forced vibrations or shocks).

The goal of the present work was to search for analytical amdenical modal
shapes of the interacting brain-CSF-skull assuming elasthavior for the brain and
the skull and an acoustic wave propagation within the CSE.fbdel is designed to
directly solve the coupled solid-fluid problem, convergelglassical method that only
uses the modal shapes of the solid phase. The influence ofSRec@mpressibility
and thickness on the natural frequencies and modal shapeinvestigated. Last
but not least, the use of simple models was deemed nece&segywalidation of the
fluid-structure problems still remains a challenge.

2. Basic models

First, we develop linear plane-strain models and assumenantial coupling,
meaning that the longitudinal wave velocity is very largenpared with the char-
acteristic velocity of the fluid. The Helmholtz decompasite.g. (Rakotomanana, To
appear 2008) of the displacement field= V¢, +rot(1);z) and the acoustic assump-
tion for CSF induce:

w2 w2 w2
Api + i =0, A+ 1 =0, Ap+—p=0 (1]
GiL G €
wherec;, ¢;r are the longitudinal and transversal wave velocities witthie solid
phase (brain : i = 1; skull : i=2), and) the sound velocity in the CSF respectively.
The pressure ig (x, t) within the CSF and the stresses within solid phases are:

o(u;) = Ai(divug) T4 2, e(u;)

The two basic models developed in the present study aresemied in Figure 1.
The model ielastic-acoustievhen the outer skull is rigid anelastic-acoustic-elastic
when the skull is elastic. During a previous study, an experital jig was developed
for a three-dimensional analysis of a head during an imgdatit-Dubrulle, 2007).

Geometry and material properties of the present study weneat! from this previous
study (cf. Table 1).

Table 1. Geometry and material properties
E[Pal v_ | plkg/m?] R[m] colm/s]
Q 1000 R, =0.090 | 1450

Q0 | 6,775.10° | 0,48 1150 Ry =0.075
Qo 7.1019 0,33 2750 Ry =0.095
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Figure 1. Elastic-acoustic and Elastic-acoustic-elastic modelsitb (2, ), cerebro-
spinal fluid(£2) and skull(©2;). Top view of a human brain-CSF-skull system

These values take into account the fluid rotational movemedthen differ from
those of (Charalambopoules al, 1997) which considered the brain tissue as an in-
viscid irrotational fluid. Analytical solutions of [1] takbe form of :

Y1 = AlJn (£> COS(TL@), 1/}1 = Bljn <ﬂ> SIH(TLG)
CiL C1L

p = :AJn <%> BY, <°Z—;>]cos(n9)

gy = :Aan (“’—T> + BoY, (“’—T)] cos(nf)

(&3 (&3
Yo = |Coly <ﬂ) + DY, <ﬂ)] sin(nf)
L CoT CoT

where A, B, C, and D are constants.J,, andY,, are the Bessel functions of the
first and second kind respectively. Classical techniquaff@lytical solving is based
on the expression of the displacement and stress with thasetfals and then their
introduction in the boundary and interfacial conditions.
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3. Rigid skull : Elastic-acoustic model

We first consider the elastic-acoustic model where the $kalbsumed rigid. The
fluid-structure problem is governed by equations [1] witlubdary conditions:

u = 0 (T'o)
clun = —pn Iy
(811 p (T'1) [2]

pow?u-n (Tq)

on
The last equation ofI';) is called transpiration condition. The transpiration con-
dition expresses the dynamic compatibility of the two condi, or equivalently the
projection of the linear momentum conservation, at therfate along the normal di-
rectionn of (I';). Analytical solutions:Solutions of elastic-acoustic problem [1] -
without the skulli = 2 - are treated as follows. We write first the displacement and
stress in terms agp andy Then, the boundary conditions (2), say(R;1,0) = 0 and
orr(R1,0) = —p(R;) allow to eliminate constants. Second, the transpiration co
dition at the interfac€l'y) implies the dispersion equation. Indeed, introducing the
time dependencexp (jwt), natural frequencies of the problem [1] with conditions [2]
satisfy the dispersion equation (El-Baroudi, 2007) :

Heo(w,n)=0 [3]

Modal shapes are for radial displaceméfit,,,(r,0) = U (r) cos(nf), azmuthal
displacement’,,, = V. (r) cos(nf), and pressur,,(r,0) = K, (r) cos(nf).
Maple was used for extracting the natural frequen€igén, m)} from Equation [3].
Numerical solutionsTo this end, the variational formulation of the problem [Iitw
the conditions [2] holds:

fsh o(uy) : e(vy)dv — w? fsh piuy - vidv — fFl pvi-ndll = 0
Jo, Vo - Vedv — w? (IQQ Z;—(fdv + / uy - nqbdl") = 0
0 I

V(vi,¢) € V x Q whereV = {v; € H(),vi = 0 (Tg)} etQ = H*(Q). We
used Lagrange elements in whialh € P, x P, andp; € P, the discretization of
the variational form lead to the non symmetrical system :

K, -B; Ui | o Mi O Ur | |0
0 K, P | Y | Mo M, || P| |0
Frequenciesf;, and modal shapes were obtained using the finite element dhetho

(Comsol software). First natural frequencigs= w;/27 are reported in Table 2.

Influence of the CSF compressibilitye investigated the influence of the CSF
compressibility by varying the sound velocity[m/s]. For illustration, six first nat-
ural frequencies are reported in Table 3. Frequencies depéendent of the fluid
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Table 2. Natural frequencies and modal shapes
bkl f2 /3 Ja s e
fe 38.67 | 69.88 | 90.69 | 100.51| 130.34| 138.85
(nm)| (2,1) (3,1) (1,2) 4,1 (5,1 (2,2)
In 38.67 | 69.88 | 90.69 | 100.51| 130.34| 138.85
I7 /s Jfo J10 /u J12
fe 153.74| 159.36| 182.97| 187.66| 200.42| 215.39
(n,m)| (0,1) (6,1) (3,2) (7,1) (1,2) (8,1)
fn 153.74| 159.36| 182.97| 187.66| 200.42| 215.39

Table 3. Natural frequencies vs. CSF compressibility

bil Jo /3 Ja I5 e

co = 10°m/s | 38.67 | 69.88] 90.69| 100.51| 130.34| 138.85
co = 500m/s | 38.66 | 69.87 | 90.68| 100.47| 130.29| 138.85
co = 300m/s | 38.65| 69.85| 90.68| 100.47| 130.29| 138.84

compressibility. Therefore, the incompressibility asgtion seems validated with
the model. This means that /c2 ~ 0 and we can write\p = 0.

Influence of the CSF thicknesBy varying the CSF thickness= Ry — R;, we
found that natural frequencies augment with the CSF thiskii&ble 4 ).

Table 4. Natural frequencies vs. CSF thickness

i Jo /3 Ja I5 e
e=0.012m | 34.24| 62.94 | 87.19| 91.82| 120.42| 133.35
e =0.009m | 29.42| 55.07 | 81.64| 83.96| 108.57| 128.23
e = 0.006m | 23.87| 45.57| 68.82| 80.96| 93.07 | 117.89
e=0.003m | 16.80| 32.75| 50.51| 69.70| 78.17 | 89.99

4. Elastic-acoustic-elastic model : fixed skull

Consider elastic skull; fixed. The problem is governed by [1] with conditions :

o(uj)n = —pn (')
@ = p0w2 u;-n (I) 1 =1,2 [4]
an 1 1

w = 0 (T'o)
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Analytical solutionsConditions onT'; ) first simplify the pressure formulation. Then
the clamping condition ofi; allows to express the displacemefit= (u2, u3). Con-
dition 02,(R2,0) = 0 gives new expressions ef = (u2,u?) and(o2,,02,). Fi-
nally, the two boundary conditions &F5) give the equation of dispersion. Natural
frequencies of [1] with conditions [4] are thus solutionstioé dispersion equation
(El-Baroudi, 2007):

Heae,r(w; n) =0 [5]

Modal shapes are for radid\,,,,,(r,0) = Unm(r) cos(nd), for azimuthalY,,,, =

Vim (1) cos(nd) displacements, and for pressurg,, (1, 0) = Kpm (1) cos(nd). Nu-

merical solutionsFinite element method is used to extract the natural frecjesand
modal shapes. The variational form of [1] with conditionshélds:

le o(uy) : e(vy)dv — w? le pruy - vidv — fFl pvi-ndll = 0
Jo. o(u2) t e(va)dv — w? [, pous - vedv — [ pve-ndl = 0
QQ Q2 FZ

2 .
pY
Jo, Vo Vodv — w? <f92 c—%dv + Z/F u; - n¢dr> -
=1 i

V(v,¢) € V x QinwhichV = {(vi,v2) € H' (1) x H' (), v2 =0 (I'g)} and
Q = H'(Q). By using again Lagrange elements, whayec P, x P, andp,, € P,
discretization of the variational form induces a non synmrinat system:

Ki O —-B Uy U 0
O Ky, —B Uy | —w? Uy | =10
P 0

0O O K, r
Maple and Comsol Multiphysics softwares are used to exthectirst12 natural fre-
quenciesf; = w; /2.

M,y (0] 0]
O M, O
Mla M2a Mp

Table 5. Natural frequencies : analytical vs. numerical
f1 f2 /3 fa s e
fe 38.67 | 69.88 | 90.69 | 100.51| 130.34| 138.85
(nm)| (2,1) (3,1) (1,2 4,1 (5,1) (2,2)
In 38.67 | 69.88 | 90.69 | 100.51| 130.34| 138.85
f? f8 f9 flO fll f12
fe 153.74| 159.36| 182.97| 187.66| 200.42| 215.39
(hm| 01 | 61 | G2 | (7.1) | 12 | (81
frn | 153.74| 159.36| 182.97| 187.66| 200.42| 215.39

Influence of the CSF compressibilits previously, we investigated the influence
of the sound celerity, on the natural frequencies. Analytical and numerical $ohst
are reported in Table 6. Natural frequencies do not sigmifigavary even within a
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Table 6. Natural frequencies vs. Compressibility

bkl 2 f3 fa s Je
co = 1000m/s | 38.67| 69.88| 90.69| 100.51| 130.34| 138.85
co = 500m/s | 38.66| 69.87| 90.69| 100.51| 130.34| 138.85
cp = 300m/s | 38.65| 69.85| 90.68 | 100.47| 130.29| 138.84

quite large band, € [300,1450]m/s, showing that the fluid-structure interaction
problem may be based on the CSF incompressibility. The pregsoblem simplifies
into Ap = 0.

Influence of the CSF thicknedale investigated the influence of the CSF thickness
on natural frequencies. To this purpose, we take for thenbeadiusR, = 0.090m
and we varye := R; — R». Analytical and numerical results are reported in Table
7 showing that natural frequencies increase with the CSkitleiss. When the skull
was assumed elastic but fixed at its external boundary, wedfdlie same natural
frequencies and modal shapes as for the rigid skull.

Table 7. Natural frequencies vs. CSF thickness

J1 f2 /3 Ja /5 fe
e=0.012m | 34.24| 62.94| 87.19| 91.82| 120.42| 133.35
e =0.009m | 29.42| 55.07| 81.64 | 83.96| 108.57| 128.23
e =0.006m | 23.87 | 45.57 | 68.82| 80.96| 93.07 | 117.89
e =10.003m | 16.80| 32.75| 50.51| 69.70| 78.17 | 89.99

5. Elastic-acoustic-elastic model (free skull)

A more realistic problem would let the bounddry of the skull free. The free
vibrations of the brain-CSF-skull system are governed bwjih conditions:

o(u;)n = —pn (I's)
% = pow?u;-n () i=12 [6]
o(uz)n = 0 (T'o)

Analytical solutions:Using the same technique as previously, introduction ofife
alytical solutions of [1] into the boundary and transpivaticondition [6] leads to a
dispersion equation (El-Baroudi, 2007):

Heae—free (w7 n) =0 [7]

Natural frequencies are thus solutions of this equationplMaoftware was used to
derive and solve it.Numerical solutions:Numerical solutions of [6] are obtained
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with finite element method using the variational equatiohjcl takes exactly the
same form as for the fixed skull. Only the space of test funasadifferentvy # 0

onTy. V(v,¢) € V x QinwhichV = HY Q) x H' etQ = H'(Q). The

same discrete system is also obtained. An appropriate nidisceanalysis technique
was used in the Comsol software for avoiding numerical sugripressure modes.
Analytical solutions was obtained by Maple software. Thet 1if) natural frequencies
are reported in Table 8f; = w; /27 (frequencies larger thald0 H ~ are not reported).

Table 8. Natural frequencies : Analytical vs. Numerical
bkl f2 /3 Ja s Je
fe 37,78 | 69,63 | 90,72 | 100,42| 130,30| 137,67
(nm)| (2,1) (3,1) (1,2) 4,1 (5,1) (2,2)
In 37,78 | 69,63 | 90,72 | 100,42| 130,30| 137,67
I7 /s Jfo J10 /u J12
fe 153,74| 159,34| 182,71| 187,66
(hm| 01 | 61 | B2 | (7.1)
fn 153,74| 159,34| 182,71| 187,66

Influence of the CSF compressibilifiihe influence of the sound velocity on the
natural frequencies is obtained in Table 9. Frequenciesarafluenced by the sound
velocity forcy € [300, 1450]m/s. This again means that in the present fluid-structure
interaction we can assume incompressibility. The sameldiogtion as previously
holds for the acoustical problem.

Table 9. Natural frequencies vs. CSF compressibility

fi(Hz) fi fo f3 fa fs fo
co = 1000 | 37,78 69,63| 90,72 | 100,42| 130,30| 137,67
co =500 | 37,78 | 69,63 | 90,72 | 100,42| 130,30| 137,67
co =300 | 37,77 | 69,61| 90,71| 100,38 130,25| 137,66

Influence of the CSF thicknesget us now consider the influence of the CSF
thickness on the natural frequencies. To that purpose, we took the nakus R, of
Q5 t00.090m and we varied the radiug,; of 2;. The natural frequencies are strongly
dependent on the CSF thickness.
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Table 10.Natural frequencies vs. CSF thickness

fi(Hz) fi f2 f3 fa fs e
R, =0,078 | 33,39 62,67 | 87,23| 91,71| 120,37| 132,20
Ry =0,081 | 28,63 | 54,78 | 81,52 | 84,00| 108,51| 127,12
R; =0,084 | 23,17 | 45,28 68,68 | 81,01| 92.99 | 117,85
Ry =0,087 | 16,27 | 32,51| 50,38 | 69,61| 78,21 | 89,94

Modal shapes: Three modal shapes are reported in Figure 2. The von Mises
stress field is represented since it plays a key role for staleding either the deep
brain injury at low frequency loading. Modal shapes illastrthat the highest strain

Figure 2. First three modal shapes of the brain-CSF-skull system [ises stress).
(a) First row for elastic-acoustic model (rigid skull) : bramodal shapes; (b) Second
and third rows for elastic-acoustic-elastic model (frebjain modal shapes and skull
modal shapes (Highest value in red and blue for lowest stress

occur in the central region when accounting for the fluiciattion. This is not the
case when the skull is assumed rigid. It seems to suggestalatatic brain injury at
low frequency is localized at the central region and resnttsa diffuse axonal injury.
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6. Concluding remarks

The knowledge of the natural frequencies may be very impogiher in under-
standing Trauma Brain Injury during impacted head (Wiléngt al, 1996); or in the
controlling the mechanical wave propagation within thebtssue during activities
(Kaoet al, 2007) or neuroimaging (Hiltuneet al., 2006), (Will et al,, 2007). Very
simplified models have been developed in the present stu@yfdyzing the influence
of the cerebrospinal fluid phase on the frequency spectrutinediorain-CSF-skull sys-
tem. Some concluding remarks could be drawn :

— it seems that the incompressibility condition is justifigdsimulating the sound
velocity ¢y of the fluid. CSF compressibility might be neglected during modal
analysis. Indeed, within the intervaJ € [300, 1450]m/s of the sound velocity, an
incompressibility assumption can be used for fluid-strrectn the acoustical approx-
imation. However, compressibility could not be neglected idynamical simulation
as Trauma Brain Injury,

— modal shapes of the rigid skull are the same as those ofdlsdceskull case if
the outer skull is fixed. This is probably due to the high s&fs of the skull compared
to that of the brain. In such a case, itis therefore possibieflace the "stiff skull" by
a infinitely rigid wall. But in all cases, it seems not a verglistic model for analyzing
the head impact,

— there is a significant difference between the modal shapegid skull model
and that of elastic skull model free at the outer boundaris fighlights the necessity
of accounting as accurately as possible not only the fluigesire interaction but also
the deformability of element during a stress analysis ofitiygacted head,

— it is shown that the CSF thickness has a strong influenceeonatural frequen-
cies. Nevertheless, results seem to be in contradiction thi¢ intuition. Indeed,
increasing the fluid thickness tends to decrease the freipsesince the added mass
increases accordingly. This apparent contradiction caexp&ined with the greater
contribution of the skull stiffness compared to the addedsmd the CSF,

— it is clearly stated that analytical and numerical resaits in good agreement
in this study. By the way, this validates the use of Comsoltihysics software
for further dynamical analysis of the brain-CSF-skull syst Indeed, care should be
taken when using finite element models for fluid-structuterction simulation since
non-symmetrical system may induce spurious modes (Bermgtdd., 1995).

Currently, head numerical models contain detailed geadoatdescription of
anatomical components inside the head by using three-diowa imaging tech-
niques. However, lack of accurate descriptions of nonalirgain material behaviour
and interfaces (CSF) inside the head remain serious limrtafor model reliability.
For analyzing wave propagation within the brain tissues ihdt obvious to which
extent numerical artefacts influence the overall resporsissvery difficult to distin-
guish the sources of discrepancies between theoreticadihaod experiment results,
namely mathematical model assumptions and the numeritdl@oprocedure arte-
facts. The two-dimensional and linear constitutive lansuagption certainly present
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a drastic limitation of the present model. Simulation of dyrical impact of the head
in three-dimensional configuration is ongoing in our lalbomna
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