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ABSTRACT. Conditions influencing the implant osteointegration in the early post-operative 
period include the surgical technique and coupled mechanical and biochemical factors. We 
hypothesized that coupling deformable porous media mechanics to governing equations of 
cell migration, might help to predict the periprosthetic tissue healing and in particular the 
heterogeneous bone formation which is unfavourable to the implant survival. To proceed, a 
multiphasic model of porous tissue surrounding a loaded implant was coupled to osteoblast 
migration and immature bone deposit. A finite element resolution was implemented and the 
application concerned a canine implant. The sensitivity analysis using volume strain as 
variable showed that compression was rather unfavourable to homogenous distribution of 
periprosthetic bone healing.  
RÉSUMÉ. L’ostéointégration des implants post-opératoire est influencée par la technique 
chirurgicale et des facteurs mécaniques et biochimiques. Nous avons supposé qu’une 
approche poroélastique associée à la notion de milieu réactif et aux équations 
biomathématiques de migration cellulaire pouvait permettre de prévoir la cicatrisation 
périprothétique et notamment la formation hétérogène défavorable à la survie de l’implant. 
Un modèle multiphasique du tissu a été couplé aux équations de migrations ostéoblastiques et 
à un modèle d’apposition d’os néoformé. Une résolution par la méthode des éléments finis a 
été développée et appliquée à un modèle expérimental canin. Une étude de sensibilité à la 
déformation volumique a montré le rôle plutôt défavorable d’une compression sur une 
cicatrisation homogène. 
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1. Objectifs

While the quality of implant fixation is determined primarily by the bone and
tissue anchoring the implant, conditions influencing bone growth in the early
post-operative period include the surgical technique (Hahn et al., 1988) and cou-
pled mechanical (Carter, 1987; Prendergast et al., 1997) and biochemical factors
(Bailon-Plaza et al., 2001). Low performances were generally associated with a low
mineralization or a strong heterogeneous distribution of bony structure (sclerotic
bone rim) in the new-formed surrounding tissue (Søballe et al., 2004; Mouzin et
al., 2001; Vestermark et al., 2004).

We hypothesized that coupling deformable porous media mechanics to governing
equation of cell migrations, might help to predict the heterogeneity of periprosthetic
tissue healing. To proceed, a multiphasic model (solid, fluid, osteoblasts, growth fac-
tors) of porous tissue surrounding a stable loaded implant was coupled to osteoblast
migration (diffusion, haptotaxis, chemotaxis) and immature bone deposit (reactive
media). Application concerned a canine implant(Bechtold et al., 2001a; Bechtold et
al., 2001b; Søballe et al., 1993).

The periprosthetic tissue healing is an intramembranous process. Mesenchymal
cells differentiate into osteoblastic cells conditionning the bone formation (Alliston
et al., 2000; Kibbin, 1997). While delivering growth factors regulating cell prolif-
eration and differentiation and favouring extra-cellular matrix synthesis, the neovas-
cularization is of prime importance in the healing process (Conover, 2000; Linckart
et al., 1996). Cells migration mechanisms, such as haptotactic and chemotactic ac-
tive migrations also showed a significant role (Maheshwari et al., 1998; Puleo et
al., 1991; Kunzler et al., 2007; Friedl et al., 1998). The predictive numerical mod-
els of cell differentiation processes (Carter, 1987; Prendergast et al., 1997; Van-Der-
Meulen et al., 2002), bone healing (Carter et al., 1988; Lacroix, 2000; Bailon-Plaza
et al., 2001) and bone remodelling (Huiskes et al., 2000) have been developed using
structural models or poroelastic approaches. In most of models, the time variable is
not explicit so the biological time scale jointed to transient loads is not fully taken into
account. These studies provided a significant improvement to bone formation models
but the understanding of in vivo mechano-biological phenomena, is still an open prob-
lem. In this paper, we proposed an original mechano-biological model associating the
governing equation of deformable porous media to biomathematical equations of os-
teoblastic migration and immature bone deposit considered as a reactive medium. The
application concerned a canine implant.

2. Governing equations

As shown in Figure 1a, we implemented a multiphasic model that involved four
phases at the microscopic scale: the interconnected porous skeleton (φs), the saturat-
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ing fluid phase (φf ) for the bone marrow, the osteoblast phase (Cc) and the growth
factor phase (CM ). To summarize, the mechanical load induces the intersticial fluid
flow that modified the distribution of growth factors and osteoblast phase to form
new bone. Cell active migration, related to the growth factor concentration and to the
porosity gradient, is also concerned. The mechanical model is established in the quasi-
static domain with a negligible mass increase, an incompressible fluid and a field of
small strain (J = 1 + trace ε). The balance momentum and the Cauchy tensor σ are
respectively described by Equations [1] and [2], p being the average pressure in the
porous medium.

Figure 1. a) Multiphasic model of periprosthetic healing tissue superposed to histo-
morphometric cut. On this cut, the implant surface (IS) and the drill hole surface
(DHS) are showed. b) Diagram of the various couplings between the biological
parameters and mechanical stimulus

~∇σ − ~∇p = ~0 [1]

σ =
υ.E

(1− 2.υ).(1 + υ)
.trace ε.I +

E

(1 + υ)
.ε [2]

The Equation [3] of mass conservation is established first assuming that the porous
volume element is saturated ( φs+φf = 1), and second that the volumes of cell phase
and growth factor phase are negligible. The fluid flux ~qf/s, relative to the porous
skeleton, is related to the pressure gradient by the permeability tensor using the Darcy
law [4], µ being the fluid dynamic viscosity and k being the isotropic permeability.
Because the biological tissue is considered as a reactive media, material properties are
updated using the mineral matrix formation (φs) induced by osteoblasts. It concerns
E, υ in Equation [2], and the permeability tensor in Equation [4]. A power law is
used for the elastic properties (Lacroix, 2000; Fung, 1981) and for the permeability, a
Kozeny-Carman model is used inspired by Arramon et al. (2001).

dJ

dt
= ~O.~qf/s [3]
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~qf/s = −k
µ
.~Op [4]

The synthesis of mineral matrix modelled as the source Ωs in Equation [6], contributes
to the mass conservation of the solid fraction expressed by Equation [5]. The syner-
getic action of osteoblast Cc and growth factors CM (Meinel et al., 2003) is promoted
by the fluid fraction φf and the coefficient of matrix synthesis αs.

∂

∂t
(φs.J) = Ωs [5]

Ωs = αs.φ
2
f .Cc.CM [6]

The growth factors CM are involved into the fluid fraction. Equation [7] expressed
the mass conservation as a function of the fluid fraction φf (or porosity), the fluid flux
~qf/s and the dispersion tensorDM .

φf .
∂CM
∂t

= φf .DM . M CM + ~qf/s.~OCM [7]

The conservation of cells is expressed by Equation [8] in which the fluid fraction φf ,
the cells flux ~qc/s and the cell source Ωc interact. This source allows the cell pro-
liferation to be modelled using a logistic law [9], Nc and αc respectively being the
threshold limit of cells and the proliferation coefficient (Bailon-Plaza et al., 2001).
Osteoblasts are lining cells that can migrate using three main processes (Zaman et
al., 2005). Firstly, a random diffusion is observed. Cells are moving to the oppo-
site of the concentration gradient Cc; the diffusive property being Dc. Second, the
chemotactic migration induces a mobility related to the gradient of growth factors
CM (Maheshwari et al., 1998). It is combined with χc, the chemotactic property of
the osteoblast phase (Dee-Kay et al., 1999). Third, the haptotactic migration com-
bines the gradient of porous skeleton φs to the haptotactic coefficient hc. Finally, the
cell flux ~qc/s is described by Equation [10].

∂

∂t
(φf .J.Cc) = ~O.~qc/s + Ωc [8]

Ωc = αc.φf .Cc.(Nc − φf .Cc) [9]

~qc/s = φf .
(
Dc.~OCc − χc.Cc.~OCM − hc.Cc.~Oφs

)
[10]

In conclusion, the multiphasic model is described by the set of non-linear coupled
Equations [1], [3], [5], [7], [8] and the selected variables are the field displacement
Us of the porous skeleton, the fluid intersticial pressure p, the porous skeleton fraction
φs, the osteoblast concentration Cc and the growth factor concentration CM .

3. Finite element formulation

The set of governing equations is solved using an implicit formulation in time
[11] (Ames-William, 1977) and a first order Taylor expansion [12]. We identify the
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capacity termC(xj).
∂xi
∂t

, the convective term ~qj(xj).~Oxi, the diffusive term ~O.~qi(xj)

and the source term Ωi(xj).[
C(xj).

∂xi
∂t

]n
+
[
~qj(xj).~Oxi

]n =
[
~O.~qi(xj)

]n + [Ωi(xj)]
n [11]

fn(xi) ≈ fn−1(xi) +
[
∂f

∂xi

]n−1

.(xni − xn−1
i ) [12]

The weak form of Equation [1] is expressed by Equation [13] with Nu the matrix of
shape function,Bε the gradient matrix of the displacement filed Us andBI1 the matrix
of first invariants of strain tensor ε.

Ûns .

∫
=e

BTε .K.Bε · d=e + p̂n.

∫
=e

BTI1 .Np · d=e =
∫
∂=e

NT
u .
~fs · dSe [13]

The weak form of Equations [3] and [5] are respectively expressed by Equation [14]
and [15] with Bp the matrix of gradient functions, Np and Nφ are the matrices of
shape functions for p and φs.

−p̂n.
∫
=e

BTp .
k

µ
.∆t.Bp.d=e − (Ûns − Ûn−1

s ).
∫
=e

NT
p .BI1 · d=e

= −
∫
∂=e

NT
p . ~qf/s

n.∆t.dSe [14]

(φ̂ns − φ̂n−1
s ).

∫
=e

NT
φ .(

1
∆t
− 2.αs.(1− φn−1

s )2.Cn−1
M .Cn−1

c ).Nφ · d=e

+(Ûns − Ûn−1
s ).

∫
=e

NT
φ .
φn−1
s

∆t
.BI1 · d=e

+(Ĉnm − Ĉn−1
M ).

∫
=e

NT
φ .αs.(1− φn−1

s )2.Cn−1
c .Nm · d=e

−(Ĉnc − Ĉn−1
c ).

∫
=e

NT
φ .αs.(1− φn−1

s )2.Cn−1
M .Nc · d=e

=
∫
=e

NT
φ .Ω

n−1
s d=e [15]

The weak integral form of Equation [7] is given by Equation [16] with Nm the ma-
trix of shape function for CM and Bm the gradient matrix. The computation of
laplacien∆CM at integration points is requiered and its computation is achieved ac-
cording to Dhatt et al. (1984).



136 EJCM – 18/2009. Numerical models in biomechanics

ĈnM .

∫
=e

(1− φn−1
s ).(BTm.DM .Bm +NT

m.
1

∆t
.Nm)

+NT
m.
k

µ
.~∇pn−1.Bm · d=e

+(p̂n − p̂n−1).
∫
=e

NT
m.
k

µ
.~∇Cn−1

M .Bp · d=e

+(φ̂ns − φ̂n−1
s ).

∫
=e

NT
m.(

(Cn−1
M − Cn−2

M )
∆t

+DM .∆Cn−1
M )Nφ · d=e

=
∫
∂=e

NT
m. ~qM/s

n + Ĉn−1
M .

∫
=e

NT
m.

1
∆t

.Nm.d=e [16]

Equation [8] is written in the weak integral form [17] with No the matrix of shape
function for Cc and Bo the gradient matrix. Here also the computation of laplacien
M CM is necessary as far as M φs.

Ĉnc .

∫
=e

φn−1
f .(BTo .Dc.Bo +NT

o .(
1

∆t
+ χc.∆Cn−1

M + hc.∆φn−1
s

+αc.(Nc − 2.φn−1
f .Cn−1

c )).No

+NT
o .(χc.~∇Cn−1

M + hc.~∇φn−1
s ).Bo) · d=e

+(Ûns − Ûn−1
s ).

∫
=e

NT
o .
φn−1
f .Cn−1

c

∆t
.Bu · d=e

+(Ĉnm − Ĉn−1
m ).

∫
=e

φn−1
f .χc.(NT

o .
~∇Cn−1

c .Bm +NT
o .C

n−1
c .Lm) · d=e

−(φ̂ns − φ̂n−1
s ).

∫
=e

NT
o .(−~∇Cn−1

c .(χc.~∇Cn−1
M + hc.~∇φn−1

s )

−Cn−1
c .(χc.∆Cn−1

M + hc.∆φn−1
s ) +Dc.∆Cn−1

c + αc.φ
n−1
f .∆Cn−1

M

+hc.φn−1
f .∆φn−1

s +
Cn−1
c

∆t
).Nφ +NT

o .(hc.φ
n−1
f .~∇Cn−1

c ).Bφ) · d=e

= Ĉn−1
c .

∫
=e

NT
o .
φn−1
f

∆t
.No.d=e

+
∫
∂=e

NT
o . ~qc/s

n · dSe +
∫
=e

NT
o .Ω

n
c · d=e [17]

Finally, the matrix formulation is expressed by the system [18] after integration (Gauss
method). Equations [13],[14],[15], [16], [17] respectively correspond to lines 1, 2, 5,
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3 and 4. This matrix form highlights the strong couplings between phases and the
solution is obtained using a linear implicit formulation at each time step.∥∥∥∥∥∥∥∥∥∥∥∥∥

Kuu −Kup 0 0 0
−KT

up −Kpp.∆t 0 0 0
0 Vmp Kmm 0 Cmφ
Ccu
∆t

0 Vcm Kcc −Kcφ

Aφu
∆t

0 Sφm Sφc Kφφ

∥∥∥∥∥∥∥∥∥∥∥∥∥

n−1

.

∣∣∣∣∣∣∣∣∣∣

Ûs
p̂

ĈM
Ĉc
φ̂s

∣∣∣∣∣∣∣∣∣∣

n

=

∣∣∣∣∣∣∣∣∣∣∣

F̂u
−Q̂f/s.∆t
Q̂m/s

Q̂c/s + Ω̂c
Ω̂s

∣∣∣∣∣∣∣∣∣∣∣

n

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

0̂
−KT

up.Ûs
Cmm
∆t

.ĈM + Vmp.p̂+ Cmφ.φ̂s
Ccc
∆t

.Ĉc +
Ccu
∆t

.Ûs + Vcm.Ĉm −Kcφ.φ̂s

Kφφ.φ̂s + Sφm.ĈM + Sφc.Ĉc

∣∣∣∣∣∣∣∣∣∣∣∣∣

n−1

The multiphasic periprosthetic healing tissue is implemented in Matlab c© language.
An axisymmetric 2D quad element with 8 nodes was developed. A quadratic inter-
polation functions was used for displacement Us, growth factor concentration CM ,
osteoblast concentration Cc and solid fraction φs. A linear interpolation field is used
for the mean pressure p into the porous media.

4. Application

In previous in vivo studies with an experimental cylindrical micro motion device
(canine implant) representing the interface of a human implant (Vestermark et
al., 2004), we have identified an association between the sites where peri-implant
bone forms, and the experimentally determined mechanical and biological properties
of the resulting interface. The distribution of new-formed tissue around the PMMA
implant with no HA coating showed a polar symmetry (r, θ, z) with a variable level
of mineralization in the radial direction ~er. The meshing of the periprosthetic zone is
plotted in Figure 3, this mesh is composed with 98 element in radial direction ~er and
1 element in axial direction ~ez . The meshing involved 591 nodes and 3546 DOF. It is
refined at the implant surface (IS) and at the drill hole surface (DHS), the minimal
thickness in radial direction at the drill hole surface was 1.10−2mm. In the zone
between the implant surface (IS) and the drill hole surface (DHS), the element
thickness was 2.10−2mm. The mesh was identical to that used in a preceeding study
where a finite volume resolution was used (Ambard et al., 2006). We plotted in Figure
2, the influence of the element number and time step ∆t on the convergence of the
variation of the solid fraction φs. We observed that a mesh of 100 elements provided
very satisfying results.
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Figure 2. Influence of the mesh size and the time step on the solid fraction φs at 14
days

The time step was ∆t = 1.5hour and the healing process was evaluated up
to 14 days. The choice of time step was a compromise between physiological
and biological reality and numerical constraints. The model requiered a sufficient
time step to predict significant evolution in the reactive porous medium. It was
also necessary to take into account the cyclic load of a daily activity. Finally, the
time step was updated according to the solid fraction formation between 6% and
96%. In fact, modifications of the selected time step showed a very low influence
on the predicted mineralization. As shown in Figure 2, we found a maximal
variation of 0.25% between 0.5hour and 1.5hour. The implant radius was: 3.25mm
(implant surface IS), the drill hole radius was: 4mm (drill hole surface DHS);
the investigated domain was 7mm (host bone surfaceHBS), the thickness was 2mm.

Figure 3. a) Histomorphometric data of the implant; b) Meshing and boundary con-
ditions

During the healing process, the material properties were updated according to the
amount of bone matrix φs as shown in Table 1. For the Young modulus [18] and
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Poisson ratio [19], we used the power functions. While for the permeability law, we
used a Koseny-Carman’s model function of Equations [20] and [21].

E(φs) = 1220.φ1,8891
s [18]

υ(φs) = 0, 172.φ0,27
s [19]

k

µ
(φs) =

2, 592.10−5.φ4,668
f

105.S2
v

[20]

Sv = 323.φf − 939.φ2
f + 1340.φ3

f − 1010.φ4
f + 288.φ5

f [21]

Table 1. Mechanical properties
Immature bone Host bone References
6 ≤ φs ≤ 70% φs = 50%

6 ≤ E(φs) ≤ 600Mpa E = 5000Mpa (Lacroix, 2000; Fung, 1981)

0.1 ≤ υ(φs) ≤ 0.175 υ = 0.27 (Lacroix, 2000; Fung, 1981)

11 ≥
k

µ
(φs) ≥ 0.015mm4/N.s

k

µ
= 0.02mm4/N.s (Arramon et al., 2001)

Table 2. Biological parameters of tissue
Physics Parameters Units References
Growth factor dispersion DM = 4, 8.10−6 mm2/s (Maheshwari et al., 1998)

Osteoblast cells dispersion Dc = 2, 5.10−7 mm2/s (Dee-Kay et al., 1999)

Chemotaxis coefficient χc = 1.10−5 mm5/s.ng (Maheshwari et al., 1998)

Haptotactic coefficient hc = 1.10−5 mm5/s (Friedl et al., 1998)

Proliferation speed αc = 1, 9.10−10 mm3/cell.s (Bailon-Plaza et al., 2001)

Inhibition of the proliferation Nc = 1.103 cell/mm3 (Bailon-Plaza et al., 2001)

Synthesis speed αs = 2.10−9 mm6/cell.ng.s (Bailon-Plaza et al., 2001)

Biological parameters summarized in Table 2 allowed a satisfying correlation with
homogeneous histomorphometric data to be obtained (Ambard et al., 2006). The
fluorescence analysis (Vestermark et al., 2004) allowed the zone of main biologi-
cal activity to be observed close from the implant (Area 1, Figure 3b). Initially,
cells and growth factors were homogenously distributed: C0

c = 1.103cell/mm3,
C0
M = 0.2ng/mm3. As boundary conditions, the daily physical activities were mod-

eled by imposed displacements Ur(t) and Uz(t) were sine functions of 24 hours pe-
riod during 14 days, magnitude ±0.2mm which induced volume strain ∆v/v0 into
the periprosthetic tissue: −28%, −19%, −14%, 0%, and +8%. To highlight the
role of convective and diffusive transport for the classification of tissue healing, we
adapted a dimensionless Péclet number such as (Pe = rd.||~qf/s||max/DM ); rd being
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the radius of the drill hole DHS. The mechano-biological model predicted homoge-
nous and heterogeneous periprosthetic tissue healing. When volume strain evolved
from compression (∆v/v0 ≥ 0) to traction (∆v/v0 ≤ 0), the bone fraction φs at
the implant surface (IS) was decreasing from 53% to 25% (Figure 4a), the osteoblast
concentration Cc and the growth factor concentration CM (Figure 4b and c) followed
the same progression. At the drill hole (DHS), growth factors and cells concentra-
tions decreased specially for compression (Figure 4b and c). The bone fraction showed
a progression (50% − 60%) opposed to that observed on the implant. As shown in
Figure 4d, the Péclet number increased from 2 to7 and it was nil when no strain was
imposed into the tissue (∆v/v0 = 0, no forced convection). For magnitude greater
than 3 obtained for compression, it appeared that the mechano-biological couplings
(combination of convective and diffusive transport) played a significant role on the
periprosthetic healing.

Figure 4. Predicted healing at 14 days: (a) bone fraction φs; (b) growth factor con-
centration CM ; (c) osteoblast concentration Cc; (d) Péclet number

Finally, the sensitivity analysis using volume strain as variable showed that com-
pression (∆v/v0 ≥ 0) was unfavourable to homogenous distribution of new-formed
bone into the gap surrounding the implant. This could contribute to the formation
of sclerotic bone rim observed in vivo in our preliminary studies in canine implant
(Mouzin et al., 2001; Vestermark et al., 2004).
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5. Conclusion

We proposed an original multiphasic model that associated poroelasticity, reactive
media, and biomathematical equations. We implemented a specific finite element
resolution involving mechanical and biological parameters as output measures.

Comparison with previous studies in an experimental animal model showed
promising results to conclude that our central hypothesis coupling cell migration,
growth factor diffusion and deformable porous media was valid at the first order. The
numerical model allowed heterogeneous bone formation to be predicted which is
quite innovative in the domain of implant fixation. Favour the homogenous healing
controlling growth factor concentration and sources (bioactive coating, bone graft,
protein) and evaluate the clinical procedure specially in implant revision (press-fit,
gap size, cell concentration, residual solid fraction) could be a relevant strategy.

Despite our encouraging results, it seems that the robustness of future numeri-
cal predictions will find, at least, two limitations. First, the coupling of governing
equations in biology to poroelasticity increased the number of uncontrolled in vivo
parameters such as the evolving permeability, the delivering properties of growth fac-
tors, the diffusive and proliferation properties of cells. These points will have to be
investigated. Second, we observed the significant role of the mechanical signal on
tissue formation, whereas the in vivo mechanical loading in time and magnitude, is
poorly known. This would be a pertinent orientation to improve the model reliability.
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