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ABSTRACT. The paper deals with error estimates for the unilateral buckling critical load of a 
thin plate in presence of an obstacle. The error on the membrane efforts tensor is taken into 
account. First, using the Mindlin’s plate model together with a finite elements scheme of 
degree one, an error estimate, depending on the mesh size h, is established. In order to 
validate this theoretical error estimate, some numerical experiments are presented. Second, 
using the Kirchhoff-Love’s plate model, an abstract error estimate is achieved. Its drawback 
is that it contains a hard term to evaluate. 
RÉSUMÉ. On s’intéresse, dans ce papier, à l’estimation de l’erreur pour la charge critique de 
flambement unilatéral d’une plaque mince en présence d’un obstacle. L’erreur due à 
l’approximation de l’effort normal est prise en compte. Le choix du modèle de plaque de 
Mindlin et l’emploi d’un élément fini de degré un ont d’abord permis de donner une 
estimation de l’erreur en fonction de h. Quelques résultats numériques, ayant pour but de 
valider l’estimation d’erreur théorique, sont donnés. Ensuite, en utilisant le modèle de 
plaque de Kirchhoff-Love, une estimation d’erreur abstraite est établie. Son inconvénient est 
qu’elle contient un terme difficile à évaluer en fonction de h. 
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1. Introduction 

Consider a thin plate of thickness 2ε occupying a two-dimensional bounded open 
set ω . Assume that it is supported on the whole of its edge γ , clamped on a part 0γ  

of its edge whose Lebesgue measure is not zero, and simply supported on 0γ γ . 

Furthermore, the plate is subjected to a one-parameter plane compressive load .gλ on 
another part 1γ of its edge, see Figure 1. 

 

Figure 1. A rectangular plate is in presence of an obstacle 

The plate is in presence of a rigid fixed plane obstacle that lies just above it, see 
Figure 1. The contact between the plate and the obstacle is supposed to be without 
friction. If the obstacle is not initially in contact with the plate, the problem becomes 
classical in the sense that it has the same solution as the linear one. 

The unilateral buckling and even the unilateral post-buckling of thin plates have 
been tackled and investigated by many authors since the late seventies. Let us cite, in 
particular, (Do, 1975, 1976; Riddell, 1977; Cimetière, 1980, 1985; Kucera, 1982; 
Quittner, 1986; Goeleven et al., 1995; Shahwan et al., 1998; Goeleven et al., 1998; 
Smith et al., 1999, 2000; Bradford et al., 2000; Chai, 2002; Febres et al., 2003; Shen 
et al., 2004; Parry et al., 2005; Mouradova et al., 2006; Ayadi, 2006; Ma et al., 
2007). Recently, a new contribution to unilateral buckling problem has been brought 
by Ayadi; he succeeded to establish error estimates for the unilateral buckling 
critical load of a thin plate in presence of an obstacle if the error on the membrane 
efforts tensor is neglected (Ayadi, 2007). 

In this paper, we will deal with error estimates for the unilateral buckling critical 
load when the consistency error on the membrane efforts tensor is taken into account. 

The layout of this paper is as follows. The first section is devoted to the description 
of the unilateral buckling model. In the second section, the adequate framework so that 
the critical state of unilateral buckling exists, see (Do, 1975, 1976; Riddell, 1977), is 
first briefly recalled. Then, in order to motivate the interest we are manifesting for the 
unilateral buckling of a thin plate, a delaminated multilayered plate is considered and 
the critical load as well as the corresponding buckling mode are computed in the two 
cases: without and  with unilateral contact between the two lips of the crack. The third 
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Section is devoted to an error estimate for the pure membrane problem. In the fourth 
Section, using the Mindlin plate theory together with a conformal finite elements 
scheme of degree one (triangle with three nodes), an error estimate for the unilateral 
buckling critical load, taking into account the error on the membrane efforts tensor, 
depending on the mesh size h is achieved. In order to numerically validate this error 
formula, a numerical experiment, where the plate and the obstacle are both rectangular, 
is handled. Three curves are plotted in the same figure. Two curves give the 
dependence of the buckling critical load, in the absence and in the presence of the 
obstacle, upon the mesh size. The third curve gives the dependence of the difference of 
the two buckling critical loads (without and with contact) upon the mesh size. The latter 
is, following the theoretical error estimate, expected to be linear. The numerical results 
obtained confirm with the theoretical error estimate for the unilateral critical load when 
the error on the membrane efforts tensor is not neglected. In the fifth Section, using the 
Kirchhoff-Love plate theory and a conformal finite elements scheme, an abstract error 
estimate for the unilateral buckling critical load, taking into account the error on the 
membrane efforts tensor, is established. Its drawback is that it contains a term very hard 
to evaluate. 

2. Mathematical modeling of unilateral buckling 

When taking into account the unilateral contact condition and considering a 
nonlinear elastic constitutive law, we obtain a very difficult mathematical problem (see 
(Ciarlet, 1986; Ciarlet et al., 1977; Duvaut et al., 1972). Nevertheless, we know a 
particular solution pu to the latter. It is the linear elasticity solution, obtained with 
linearized strains, for which the vertical displacement is zero (there is not bending) and 
the plane displacements are solution to the following variational equation: 

 

1

2 2

, , , 1 1

pu v
E d G v d v V

x x
ν α

αβνµ α α
ω γµ βα β ν µ α

ω λ γ
= =

∂ ∂ = ∀ ∈
∂ ∂∑ ∑∫ ∫ , [1] 

 

Where( )Eαβνµ  is the membrane stiffness tensor for the linear elastic constitutive 
law (depending on Young’s modulus and the Poisson’s ratio), 

 

( ) { }1 2 3 3, , , 1, 2G g x x x dx
ε

α α
ε

α
−

= ∈∫ , 

 

1g and 2g are the components of the plane compressive load g (see Figure 1), and 

 

( )( ){ }21
0: 0V v H v onω γ= ∈ = . 
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Problem [1] is so a pure membrane type. 

The space V is equipped with the following norm: 

( )
1

2 2 2
1 21, 1,, Vv V v v vω ω∀ ∈ = + . 

 
The following usual assumptions are made. 

 
(i) The boundary γ  of the bounded open set ω is supposed to be smooth enough, 

(ii) ] [( )2
1 2 1, ,g g L γ ε ε∈ ×− so that ( ) { }2

1 , 1,2G Lα γ α∈ ∈ , 

(iii) ( )E Lαβνµ ω∞∈  for all( ) { }4, , , 1,2α β ν µ ∈ , 

(iv) ( )
2 2

2
,2

, , , 1 , 1

0; : ,sk E kαβνµ αβ νµ αβ
α β ν µ α β

θ θ θ θ
= =

∃ > ∀ ∈Θ ≥∑ ∑  

where ,2sΘ denotes the set of all symmetric tensors of order two: that is the 
ellipticity property. It is shown in (Ciarlet, 1986) and in (Duvaut et al., 1972) that, 
under the assumptions (i) - (iv) above, problem [1] admits a unique 
solution ( )p p gu u uλ λ≡ = , where gu is given in V  ( gu does not depend ofλ ). 

Moreover, the tensor of membrane efforts is (see for instance (Ayadi et al., 1990; 
Ayadi, 1993; Ciarlet et al., 1977) expressed by: 

 

{ }
2

, 1

, , 1,2
p

p gun E n
x
ν

αβνµαβ αβ
µν µ

λ α β
=

∂= = ∈
∂∑ . [2] 

 
Looking for a non-trivial solution to the nonlinear problem described above, we 

need the linearizing technique: set pu u w= +  and show that the deflection 3w  of 
the plate is solution to the following inequality: 

 
2 22 2

3 3 3 3

, , , 1 , 1

( ) ( )gw v w w v w
D d n d

x x x x x xαβνµ αβ
ω ων µ α β α βα β ν µ α β

ω λ ω
= =

∂ ∂ − ∂ ∂ −≥
∂ ∂ ∂ ∂ ∂ ∂∑ ∑∫ ∫ ,  [3] 

 

for all admissible deflection v, where ( )Dαβνµ  denotes the bending rigidity tensor of 

the plate. The other components 1w  and 2w , of the displacement w , are related to the 
deflection 3w  by Kirchhoff-Love formulae (Ciarlet et al., 1977). 
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3. Mathematical framework and existence results 

Let us start by defining the adequate framework used in this paper so that 
problem [3] admits at least one solution. 

 

( ){ }1
0: 0 ,H v H v onω γ= ∈ =  

( )2
0: 0vW v H v on

n
ω γ

 ∂  = ∈ = =  ∂  
, 

{ }: 0 cK v W v in ω= ∈ ≤ , 

 

cω being a subset ofω where the contact between the obstacle and the plate would 
occur, and /v n∂ ∂ is the derivative of the function v with respect to the outward unit 
vector normal n to the boundary γ ofω . 
 

The Sobolev spaces H  and W  are respectively equipped with the following 
norms: 

( )
11

2 22 2 2

1, 2,
1 2

,uu u u
x

α
ω ωω ωαα α= ≤

      ∂     = = ∂     ∂       
∑ ∑∫ ∫ . 

 
Let :a W W IR× → and ( ) :gb n H H IR× → be the bilinear forms defined by 

 

( )
2 2 2

, , , 1

, u va u v D d
x x x xαβνµ

ω ν µ α βα β ν µ

ω
=

∂ ∂=
∂ ∂ ∂ ∂∑ ∫ , 

( )( )
2

, 1

, gg u vb n u v n d
x xαβ

ω α βα β

ω
=

∂ ∂=
∂ ∂∑ ∫ . 

The bilinear forms ( )gb n  and a  are obviously continuous in the spaces H and 

W respectively. Therefore, there exist two positive constants M  and ( )gN n  such 

that 
 

( )

( )( ) ( )
2, 2,

1, 1,

, , , ,

, , , .g g

a u v M u v u v W

b n u v N n u v u v H

ω ω

ω ω

≤ ∀ ∈

≤ ∀ ∈
 [4] 
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Assume now that the bending rigidity tensor( )Dαβνµ satisfies the ellipticity property 

(iv) so that the bilinear form a is W -elliptic (see (Ciarlet et al., 1977), (Destuynder, 
1990), (Duvaut et al., 1972)). That means there exists a positive constant α  such that 
 

( ) 2
2,, ,a v v v v Wωα≥ ∀ ∈ .  [5] 

 
Within the framework defined above, problem [3] is mathematically well posed 

as stated by the following theorem. 

Theorem 3.1. There exist 1 0λ >  and nonzero vector 3w K∈ such that 

( ) ( )( )3 3 1 3 3, , ,ga w v w b n w v w v Kλ− ≥ − ∀ ∈  [6] 

 
Moreover, 1λ is the minimum of the Rayleigh quotient over the closed convex 
cone K , which is realized on 3w : 

 

{ }

( )
( )( )1 0

,
min

,gv K

a v v

b n v v
λ

∈ −
= . [7] 

 
Proof: See (Riddell, 1977). 

After stating that the unilateral critical state ( )1 3, wλ  exists and before starting the 
main aim of the paper: namely error estimates for the unilateral critical load of a thin 
plate involving the membrane efforts consistency error, let us give an interesting 
application of unilateral buckling. That is the buckling of a delaminated multilayered 
plate (Ayadi et al., 1990). The crack is situated between two fiber layers, see 
Figure 2. The plate is modeled as the union of three plates: the healthy part 1Ω , the 
upper delaminated part 2Ω  and the lower delaminated part 3Ω . The three plates are 
connected with each other by ensuring the continuity of the deflection and the mid 
plan rotations in the bottom of the crack (Nevers, 1986). The crack can be 
exenterated from the mid plan of the plate. Under a certain compression loading, the 
thinnest lip of the crack, at least, is expected to buckle; that is the local buckling. In 
order to avoid the material interpenetration, a contact condition between the two 
lips 2Ω  and 3Ω of the crack must be imposed. 

The Mindlin plate theory is used because it only requires a continuous finite 
element. Some numerical experiments, obtained in the case of a homogenous and 
isotropic material, are here after presented.  
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Figure 2. Transversal cross section of a delaminated plate, ] [1,1z ∈ −  

Consider the following plate which is, for the moment, considered healthy. 

 

Figure 3. A healthy plate 

The boundary conditions are: the plane displacement along the x axis is fixed null 
on the edge (4); the deflection is fixed null on the whole edge of the plate (Simply 
supported plate); on the edge (3), a uniform compression loading p is applied. 

The mechanical futures are: the Young’s modulus E = 109 Pa and the Poisson’s 
coefficient 0.3ν = . 

The following Figure 4 shows the healthy plate mesh. There are 736 finite 
triangles with three nodes, 421 nodes and 1263 degrees of freedom. 

 
Figure 4. A healthy plate mesh 
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The following Figure 5 shows the buckling mode of the above plate 
corresponding to the numerical critical load: crit

healthypε =1.8663 106 N/m. 

 

Figure 5. The buckling mode of the healthy plate 

Suppose now that the plate of Figure 3 is delaminated in the following way 
( 0.5z = ). 

 

Figure 6. The delaminated plate 

The same boundary conditions as the healthy plate of Figure 3 are imposed. The 
following Figure 7 shows the healthy part mesh (mesh of 1ω ) of the delaminated 
plate. There are 576 finite triangles with three nodes, 338 nodes and 1014 degrees of 
freedom. 
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Figure 7. The healthy part mesh 

The two delaminated part have the same mesh because 2 3ω ω= , see the 
following Figure 8. There are 256 finite triangles with three nodes and 153 nodes, 
which give 459 degrees of freedom in each delaminated part. 

 

Figure 8. The delaminated part mesh 

If the unilateral contact is not taken into account, we observe an important 
interpenetration of the crack lips. Only the upper delaminated part buckles as exemplify 
Figures 9 and 10. The numerical critical load is: crit

without contactpε = 3.8532 105 N/m. 

 

Figure 9. The buckling mode of the upper delaminated part without contact 
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Figure 10. Cross section a long the x axis (y=0) of the buckling mode of the whole 
plate 

If we take into account the unilateral contact (the interpenetration of the upper lip 
and the lower lip of the crack is prohibited) by imposing the condition: the upper 
deflection ( )2

3 iw a  is great or equal to the lower deflection ( )3
3 iw a  for all mesh node 

ia  of the delaminated part, we observe that the healthy part does not buckle and 
does not even bend. The lower delaminated part – at the opposite – slightly bends (a 
deflection of order ε ), which is due to the buckling of the upper delaminated part, 
see Figures 12 and 13. The numerical critical load is: crit

with contactpε = 4.1505 105 N/m. 
For more details, see (Shiri et al., 2007). 

 

Figure 11. The buckling mode of the upper delaminated part with contact 
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Figure 12. The buckling mode of the lower delaminated part with contact 

 

Figure 13. Transversal section a long the x axis (y=0) of the buckling mode with 
contact 

As a conclusion, the use of Mindlin’s plate theory and the triangle with three nodes 
has allowed to construct a numerical model for unilateral buckling of delaminated 
plates whose plane crack can be exenterated from the mid plan. This model performs 
the computing of the critical state: the buckling critical load and the corresponding 
buckling mode. The numerical results presented above show that the presence of 
delaminations in a multilayered plate enormously weakens it. Indeed, we have: 



1014     Revue européenne de mécanique numérique. Volume 17 – n° 8/2008 

4.8435
crit
healthy

crit
without contact

p
p
ε

ε
= . 

The plate being delaminated, taking into account the unilateral contact in the 
delaminations region strengthens it: 

0.9284
crit
with contact

crit
without contact

p
p
ε
ε

= . 

4. Error estimates for the membrane efforts 

First, we will deal with the pure membrane problem [1] (there is not bending). The 
reader is reminded that the solution pu of problem [1] is also a particular solution to 
the more difficult problem of buckling of the plate in presence of an obstacle. 

Let ( )hT  be a regular triangulation ofω . Then, the spaceV is approximated by 
the finite-dimensional subspace 

( )( ) ( ) ( ){ }20
0: , 1 2, 0h h hi k h hTV v C v P T k or T and v onω γ= ∈ ∈ = ∈ =T , 

where 

( ) { }1 1 00 10 01 : ,ijT P a a X a Y a IR= = + + ∈P  

( ) { }2 2
2 1 00 10 01 11 20 02 : ijT P a a X a Y a XY a X a Y a IR= = + + + + + ∈P  

 
are respectively the spaces of polynomial functions of degree less or equal to one 
and of degree less or equal to two. Then, problem [1] is approximated by: find 

p
hhu V∈  such that 

1

2 2

, , , 1 1

,
p

h h
h h h

u v
E d G v d v V

x x
ν α

αβνµ α α
ω γµ βα β ν µ α

ω λ γ
= =

∂ ∂ = ∀ ∈
∂ ∂∑ ∑∫ ∫  [8] 

 
Under the same assumptions (i)-(iv) that make problem [1] admit a unique 

solution p gu u Vλ= ∈ , the discrete problem [8] admits also a unique solution 
p g

hh hu u Vλ= ∈  ( g
hu does not depend ofλ ) whose correspondent membrane efforts 

tensor is 
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{ }
2

, 1

. , , 1, 2
p

p gh
h h

u
n E n

x
ν

αβνµαβ αβ
µν µ

λ α β
=

∂
= = ∈

∂∑ . [9] 

Furthermore, let 

( )
1

2 2 2
1 21, 1, 1,k k kv v vω ω ω+ + += +   where

1 2
1 2

21
2

1,
1 21 0,

, 1,2
k

i
i k i i

i i k

v
v i

x xω
ω

+

+
+ = +

∂= =
∂ ∂∑ , 

 
be the semi norm of the Sobolev space ( )( )21kH ω+ , we have the following error 
estimates. 

Theorem 4.1. Suppose that 

( )( )21g ku H ω+∈ . 

Then, there exists a positive constant ( )1c ω  independent of the subspace hV such 
that 

( )1 1,
gg k g
h kV

u u c h u
ω

ω
+

− ≤ . [10] 

 
Proof: See for instance (Raviart et al., 1983). 
 
Corollary 4.2. Suppose that 
 

( )( )21g ku H ω+∈ . 

Then, there exists a positive constant ( )2c ω  independent of the subspace hV such 
that 

( ) ( )2 1,1 , 2 0,
max .gg k g

h k
n n c h u

ωαβα β ω
ω

+≤ ≤
− ≤  [11] 

 
Proof: Let ,α β  be a pair of integers such that1 , 2α β≤ ≤ . According to the 
hypothesis (iii), the following quantity exists. 

( )1 , 2
max .

L
E Eαβ αβνµ ων µ ∞≤ ≤
=  

 
Then, formulae [2] and [9] involve 

( ) ( ) ( ) ( ) ( ){ }1,1 1,2 2,1 2,2
g g g g gg g g g g
h h h h hn n E u u u u u u u uαβαβ
− ≤ − + − + − + − . 
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Taking the square of the last inequality, we obtain 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) }

2 2 2 2 2
2

1,1 1,2 2,1 2,2

1,1 1,2 1,1 2,1

1,1 2,2 1,2 2,1

1,2 2,2 2,1 2,2

2 2

2 2

2 2 .

g g g g gg g g g g
h h h h h

g g g gg g g g
h h h h

g g g gg g g g
h h h h

g g g gg g g g
h h h h

n n E u u u u u u u u

u u u u u u u u

u u u u u u u u

u u u u u u u u

αβαβ

− ≤ − + − + − + − +

− − + − − +

− − + − − +

− − + − −

 

 

This, by using the identity 2 22ab a b≤ + , yields 
 

( ) ( ) ( ) ( ) ( )
2 2 2 2 2

2
1,1 1,2 2,1 2,2

4 .g g g g gg g g g g
h h h h hn n E u u u u u u u uαβαβ

   − ≤ − + − + − + −   
 

 
Taking then the integral of the above inequality gives 
 

( ) ( ) ( )

( ) ( )

2 2 2
2

1 21, 1,0,

2 2
2

1 21, 1,

22

4

4

4

g g gg g g
h h h

g gg g
h h

g g
h V

n n E u u u u

E u u u u

E u u

αβαβ ω ωω

αβ
ω ω

αβ

   − ≤ − + −  
   ≤ − + −  

= −

 

 
Set 
 

max
1 , 2

maxE Eαβα β≤ ≤
= . 

 
According to [10], we obtain the inequality [11] with ( ) ( )2 1 max2 .c c Eω ω=  

 

Let now ( ) :g
hb n H H IR× → be the family of bilinear forms defined by 

( )( )
2

, 1

, .g g
h h

u vb n u v n d
x xαβ

ω α βα β

ω
=

∂ ∂=
∂ ∂∑ ∫  

 
Then, we have the very interesting following inequality. 
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Corollary 4.3. Suppose that 

( )( )21g ku H ω+∈ . 

Then, there exists a positive constant ( )3c ω  independent of the subspace hV such 
that 
 

( )( ) ( )( ) ( ) ( )2 2
3 2,1,

, , , .g g k g
h k

b n v v b n v v c h u v v Hωω
ω ω

+
− ≤ ∀ ∈  [12] 

 
Proof: ω being a bounded open set of 2IR that is supposed to be smooth enough 
(hypothesis (i)). Following the very interesting Rellich-Kondrachov theorem, namely 
the imbedding of the space ( )1H ω in the space ( )qL ω is compact for all real number 

1q ≥  (Brézis, 1983), we particularly have: 

( ) ( )4
1

1,, Lv H v C vω ωω∀ ∈ ≤ . [13] 

  
Let ( )2v H ω∈ , according to the Hölder inequality (Brézis, 1983) and [13], we have 

( )( ) ( )( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )

4 4

4 4

4 4

2

0,, 1

2

1 , 2 0, , 1

2 2

1 , 2 0, 1 2

2 2
2

1 , 2 0, 1 21, 1,

, ,

max

2 max

2 max

g gg g
h h

L L

g g
h

L L

g g
h

L L

g g
h

v vb n v v b n v v n n
x x

v vn n
x x

v vn n
x x

v vC n n
x x

αβ ω α βωα β ω

αβα β ω α βωα β ω

αβα β ω ω ω

αβα β ω ω ω

=

≤ ≤
=

≤ ≤

≤ ≤

∂ ∂− ≤ −
∂ ∂

∂ ∂≤ −
∂ ∂

  ∂ ∂  ≤ − +  ∂ ∂  
 ∂ ∂≤ − +
∂ ∂

∑

∑

( ) 22
2,1 , 2 0,

2 max ,g g
hC n n v ωαβα β ω≤ ≤

    

≤ −

 

 
which, using inequality [11], yields inequality [12] with ( ) ( ) 2

3 1 max4 .c c E Cω ω=   

 

Suppose now that the membrane efforts tensor( )gnαβ verifies the ellipticity 

property (which is the case of a compression loading and several kinds of boundary 
conditions): there exists a positive constant 0η> such that 
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2 2
2 2

, 1 1

,gn IRα β ααβ
α β α

θ θ η θ θ
= =

≥ ∀ ∈∑ ∑ . [14] 

Then, we can easily deduce that 

( )( ) 2
1,, ,gb n v v v v Hωη≥ ∀ ∈ . [15] 

 
Therefore, the embedding of the space W in the space H, supposed to be equipped 

with the norm ( )( ). : : ,g
b bH IR v v b n v v+→ = , is continuous: 

( ) 2, ,g
bv N n v v Wω≤ ∀ ∈ . [16] 

5. Mindlin’s plate model 

5.1. Error estimates for the buckling critical load 

Now, we will deal with the pure bending problem [3] (there is not a membrane 
effect). In order to minimize the number of degrees of freedom, the Kirchhoff-Love’s 
plate model is often replaced by the Mindlin’s one. A comparison between the two 
models exists in (Davet et al., 1985). The Mindlin’s plate model involves, as 
unknowns, the deflection 3w and the two rotations 1θ and 2θ  of the mid plan of the plate 
which are related by the following formulae (Ciarlet et al., 1977; Destuynder, 1990): 

3 , 1,2.
w
xα
α

θ α∂
=− =

∂
 [17] 

The changing of the plate model obviously involves a changing of the 
framework: 

( ) ( ) ( )( ){ }21 2
3 1 2 3 0, , : 0MH v v r r H L v onω ω γ= = ∈ × = , 

( ) ( )( ){ }31
3 1 2 3 1 2 0, , : 0MW v v r r H v r r onω γ= = ∈ = = = , 

{ }3: 0M M cK v W v in ω= ∈ ≤ , 

 

cω being the contact region. The Sobolev spaces MW  and MH are respectively 
equipped with the following norms: 

( ) ( )
1 1

2 22 2 2 22 2
3 1 2 3 1 21, 1, 0, 0,1, 1,, .

M MW Hv v r r v v r rω ω ω ωω ω= + + = + +  
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Let now Ma  and ( )g
Mb n  be the following positive bilinear forms defined in the 

spaces MW  and MH  respectively by: 

( )
2 2

3 3

, , , 1 , 1

,M
w vr

a u v D d G r d
x x x x
α ν

αβνµ αβ α β
ω β µ α βα β ν µ α β ω

θ ω θ ω
= =

  ∂ ∂∂ ∂  = + + +    ∂ ∂ ∂ ∂  
∑ ∑∫ ∫ , 

( )( )
2 2

3 3

, 1 , 1

1 1,
2 2

g gg
M

w v
b n u v n d n r d

x x α βαβ αβ
ω ωα βα β α β

ω θ ω
= =

∂ ∂
= +

∂ ∂∑ ∑∫ ∫ , 

 

Where( )Gαβ denotes the transverse shear rigidity tensor. It is also supposed to verify 

the same ellipticity property as the tensor ( )gnαβ  [14]. The bilinear 

forms Ma and ( )g
Mb n are obviously continuous (with constants MM and ( ) 2gN n ) 

in the spaces MW  and MH  respectively. Then, following [14], the mapping 

( )( ). : : ,
M M

g
M Mb bH IR v v b n v v+→ → =  

 
is a norm equivalent to the norm .

MH  (Raviart et al., 1983), and consequently the 

embedding of the space ( ), .
M

M WW  in the space( ), .
M

M bH is continuous (with 

constant ( ) 2gN n ). Finally, the bilinear form Ma  is MW -elliptic (with 

constant Mα ), see (Ciarlet et al., 1977; Destuynder, 1990 and Duvaut et al., 1972). 

Within the framework defined above, the unilateral buckling problem for the 
Mindlin theory is 

( ) ( )( )1, ,g
M M M M M M M Ma u v u b n u v u v Kλ− ≥ − ∀ ∈ ,  [18] 

where the critical load is solution to the minimizing problem: 

{ }

( )
( )( )1 0

,
min

,M

M
M gv K

M

a v v

b n v v
λ

∈ −
= .  [19] 

 
Problem [18] - [19] is mathematically well posed by virtue of theorem 3.1. Denote 
by ( )3 1 2, ,w w θ θ=  its solution. 

Because the Mindlin’s plate model only involves first order partial derivatives, a 
continuous finite elements scheme of degree 1 is used. This is the triangle with three 
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nodes so that the inclusion M h MK K⊂ holds. Let( )hT  be the same regular 
triangulation as that used for the approximation of the pure membrane problem [8]. 
Then, the space MW and the convex set MK are respectively approximated by 

( ) ( )( ) ( ) ( ){ }30
3 1 2 3 1 3 1 2 01 2, , : , , , 0Mh h h h h h h h hT hT hTW v r r C v r r T T and v r r onω γ= ∈ ∈ ∈ = = =P T , 

 
and by 
 

( ){ }3 1 2 3, , : ( , ) 0, ( , )M h h h h M h h i j i j cK v r r W v x y for all mesh node x y ω= ∈ ≤ ∈ . 

 
It is obvious that the approximated unilateral buckling problem, 

 

{ }

( )
( )( )1 0

,
min

,h Mh

M h h
M h gv K

M h h

a v v

b n v v
λ

∈ −
= ,  [20] 

is well posed (the minimum of a continuous cost over a compact set). Denote by 
( )3 1 2, ,h h h hw w θ θ=  its solution. 

The approximated unilateral buckling problem for the Mindlin theory taking into 
account the error on the membrane efforts tensor will be: find 1 0M hhλ > and a 
nonzero  vector ( )3 1 2, ,hh hh hh hh M hw w Kθ θ= ∈ such that 

{ }

( )
( )( )1 0

,
min

,h M h

M h h
M hh gv K

M h hh

a v v

b n v v
λ

∈ −
= . [21] 

We shall choose 

( )( ) ( )( ) ( )( ), , , 1gg g
M M h h M hh hhhb n w w b n w w b n w w= = =   [22] 

 
so that each of the approximated solutions hw and hhw remains uniformly bounded in 

MW . 

First, we are going to establish an error estimate for the unilateral buckling 
critical load without taking into account the error on the membrane efforts 
tensor, 1 1M h Mλ λ− , which has already been established in (Ayadi, 2007). 

Lemma 5.1. Let
M hKP w be the projection, in the sense of the inner product defined 

by the bilinear form ( ).,.Ma , of the exact buckling mode w  on the convex set M hK . 
Then, we have the two following inequalities: 
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inf
Mh MM h Mh

M
K h WW v KM

M
w P w w v

α ∈
− ≤ − . [23] 

 
Furthermore, there exists a positive real 0h such that 

00

1lim inf 0 2
Mh Mh

Mh
M

h Wh v K
K b

w v h h
P w→ ∈

       − = ⇒ ≤ ⇒ ≤        
, [24] 

Proof: According to the definitions made in lemma 5.1, we have 

 

( ), 0,
Mh MhM K h K h Mha w P w v P w v K− − ≤ ∀ ∈ .  [25] 

Using the MW -ellipticity and the continuity of the bilinear form Ma  (with 
constants Mα  and MM ) together with [25], for all h Mhv K∈ , we obtain 

 

( )
( ) ( )
( )

2
,

, ,

,

Mh Mh Mh
M

Mh Mh Mh

Mh

Mh MM

M K M K KW

M K h K h K

M K h

M K h WW

w P w a w P w w P w

a w P w w v a w P w v P w

a w P w w v

M w P w w v

α − ≤ − −

= − − + − −

≤ − −

≤ − −

 

 
Hence the inequality [23] is showed. 

If
0

lim inf 0
Mh Mh

h Wh v K
w v

→ ∈
− = , then, according to [23], the sequence 

( )MhKP w converges to w  in the space MW . Since the embedding of the space 

( ), .
M

M WW  in the space ( ), .
M

M bH is continuous, the sequence 
Mh

M
K b

P w      

converges to 1
Mbw = . Hence the inequality [24] is showed. 

 
Lemma 5.2. Suppose that 
 

0
lim inf 0

Mh Mh
h Wh v K

w v
→ ∈

− = . 
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Then, the sequence( ) 0h hw > is bounded in the norm .
MW : 

2
MM

M
h WW

M

M
w w

α
≤  [26] 

Proof: Using the MW -ellipticity of Ma  and the fact that the projection on a closed 
convex set is a Lipschitzienne mapping with unit ratio, we obtain 

 

( )

{ }

( )
( )( )

( )

( )

2

0

2

2

,

,
inf

,

1 ,

1 ,

M

h Mh

Mh Mh

Mh
M

Mh
M

M h M h hW

M h h
gv K

M h h

M K K

K b

M

K b

w a w w

a v v

b n v v

a P w P w
P w

a w w
P w

α

∈ −

≤

=

≤

≤

 

 
Then, propriety [24] and the continuity of the bilinear form Ma  yield [26]. 

 
We are now in a position to prove an abstract error estimate for the unilateral 

buckling critical load of a thin plate, with Mindlin theory and a continuous finite 
elements scheme, in presence of an obstacle without taking into account the error on 
the membrane efforts tensor. 

Theorem 5.3. Suppose that 
 

0
lim inf 0

Mh Mh
h Wh v K

w v
→ ∈

− = . 

 
Then, there exist four positive constants, 1c  and 2c all independent of the subspace 

MhW  and of the convex cone MhK  such that 
 

2
1 1 2 10 inf inf

M Mh Mh h Mh
M h M h hW Wv K v K

c w v c w vλ λ
∈ ∈

≤ − ≤ − + −  [27] 

 
Proof: Let { }0h Mhv K∈ − , following the expressions of the exact buckling critical 
load [19] and the approximated one [20], we have 
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( )
( )( )

( )1 1
,

0 ,
,

, 2 ,
M M M

M h h
M h M g

M h h

h h h

h h hb b b

a v v
a w w

b n v v

v v v
a w w a w w

v v v

λ λ≤ − ≤ −

        = − − + −          

 

Hence 
2

1 1 2
M

M M
M M

h h
M h M M M W

h hb bW W

v v
M w M w w

v v
λ λ− ≤ − + −  [28] 

 
But the inequality [28] is in particular hold for

Mhh Kv P w= .  
 

( )

( )

2

1 1 2

2

2

2

2

Mh Mh Mh MhMM M
M MMhMh MM

Mh MhM M
M

Mh
M

Mh MhM M M
MMh

M

M M
M h M K K K KWb bW WKK bb

M
K Kb b WK b

K KW b b WK b

M M
P w P w w w P w P w w

P wP w

M
P w w w P w w

P w

M w P w w w P w w
P w

λ λ− ≤ − + −

 = − + − +  

 − + −   

 

Using the continuity of the embedding of the space ( ), .
M

M WW  in the space 

( ), .
M

M bH  (with constant ( ) 2gN n ), we obtain  

( )

( )

2

2
1 1 2 1

2

2
1 .

2

MhWM M

Mh
M

MhM M M
Mh

M

g
M

M h M K W
K b

g
M

KW W W
K b

N nM
w P w w

P w

N nM
w w P w w

P w

λ λ
    − ≤ + − +    

    + −    
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According to [23] and [24], we obtain the inequality [27]: for 0hh ≤ , 
 

( )

( )

2
3

2
1 1 2

2

4 1 inf
2

4
1 inf .

2

M Mh M h

M M Mh h

g
M

M h M hW Wv KM

g
M

hW W Wv KM

N nM w w v

N nM
w w w v

λ λ
α

α

∈

∈

    − ≤ + − +    
    + −    

 

 
Second, we are going to estimate the consistency error 1 1M hh M hλ λ− . 

Lemma 5.4. Suppose that 
 

( )( )21
0

lim inf 0
Mh Mh

g k
h Wh v K

u H and w vω+
→ ∈

∈ − = . 

 
Then, there exists a positive real 1h such that, for all 1h h≤ , we have: 

( )( )
1 4

,g
M h hhb n w w

≤ , [29] 

   
the sequence  ( )hhw bounded in the norm .

MW : 

 
4

MM

M
hh WW

M

M
w w

α
≤ ,  [30] 

and consequently 
 

( )( )
1 4

,g
M hh hhb n w w

≤ .  [31] 

Proof: Let 

( ) ( ){ }2 2
3 1 2 3, , :M MW v v r r W v H ω= = ∈ ∈  

 

be the subspace of MW  equipped with the following norm: 

( )2

1
2 2 22 2

3 1 21, 1,2,, .
M

M Wv W v v r rω ωω∀ ∈ = + +  
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Being inspired by corollary 3.3, we can easily show that 

( )( ) ( )( ) ( ) 2

2 2
3 2,

1, , ,
2 M

g g k g
M h M MW

b n v v b n v v c h u v v W
ω

ω− ≤ ∀ ∈ .  [32] 

But we have 2
M M

h hW Ww w= and 2
M M

hh hhW Ww w= since hw and hhw are 

polynomial functions of degree one by triangle. According to [22], [26] and inequality 
[32], there exists a positive real 1 0h h≤ such that, for all 1h h≤ , we obtain the inequality 
[29]. Then, using the MW -ellipticity of the bilinear form Ma , we obtain 

 

( )

{ }

( )
( )( )

( )
( )( )

2

0

,

,
inf

,

,

,

M

h Mh

M hh M hh hhW

M h h
gv K

M h hh

M h h
g

M h hh

w a w w

a v v

b n v v

a w w

b n w w

α

∈ −

≤

=

≤

 

 
This, following [29], the continuity of Ma  and [26], yields [30]. Finally, [32], [22], 
and [30] involve [31]. 

 
 

We are now in a position to estimate the consistency error 1 1M hh M hλ λ− . 

Theorem 5.5. Suppose that 
 

( )( )21
0

lim inf 0
Mh Mh

g k
h Wh v K

u H and w vω+
→ ∈

∈ − = . 

 
Then, for all 1h h≤ , we have 

      

( ) ( )
5 3

4 4
3 1 1 34 21, 1,

512 32
M M

g k g kM M
M hh M hW Wk k

M M

M M
c u w h c u w h

ω ω
ω λ λ ω

α α+ +
− ≤ − ≤ .[33]     

 
Proof: First, we show the right inequality of [33]. Since { }0h Mhw K∈ − , [32] yields: 
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{ }

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )( ) ( )( )( )
( )
( )( )

( )

1 1 0

2
3 1,

, ,
min

,,

, ,

,,

,
, ,

,

,
.

2 ,

h Mh

M

M h h M h h
M hh M h g gv K

M h hM h hh

M h h M h h
g g

M h hM h hh

M h h gg
M h h M h hhg

M h hh

M h h k g
h Wg k

M h hh

a v v a w w

b n w wb n v v

a w w a w w

b n w wb n w w

a w w
b n w w b n w w

b n w w

a w w
c h u w

b n w w ω

λ λ

ω

∈ −

+

− = −

≤ −

= −

≤

 

 
The right inequality of [33] is then showed, for 1h h≤ , by virtue of the continuity of 
the bilinear form Ma together with [29] and [26]. 

Second, we show the left inequality of [33]. Since { }0hh Mhw K∈ − , [32] yields: 

 

{ }

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )( ) ( )( )( )
( )
( )( )

( )

1 1 0

2
3 1,

, ,
min

, ,

, ,

, ,

,
, ,

,

,

2 ,

h Mh

M

M h h M hh hh
M h M hh g gv K

M h h M hh hhh

M hh hh M hh hh
g g

M hh hh M hh hhh

M hh hh g g
M hh hh M hh hhhg

M hh hh

M hh hh k g
hh Wg k

M hh hh

a v v a w w

b n v v b n w w

a w w a w w

b n w w b n w w

a w w
b n w w b n w w

b n w w

a w w
c h u w

b n w w ω

λ λ

ω

∈ −

+

− = −

≤ −

= −

≤

 

 
The left inequality of [33] is then showed, for 1h h≤ , by virtue of the continuity of 
the bilinear form Ma together with [31] and [30]. 

 

According to theorem 4.3 and theorem 4.5, an error estimate for the unilateral 
buckling critical load of a thin plate, in presence of an obstacle, with Mindlin theory, and 
taking into account the error on the membrane efforts tensor g

hn is hereafter achieved. 

Corollary 5.6. Suppose that 

( )( )22gu H ω∈ and ( ) ( )( )32
3 1 2, ,w w Hθ θ ω= ∈ . 
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Then, there exist four positive constants 1C , 2C , 3C and 4C all independent of the 
subspace M hW  and of the convex cone M hK  such that 

( ) 2
4 1 1 1 3 2 .M hh MC h C C h C hλ λ− ≤ − ≤ + +    [34]  

 
If M MK W= , the error control [34] reduces to 

 
2

4 1 1 3 2 .M hh MC h C h C hλ λ− ≤ − ≤ +   [35]  
 
Proof: Denote by ( )3 1 2, ,h h h hv v r rπ π π π= the interpolated of degree one 

of ( )3 1 2, ,v v r r= . If v belongs to MK , then hvπ belongs to M hK . Therefore, with a 

regular triangulation( )hT , see for instance (Raviart et al., 1983), there exists a 
positive constant 5C  such that 

5 2,

inf
M Mh Mh

h hW Wv K
w v w w

C h w ω

π
∈

− ≤ −

≤
  [36] 

Adding [27] and [33], and using [36], we obtain [34] with  
 

( ) ( ) ( )

( ) ( )

2
2 3 2

1 5 2 52, 2,2

3 5
4 4

3 3 4 32 42, 2,

4 4
1 , 1 ,

2 2

32 512
, .

M M M

M M

g g
M M

W W W
M M

g gM M
W W

M M

N n N nM M
C w w C w C w C w

M M
C c u w C c u w

ω ω

ω ω

α α

ω ω
α α

          = + = +           

= =

 

 
If M MK W= (buckling without obstacle) then, for all { }0h M hv W∈ − , we have 

( )
( )( )

( )1 1
,

,
,

, 2 , .
M M M

M h h
M h M Mg

M h h

h h h
M M

h h hb b b

a v v
a w w

b n v v

v v v
a w w a w w

v v v

λ λ− ≤ −

        = − − + −          

 

But the last term is negative. Indeed, we have 

( )1, ,
M M

gh h
M M M

h hb b

v v
a w w b n w w

v v
λ

        − = −          
. 
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Then, by virtue of the Cauchy Schwartz inequality together 
with ( )( ), 1g

Mb n w w = , we obtain 

( ) ( )( ) ( ), , , 1

0.
M M M

g g gh h h
M M M

h h hb b b

v v v
b n w w b n w w b n

v v v

            − ≤ −                
=

 

Consequently, the term 1C h  vanishes in the expression [34], which reduces to [35]. 
 

5.2. Numerical results 

In order to check our theoretical error estimate for the unilateral buckling critical 
load of a thin plate with Mindlin theory, in presence of an obstacle and taking into 
account the error on the membrane efforts tensor, the following numerical 
experiment is handled. 

The plate, occupying the two-dimensional domain ] [ ] [0.1,0.1 0.05,0.05ω= − ×− , 
is simply supported on the whole of its edge, clamped on the edge part 0γ  and 
compressed on the edge part 1γ by a uniform load 2ελ . Also, the membrane 
displacements are imposed null on the part edge 0γ so that the membrane efforts are 
not trivial and must first be approximated by finite elements scheme. Furthermore, 
the plate is supposed to have a thickness 2 0.006mε=  and to be made of an elastic, 
homogenous and isotropic material whose mechanical features are: the Young’s 
modulus E = 1.000e+09Pa, and the Poisson’s ratio 0.3ν= , see Figure 14. 

 

Figure 14. The rectangular plate is in presence of the obstacle 
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Figure 15. The buckling mode of the plate in the absence of the obstacle 

Consider now the obstacle occupying the domain [ ] [ ]0.04,0.04 0.02,0.02cω = − ×− . 

 

Figure 16. The unilateral buckling mode of the plate 

 

Figure 17. The curves above show the sections A-A of the buckling modes of the 
plate as well as the obstacle involving the contact domain 

[ ] [ ]0.04,0.04 0.02,0.02cω =− ×−  
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Figure 18. The curves above show the sections B-B of the buckling modes of the 
plate as well as the obstacle involving the contact domain 

[ ] [ ]0.04,0.04 0.02,0.02cω = − ×−  
 

 
 

Figure 19. The dependence of the critical load upon the mesh size 

The two first curves above give the dependence of the buckling critical load, in 
the presence and in the absence of the obstacle respectively, upon the mesh size. 
Following theoretical error estimate formulae [34] and [35], the difference between 
the two critical loads (with and without contact) must be linear as a function of the 
mesh size. The third curve shows that this linear behavior is numerically confirmed. 
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6. Kirchhoff-Love’s plate model 

We shall approximate the ‘’nonlinear eigenvalue problem’’ [6] - [7] by using a 
conformal finite elements method and the same mesh( )hT  which was used for 

approximating the pure membrane problem [8]. Let then hW be a finite-dimensional 

subspace of the spaceW such that hW W⊂ , and hK  be a non empty closed convex 

subset of hW  which is a cone. Observe that in general the set hK  is not a subset of K . 

The discrete nonlinear problem, supposed to approach the continuous one [6] - 
[7] without taking into account the error on the membrane efforts tensor (Ayadi, 
2007), consists in finding ( ) { }( )*

1 3, 0h h hw IR Kλ +∈ × −  such that 

( ) ( )( )3 3 1 3 3, , ,g
h h h h h h h h ha w v w b n w v w v Kλ− ≥ − ∀ ∈ , [37] 

and 

{ }

( )
( )( )1 0

,
min

,h h

h h
h gv K

h h

a v v

b n v v
λ

∈ −
= . [38] 

The minimizing problem [38], which involves [37], is mathematically well 
posed: there exists a function { }3 0h hw K∈ − which realizes the minimum of 
problem [38]. 

The discrete nonlinear problem, supposed to approach the continuous one [6] - 
[7] and taking into account the error on the membrane efforts tensor, consists in 
finding ( ) { }( )*

1 3, 0hh hh hw IR Kλ +∈ × −  such that 

( ) ( )( )3 3 1 3 3, , ,g
hh h hh hh hh h hh h hha w v w b n w v w v Kλ− ≥ − ∀ ∈ , [39] 

 
and 

{ }

( )
( )( )1 0

,
min

,h h

h h
hh gv K

h hh

a v v

b n v v
λ

∈ −
= . [40] 

From now on, we shall choose 

( )( ) ( )( ) ( )( )3 3 3 3 3 3, , , 1gg g
h h hh hhhb n w w b n w w b n w w= = =  [41] 

 
so that the approximated solutions 3hw and 3hhw remain uniformly bounded in W. 
 

An abstract error estimate for the unilateral buckling critical load, 1 1hλ λ− , of a 
thin plate in presence of an obstacle, with Kirchhoff-Love theory and a conformal 
finite elements scheme ( hW W⊂ ), without taking into account the error on the 
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membrane efforts tensor, has already been established in (Ayadi, 2007). The 
following theorem recalls it. 

Theorem 6.1. Suppose that 
 

3 32, 2,0 0
lim inf lim inf 0

h h
h hh v K h v K

w v w vω ω→ ∈ → ∈
− = − = . 

 
Then, there exist four positive constants, 6C , 7C , 8C and 9C all independent of the 

subspace hW  and of the convex cone hK  such that 

2 2
8 3 9 3 1 1 7 3 6 32, 2, 2, 2,inf inf inf inf

h h h h
h h h h hv K v K v K v K

C w v C w v C w v C w vω ω ω ωλ λ
∈ ∈ ∈ ∈

− − − − ≤ − ≤ − + −  [42] 

 
Proof: See (Ayadi, 2007) where the positive constants are defined by: 

 

( ) ( )
2 3 2

6 3 3 7 32, 2, 2,2
4 41 , 1g gM MC w N n w C N n wω ω ωα α

     = + = +        ,   

( ) ( )
25

32

8 3 3 9 32, 2, 2,3 2
2

8 41 2 , 1 2
g gN n M N n MM MC w w C wω ω ωα αα

α

          = + = +           
. 

 
We are now going to estimate the consistency error 1 1hh hλ λ− . 

Lemma 6.2. Suppose that 
 

( )( )21
3 2,0

lim inf 0
h h

g k
hh v K

u H and w v ωω+
→ ∈

∈ − = . 

 
Then, there exists a positive real 2h such that, for all 2h h≤ , we have: 

( )( )3 3

1 4
,g

h hhb n w w
≤ ,  [43] 

 
the sequence ( )3hhw  is bounded in the norm 2,. ω : 

 

3 32, 2,
4

hh
Mw wω ωα

≤ , [44] 
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and consequently 

( )( )3 3

1 4
,g

hh hhb n w w
≤ . [45] 

 
Proof: By inspiring of lemma 5.1, we first show that the sequence ( )3hw is bounded 

in the norm 2,. ω . Then, by virtue of the inequality [12] in corollary 4.3 and [41], 

the proof of [43] - [45] is exactly the same as in lemma 5.2 and lemma 5.4. 

We are now in a position to estimate the consistency error 1 1hh hλ λ− . 

 
Theorem 6.3. Suppose that 
  

( )( )21
3 2,0

lim inf 0
h h

g k
hh v K

u H and w v ωω+
→ ∈

∈ − = . 

 
Then, for all 2h h≤ , we have 

( ) ( )
5 3

4 4
3 3 1 1 3 32, 2,4 21, 1,

1024 64g k g k
hh hk k

M Mc u w h c u w hω ωω ω
ω λ λ ω

α α+ +
− ≤ − ≤ . [46] 

Proof:  The proof of [46], which is a direct consequence of lemma 6.2, is exactly the 
same as in theorem 5.5. 

Finally, according to theorem 6.1 and theorem 6.3, an abstract error estimate for 
the unilateral buckling critical load of a thin plate in presence of an obstacle, with 
Kirchhoff-Love theory, and taking into account the error on the membrane efforts 
tensor g

hn  is hereafter achieved. 

Corollary 6.4. Suppose that 
 

( )( )21
3 32, 2,0 0

lim inf lim inf 0
h h

g k
h hh v K h v K

u H and w v w vω ωω+
→ ∈ → ∈

∈ − = − = .  

 
Then, for all 2h h≤ , we have 

( )

( )

( )

3 2
2

1 1 3 32, 2,2

2

3 3 32, 2, 2,

3
4

3 3 2,2 1,

4 1 inf

4 1 inf

64

h h

h h

g
hh hv K

g
hv K

g k
k

M N n w w v

M w N n w w v

M c u w h

ω ω

ω ω ω

ωω

λ λ
α

α

ω
α

∈

∈

+

 − ≤ + − +  

  + − +    [47] 
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and 

( )

( )

( )

2
3

2
1 1 3 32, 2,2

5
2

3 3 32, 2, 2,3
2

5
4

3 3 2,4 1,

4 1 2 inf

8 1 2 inf

1024

g

hh hv K

g

hv K

g k
k

N n MM w w v

N n MM w w w v

M c u w h

ω ω

ω ω ω

ωω

λ λ
αα

α
α

ω
α

∈

∈

+

  −  − ≥ + − +    
  −  + − +    

−

 [48] 

 

REMARK. — Several comments are in order about the abstract error estimate [47]-
[48]. 
 
(i) In the linear case, i.e. buckling without obstacle, as K W=  and h hK W W= ⊂ , 
we can easily deduce that 

 

3 2,inf 0hw K
w w ω∈

− = , and 3 3, 0,h
h h

h b

w
a w w w W

w

   − ≤ ∀ ∈   
. 

The error estimate for the buckling critical load [47] - [48] reduces to 
 

( ) ( )

( )

5 3 2
4 2

3 3 1 1 3 32, 2, 2,4 21,

3
4

3 3 2,2 1,

1024 4 1 inf

64
h h

g k g
hh hk w W

g k
k

M Mc u w h N n w w w

M c u w h

ω ω ωω

ωω

ω λ λ
α α

ω
α

+ ∈

+

 − ≤ − ≤ + − +  
 [49] 

 
(ii) Observe that the approximation method in the nonlinear case [47] - [48] would 
be as accurate as that of linear case [49]if we have 

 

( ) ( )3 32, 2,inf inf , 0k k
h hw K w K

w w O h and w w O hε ε
ω ω ε+ +

∈ ∈
− = − = ≥ . 

 
(iii) If the inclusion hK K⊂ holds, then obviously the term 3 2,inf hw K

w w ω∈
− , which 

is expected to be the hardest to evaluate (Ciarlet, 1978), vanishes in the error 
estimate formula [48]. 
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( ) ( )

( )

( )

5 3 2
4 2

3 3 1 1 3 32, 2, 2,4 21,

2

3 3 32, 2, 2,

3
4

3 3 2,2 1,

1024 4 1 inf

4 1 inf

64 .

h h

h h

g k g
hh hk w K

g
hw K

g k
k

M Mc u w h N n w w w

M w N n w w w

M c u w h

ω ω ωω

ω ω ω

ωω

ω λ λ
α α

α

ω
α

+ ∈

∈

+

 − ≤ − ≤ + − +  

  + −  

+

 [50] 

 
(iv) Following the error estimate [50], the optimal choice of the space hW  is such 
that 

( )3 2,inf .
h h

k
hw K

w w O hω∈
− =                 

7. Conclusion and perspectives 

The Kirchhoff-Love plate theory requires a continuous differentiable finite 
elements scheme. It is not only expensive and difficult to implement numerically, but 
also leads to the abstract error estimate [47] - [48] whose term, 3 2,inf hw K

w w ω∈
− , is 

very hard to evaluate. Using the very interesting result, namely the maximum of two 
functions in ( )1H ω

 
is also in ( )1H ω  (Lewy et al., 1969), Ciarlet has succeeded, in 

the equilibrium position of an elastic membrane problem in presence of an obstacle, 
to evaluate the term 3 1,inf hw K

w w ω∈
−  (Ciarlet, 1978). So, if the maximum of two 

functions in ( )2H ω  is also in ( )2H ω  (which is not true ifω is an open subset 

of IR ), then there is a hope to evaluate the term 3 2,inf hw K
w w ω∈

− . 

The Mindlin plate theory requires - at the opposite - only continuous finite 
elements scheme. Using the Mindlin plate model together with a conformal finite 
elements method of very low degree (linear local interpolation) is sufficient to 
approach the unilateral buckling critical load of a thin plate in presence of an 
obstacle, as exemplify both of the theoretical error estimate [34] - [35] and the 
numerical results presented in Figure 19. 

In the future work, we are going to deal with achieving an error estimate for the 
unilateral critical load using the Mindlin plate theory and an interpolation of degree 
two (triangle with six nodes). The approximated space becomes 

( ) ( )( ) ( ) ( ){ }30
3 1 2 3 2 3 1 2 01 2, , : , , , 0Mh h h h h h h h hT hT hTW v r r C v r r T T and v r r onω γ= ∈ ∈ ∈ = = =P T . 
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In this case, the unilateral contact constraints convex K is approximated by 
 

( ){ }3 1 2 3, , : ( , ) 0, ( , )M h h h h M h h i j i j cK v r r W v x y for all mesh node x y ω= ∈ ≤ ∈ , 

 
which is not a subset of MK . So, we must be able to evaluate the 
term inf

M
h Wv K

w v
∈

− . By virtue of the Lewy-Stampacchia result (Lewy et al., 1969), 

this task is easier than the evaluation of 3 2,inf hw K
w w ω∈

− because ( )( )31
MW H ω⊂ . 

8. References 

Ayadi M., Nevers T., « Un modèle Eulerien de calcul de la charge critique de flambement 
d’une plaque mince multicouches délaminée », Les Annales de l’ENIT, vol. 4, n° 1, 1990. 

Ayadi M., « Sur un algorithme pour rendre compte du contact unilatéral dans une plaque 
délaminée », Les Annales Maghrébines de l’Ingénieur, vol. 7, n° 2, 1993. 

Ayadi M., “An algorithm for computing the critical state of unilateral buckling of thin plates”, 
European Journal of Computational Mechanics, vol. 15, n° 4, 2006, p. 341-358. 

Ayadi M., “Error estimates for the unilateral buckling critical load of a thin plate”, European 
Journal of Computational Mechanics, vol. 16, n°5, 2007, p. 583-600. 

Bradford M.A., Smith S.T., Oehlers D.J., “Semi-Compact steel plates with unilateral restraint 
subjected to bending, compression and shear”, Journal of Constructional Steel Research, 
vol. 56, 2000, p. 47-67. 

Brézis H., Analyse fonctionnelle et applications, Collection Mathématiques Appliquées pour 
la Maîtrise, Paris, Masson, 1983. 

Chai H., “On the post-buckling behavior of bilaterally constrained plates”, International 
Journal of Solids and Structures, vol. 39, n° 11, 2002, p. 2911-2926. 

Ciarlet P.G., Elasticité tridimensionnelle, Collection Recherches en Mathématiques 
Appliquées, Paris, Masson, 1986. 

Ciarlet P.G, The Finite Element Method for Elliptic Problems, Series “Studies in 
Mathematics and its Applications”, North-Holland, Amsterdam, 1978. 

Ciarlet P.G., Destuynder P., « Une justification du modèle biharmonique en théorie linéaire 
des plaques », C. R. Acad. Sci. Paris, Sér. A 285, 1977, p. 851-854. 

Cimetière A., « Un problème de flambement unilatéral en théorie des plaques », Journal de 
Mécanique, vol. 19, n° 1, 1980, p. 183-202. 

Cimetière A., « Méthode de Liapounov-Schmidt et branche de bifurcation pour une classe 
d’inéquations variationnelles », C. R. Acad. Sci. Paris, t. 300, Sér. I, n° 15, 1985, p. 565-568. 



Error estimates for the buckling load     1037 

Davet J., Destuynder Ph., « Singularités logarithmiques dans les effets de bord d’une plaque 
en matériaux composites », Journal de Mécanique Théorique et Appliquée, vol. 4, 1985, 
p. 357-380. 

Destuynder Ph., Modélisation des coques minces élastiques, Collection Physique 
Fondamentale et Appliquée, Paris, Masson, 1990. 

Do C., « Problèmes de valeurs propres pour une inéquation variationnelle sur un cône et 
application au flambement unilatéral d’une plaque mince », C. R. Acad. Sci. Paris, Sér. A 
280, 1975, p. 45-48. 

Do C., “The buckling of a thin elastic plate subjected to unilateral conditions”, Applications 
of Methods of Functional Analysis to Problems in Mechanics, Springer Lecture Notes, 
n° 503, 1976, p. 307-316. 

Duvaut G., Lions J., Les inéquations en Physique et en Mécanique, Paris, Dunod, 1972. 

Febres R., Inglessis P., Florez-Lopez J., “Modeling of local buckling in tubular steel frames 
subjected to cyclic loading”, Computers and Structures, vol. 81, 2003, p. 2237-2247. 

Goeleven D., Motreanu D., “Asymptotic Eigenvalues and Spectral Analysis of Variational 
Inequalities”, Communications in Applied Analysis, n° 2, 1998, p. 343-372. 

Goeleven D., Théra M., “Nonlinear Variational Inequalities Depending on a Parameter”, 
Serdica Mathematical Journal, n° 21, 1995, p. 1001-1017. 

Kucera M., “A New Method for Obtaining Eigenvalues of Variational Inequalities: Operators 
with Multiple Eigenvalues”, Czechoslovak Mathematical Journal, n° 32, 1982, p. 197-207. 

Lewy H., Stampacchia G., “On the regularity of solutions of a variational inequality”, Comm. 
Pure Appl. Math., 22, 1969, p. 153-188. 

Ma X., Butterworth J.W., Clifton C., “Compressive buckling analysis of plates in unilateral 
contact”, International Journal of Solids and Structures, vol. 44, 2007, p. 2852-2862. 

Mouradova A.D., Stavroulakis G.E., “A unilateral contact model with buckling in von 
Karman plates”, Nonlinear Analysis: Real World Applications, Article in press, 2006. 

Nevers Th., Modélisation Théorique et Numérique du Délaminage des Plaques Composites, 
Thèse de l’Ecole Centrale de Paris, 1986. 

Parry G., Colin J., Coupeau C., Foucher F., Cimetière A., Grilhé J., “Effect of substrate 
compliance on the global unilateral post-buckling of coatings: AFM observations and 
finite element calculations”, Acta Materialia, vol. 53, 2005, p. 441-447. 

Quittner P., “Spectral Analysis of Variational Inequalities”, Commentationes Mathematicae 
Universitatis Carolinae, n° 27, 1986, p. 605-629. 

Raviart P.A., Thomas J.M., Introduction à l’Analyse Numérique des Equations aux Dérivées 
Partielles, Collection Mathématiques Appliquées pour la Maîtrise, Paris, Masson, 1983. 

Riddell R.C., “Eigenvalue Problems for Nonlinear Elliptic Variational Inequalities on a 
Cone”, Journal of Functional Analysis, n° 26, 1977, p. 333-355.  



1038     Revue européenne de mécanique numérique. Volume 17 – n° 8/2008 

Shahwan K.W., Waas A.M., “Buckling of unilaterally constrained plates: applications to the 
study of delaminations in layered structures”, Journal of The Franklin Institute, vol. 335, 
n° 8, 1998, p. 1009-1039. 

Shen H.S., Li Q.S., “Postbuckling of shear deformable laminated plates resting on a 
tensionless elastic foundation subjected to mechanical or thermal loading”, International 
Journal of Solids and Structures, vol. 41, 2004, p. 4769-4785. 

Shiri S., Ayadi M., « Flambement d’une plaque multicouche délaminée. Prise en compte du 
contact unilatéral », 2e Congrès International : Conception et Modélisation des Systèmes 
Mécaniques, Monastir, Tunisie, 19-21 Mars, 2007. 

Smith S.T., Bradford M.A., Oehlers D.J., “Elastic buckling of unilaterally constrained 
rectangular plates in pure shear”, Engineering Structures, vol. 21, n° 5, 1999, p. 443-453. 

Smith S.T., Bradford M.A., Oehlers D.J., “Unilateral buckling of elastically restrained 
rectangular mild steel plates”, Computational Mechanics, vol. 26, n° 4, 2000, p. 317-324. 

Article reçu le 5 juillet 2007 
Accepté après revisions le 11 juin 2008 


