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1. Introduction

Shape optimization is concerned with determining a set of design variables
acting upon the shape of an object to be designed, so that an objective function is
optimized while a set of constraints is satisfied. It appeared in the 70’s when a group
of engineers working for NASA first used computational fluid dynamic softwares
within shape optimization processes (Hicks et al., 1975; Hicks et al., 1976a; Hicks
et al., 1976b; Vanderplaats et al., 1976; Hicks et al., 1977; Hicks et al., 1978). The
shapes they studied were simple (airfoil profile, wing plane shape...) and the fluid
behavior was predicted by low-fidelity models (Pironneau, 1973). The optimal shape
was determined according to gradient-based descent schemes relying on finite diffe-
rencing for sensitivity calculation, and only the aerodynamic behavior was taken into
account. In 1988, (Jameson, 1988) first introduced an analytical method for gradient
computation inspired from optimal control theory (Lions, 1971) and called the adjoint
vector method. Then in the early 90’s, the direct differentiation method, another,
more instinctive, analytical method for gradient computation, come out (Baysal et
al., 1991; Shubin, 1991; Burgreen et al., 1996). Taking benefit from current growing
computer capabilities, high-fidelity models have been used in conjunction with
gradient computation analytical methods, on more and more complex geometries :
for airfoil profiles first (Jameson, 1990; Jameson et al., 1994), then on wing surfaces
(Reuther, 1996; Jameson et al., 1998), and finally on complete airplane geometries
(Reuther et al., 1996; Reuther et al., 1999a; Reuther et al., 1999b; Din et al., 2006).

From a numerical point of view, shape optimization consists in chosing a discreti-
zed shape defined by its surface boundary mesh among a set of parametrized shapes.
Numerical optimization enables the designer to conceive a shape which is not biased
or limited by intuition or experience (or lack thereof). The constraint conditions must
be satisfied in order for the design to be feasible. They can be explicitly used or incor-
porated in the objective function using penalty terms. Transforming the optimization
problem into a minimization problem, finally consists in :

finding α that minimizes J(α) subject to
{

G(α) ≤ 0
αlb ≤ α ≤ αub

where α is the vector of design variables, J is the objective, G is the vector of
inequality constraints, αlb and αub are the lower and upper bound vectors defining
the design space to be explored.

NOTE. — a vector x of IRn satisfies x ≤ 0 iff ∀l ∈ [1, n], xl ≤ 0.

The optimization problem can be tackled with two different famillies of methods
(Vanderplaats, 1984). First, local algorithms, such as gradient-based algorithms and
simplex method, search for an optimal shape in the neighborhood of an initial guess,
usually close to a traditional designed-by-experience shape. Second, global algo-



Aero-structural sensitivity analysis 1079

rithms are intended to predict an absolute optimum in the design space. Most of them
start from a set of shapes and make them evolve according to non-deterministic rules.
If high-fidelity modeling is adopted (numerical flow computations for aerodynamics),
they can turn out to be very expensive. In such cases, either lower fidelity physical
models are chosen to predict design properties during the optimization process, or
objective and constraints are partly replaced by surrogate models. However, neither
of these two techniques is exclusive : global search can be used to locate areas of
interest where local optimization can proceed. Examples of hybrid and sequential
optimization techniques can be found in references (Carrier, 2004; Carrier, 2006).

Traditionally, only the aerodynamic behavior of the shape to be defined was taken
into account during shape optimization and the design of complex multidisciplinary
systems was performed sequentially i.e. in a loosely coupled sens. The different
disciplines involved were treated separately by discipline experts trying to maximize
their own performance-related criteria. For instance, the aerodynamic team was only
concerned with designing a shape with minimum drag (shape optimization), while the
structure team aimed at defining the characteristics of the structure so that it exhibits
minimum structural weight and the propulsion team was interested in minimizing
specific fuel consumption. However, Wakayama (Wakayama, 1994) has shown that
sequential optimization does not necessarily converge to the true optimum of the
multidisciplinary coupled system. Besides, engineering systems of practical interest
are usually characterized by complex interactions between disciplines. Neglecting
elastic deformations can result in overestimating aileron efficiency by 50% (Fillola
et al., 2004), or, as we have found for the DLR wing-fuselage F4 configuration, in
overestimating lift and drag respectively by 10% and 20%. Furthermore, Arslan and
Carlson (Arslan et al., 1996) observed that sensitivity information produced by an
aerodynamic-only calculation has different magnitude and in some case sign from that
obtained with the coupled sensitivity analysis. Hence, the motivation for performing
muldisciplinary analysis and optimization during the design process becomes obvious.

In this paper, the analytical framework that has been set up to compute the sensi-
tivities required by the shape optimization of an aeroelastic system is presented. Sec-
tion 2 introduces the different sensitivity computation methods, Section 3 describes the
strongly coupled aeroelastic system we consider as well as the method implemented
to solve for the static aeroelastic equilibrium, and at last, Section 4 derives the cor-
responding coupled systems of equations related to the discrete direct differentiation
method and the discrete adjoint vector method. Finally, the discrete direct differen-
tiation method and the discrete adjoint vector method are illustrated in Section 5 and
the analytical sensitivity derivatives are compared to those predicted by the numerical
finite differencing method.
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2. Sensitivity calculations for a coupled system

Among every possible interactions between disciplines, aero-structural interac-
tion is of primary importance for aeronautical applications. In the remainder of
this paper, we will only concentrate on the sensitivity analysis of a strongly cou-
pled aeroelastic system, sensitivity being a very useful information for design pur-
pose, and essential for gradient-based optimization. In other words, flow proper-
ties and gradients required by local shape optimization techniques are computed
based on coupled aero-structural system equations. The generic analytical frame-
work for the sensitivity analysis of a strongly coupled system, influenced by the
popular gradient-based methods used by the early structural optimization (Haug et
al., 1986; Kirsch, 1993; Bendsoe, 1995), was first introduced by Sobieszcsanski-
Sobieski (Sobieszcsanski-Sobieski, 1990b; Sobieszcsanski-Sobieski, 1990a). In most
aeroelastic sensitivity analyses, the structure is represented by a simple analytical mo-
del and the aerodynamic loads are evaluated by a linear theory (Haftka, 1986; Bow-
man et al., 1989; Friedman, 1991; Barthelemy et al., 1994). Nevertheless, for a do-
zen years, nonlinear aeroelastic cases have been considered, first for two-dimensional
studies (Ghattas et al., 1998; Moller et al., 2002), then for three-dimensional cases
(Giunta et al., 1998; Giunta, 2000; Hou et al., 2000; Maute et al., 2001) conside-
ring only the direct differentiation approach, and recently using the adjoint method
(Martins, 2000; Maute et al., 2003; Fazzolari et al., 2007). But, never has an analy-
tical framework combining the influence matrix approach based on beam theory, for
calculating the structure displacements, and Euler equations, for computing the fluid
behavior, been presented for the analytical sensitivity analysis of a strongly coupled
fluid-structure system. However, such a framework, which is presented in this paper,
is particularly well-suited for preliminary design.

dJ

dα
=

∂J

∂α
+

∂J

∂q

dq

dα
[1]

The system variables vector is denoted by q and its dimension by nv. For the
aeroelastic system, the global state variable vector will be defined as q = (W, D)

T

where W is the vector of the flow state variables, and D is the vector of structural
displacements. The sensitivity analysis is concerned with assessing the gradients of
a function J with respect to α. In the overall gradient-based optimization process,
this function can be an objective or a constraint. The discrete set of the nv governing
equations is written in residual form as R (α, q) = 0. The gradient of J (α, q (α))
with respect to α is given by Equation [1]. Since R (α, q (α)) = 0 is satisfied for
every vector α, Equation [2] is satisfied.

dR

dα
=

∂R

∂α
+

∂R

∂q

dq

dα
= 0 =⇒

∂R

∂q

dq

dα
= −

∂R

∂α
[2]

Two different analytical approaches can be used to compute dJ/dα. In the first
approach, known as the direct differentiation approach, the sensitivity of the state va-
riable vector with respect to α, dq/dα, is computed by solving the direct differentia-



Aero-structural sensitivity analysis 1081

tion Equation [2], and then plugged back in Equation [1]. In the second approach, one
uses Equation [3] (the superscript T designates the transpose of a vector or a matrix).

∀λ ∈ IRnv ,
dJ

dα
=

∂J

∂α
+

∂J

∂q

dq

dα
+ λT

(

∂R

∂q

dq

dα
+

∂R

∂α

)

[3]

The so-called adjoint vector λ, whose dimension is the same as the dimension of q
and R, is chosen such that Equation [4] is satisfied. When the adjoint vector method is
used, the designer does not compute the sensitivities of the state variables with respect
to design parameters (dq/dα) as he does when the direct differentiation approach is
applied. Instead, he has to solve for the adjoint vector λ.

(

∂R

∂q

)T

λ = −

(

∂J

∂q

)T

[4]

This approach known as the adjoint vector method was first applied to aero-
dynamic sensitivities computation by (Jameson, 1988) but using the continuous
form of the equations and then extended to the discrete equations (Shubin et
al., 1991; Baysal et al., 1991). Both approaches require a set of linear systems
to be solved. In the direct differentiation approach, nα linear systems have to be
solved, where nα is the number of design parameters, as opposed to nf in the adjoint
approach, where nf is the number of functions to differentiate (i.e. the objective
function and the inequality constraint functions). Consequently, depending on whe-
ther nα < nf or nα > nf the direct differentiation or the adjoint approach is prefered.

Originally and up to the 90’s, the gradient dq/dα required by the direct differentia-
tion method was respectively first-order or second-order approximated by the popular
finite differencing formula given by Equation [5].

dq

dα
≈

q(α + ε) − q(α)

ε
+ o(ε) ≈

q(α + ε) − q(α − ε)

2ε
+ o(ε2) [5]

The amplitude ε is empirically chosen and tuned according to the following pro-
cedure. Different values of ε are tested and the corresponding gradient approximation
values are reported on a graph (versus ε). This process takes place till a stable zone is
detected. The finite difference approach retains the corresponding constant value as
the gradient approximation. Since the value of ε may be very small and since varying
α may only induce small variations of q, it is important to evaluate every term using
the double precision option for floats.

Compared to analytical methods, such as discrete direct differentiation and dis-
crete adjoint vector methods, the finite difference approach is far more expensive in
CPU as well as less accurate, which is the reason why analytical methods currently
tend to supersede finite difference approximation techniques for gradient computa-
tions. Indeed, numerical sensitivity analysis requires at least nα + 1 state-variables
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computations (solutions of nonlinear systems) versus one state-variables computation
plus nα ( if the direct differentiation method is used) or nf (if the adjoint method
is used) solutions of linear systems for the analytical sensitivity analysis. Besides, fi-
nite difference approximated gradients may be very sensitive to the amplitude of ε,
which makes such a method inappropriate for automatic shape optimization proce-
dures (Haftka, 1985). Nevertheless this technique is commonly used to validate the
dq/dα and dJ/dα values computed by the analytical methods.

3. Aeroelastic equilibrium

In the aeroelastic framework we have developped, fluid and structure are strongly
coupled i.e. the static equilibrium is iteratively sought for till neither the aerodynamic
nor the structural displacement fields evolve anymore. The flow problem is governed
by the Euler equations. They are approximated by a second-order cell-centered finite
volume scheme, and solved by a structured ONERA CFD solver elsA (Cambier et al.,
2008). The behavior of the structure is assumed to be linear and is predicted by beam
theory. Even though this assumption may seem drastic, it has practical applications.
In particular, beam theory predicts the deformation of high aspect-ratio wings and of
helicopters blades with acceptable accuracy for design purposes. At the aeroelastic
equilibrium, the set of Equations [6] is satisfied

{

Ra(W, X) = 0
D − FL(W ) = 0

[6]

where Ra is the set of discrete fluid equations, X is the vector of fluid grid nodes, F
is the matrix of flexibility or influence coefficients matrix associated with the beam
model, and L is the vector of aerodynamic loads applied on the beam.

From now on, we will assume that the structural mesh, denoted by Z, is composed
of ns nodes. The matrix of flexibility F is computed according to (Bisplinghoff et
al., 1996). This matrix depends on the spatial discretization of the structure. As a
matter of fact, the coefficient Fl,m represents the displacement of the beam mesh node
l when a unitary load is applied on the beam mesh node m. In the framework we
have developped, only the aerodynamic bending and torsion loads are transferred to
the structure since they constitute the major contribution to the overall aerodynamic
loads. Precisely, with the following system of coordinates (x, y, z) : x being aligned
with the free stream flow, y being perpendicular to the aircraft symmetry plane, and z
being pointing upwards, only the aerodynamic force Fz and the aerodynamic moments
Mx and My are transferred to the structure. As a result, only the bending motion along
z, denoted by ωz, and the twist motion around y, denoted by θy and predicted by beam
theory are used to remesh the fluid domain. In other words, the matrix of flexibility
can be written as in Equation [7].

F =

(

F ωz,Fz F ωz,Mx F ωz,My

F θy,Fz F θy ,Mx F θy ,My

)

[7]
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For instance, F θy,Mx is a (ns, ns) matrix and F
θy ,Mx

l,m , 1 ≤ l, m ≤ ns, represents
the angle of rotation θy around the y-axis induced at the structural mesh node l by a
unit moment Mx around the x-axis applied on the structural mesh node m. So that the
discrete structural equation is given by Equation [8].

(ωz θy)
T

= F (Fz Mx My)
T [8]

The coupled system of Equations [6] can be solved in one of two ways. The first
way adopts the unique coupled system approach, and thus does not allow disciplines
to proceed independently. Besides the two coupled physics are different, which often
leads to ill-conditioned approximate jacobian matrices. The second way, which has
been chosen in this study, uses the decomposition-into-coupled-subsystems approach :
an integrated system solves the discipline separately and matches the solutions at the
boundary interfaces. It consequently does not suffer from the aforementioned draw-
back. However, since the grid of the fluid domain and the mesh of the stuctural do-
main do not coincide at the coupling fluid/structure interface, two major difficulties
have to be overcome. First, the aerodynamic loads, which are evaluated on the fluid
mesh at the coupling interface, has to be transferred to the structural mesh. Second,
the load-induced displacement field, which is calculated on the structural mesh, has to
be transferred from the structural surface mesh to the fluid volumic grid. To do so, the
fluid wet surface is divided into a number of slices equal to the number of beam mesh
nodes, every beam node being located at the center of a slice.

3.1. Fluid domain remeshing

The structural displacements are responsible for the fluid domain to be deformed
or in other words to be remeshed. The fluid computational domain is remeshed at
every fluid-structure iteration towards the static aeroelastic equilibrium. The initial
fluid grid Xrig, whose solid boundary belongs to the discrete parametrized shapes
being optimized, is deformed analytically according to the structural displacements
field D.

The analytical remeshing process is solid-mechanics inspired. More precisely, at
each fluid-structure iteration, every grid node of the initial fluid grid Xrig is assigned
a new location. If N(i, j, k) designates a particular fluid grid node, N ′ its projection
on the structural mesh, ω′

z and θ′y respectively the bending and twist values linearly
interpolated on the structural mesh and associated with N ′, then the new location of
the grid node N results from the combination of the translational motion of vector ω ′

z

and the rotational motion through the angle θ′y around the beam axis (the structural
mesh being spread over this beam axis). This process is illustrated on Figure 1.
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z~z : translation vector

θ′

y~y : rotation vector

N in the remeshed fluid domain X

N in the rigid fluid domain Xrig

Figure 1. Fluid domain remeshing process

Explicitly, the N(i, j, k) fluid grid node whose initial location in the Xrig grid is
(xrig yrig zrig)

T , is assigned the new following location in the X grid :
(

x(xrig , yrig, zrig , ω
′

z, θ
′

y) y(xrig , yrig, zrig , ω
′

z, θ
′

y) z(xrig , yrig, zrig, ω
′

z, θ
′

y)
)T

We introduce the following variables : nf designates the number of fluid interfaces of
the wet coupling surface ; Z = {Bm, m ∈ [1, ns]} is the list of beam nodes forming
the structural mesh ; Sl is the area of the fluid interface l, l ∈ [1, nf ] ; O is the origin
of the coordinate system ; and Sm

l is the area of the intersection of the fluid interface
l and the slice m so that Equation [9] is satisfied.

∀l ∈ [1, nf ] Sl =

ns
∑

m=1

Sm
l [9]

The new location of the fluid grid node N(i, j, k) is then given by Equation [10],
in which we have assumed that N ′, the projection of the fluid volumic grid node
N(i, j, k) on the wet surface, belongs to the slice l, and where ωm

z and θm
y are respec-

tively the bending and torsional displacement calculated at the structural mesh node
Bm.

(x y z)
T

= (xrig yrig zrig)
T

+

ns
∑

m=1

Sm
l

Sl

(

ωm
z ~z +

−−−→
NBm ∧ θm

y ~y
)

[10]
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This relation is related to the prime notations according to Equation [11]. The new
coordinates vector of the fluid computational domain X is a function of the coordi-
nates vector of the initial fluid grid Xrig and of the displacements interpolated on the
beam axis, which consequently depend on the displacements field computed on the
structural mesh, D, and on the structural mesh coordinates, Z, so that X(Xrig, Z, D).



















ns
∑

m=1

Sm
l

Sl

ωm
z ~z = ω′

z~z

ns
∑

m=1

Sm
l

Sl

−−−→
NBm ∧ θm

y ~y =
−−→
NN ′ ∧ θ′y~y

=> (x y z)
T

= (xrig yrig zrig)
T

+ ω′

z~z +
−−→
NN ′ ∧ θ′y~y

[11]

3.2. Aerodynamic loads transfer

In order to guarantee an accurate aeroelastic equilibrium prediction, the load
transfer has to be consistent and conservative (Maman et al., 1995; Arian, 1997; Fa-
rhat et al., 1998b; Farhat et al., 1998a; Smith et al., 2000).

We furthermore introduce the following variables : −→Fm and −−→
Mm are the aero-

dynamic force and moment transferred to the structural mesh node Bm ; Gl is the
barycenter of the fluid interface l ; ~nl is the unit normal vector of the fluid interface l
and pl is the static pressure on the fluid interface l, where m ∈ [1, ns] and l ∈ [1, nf ].























−→
Fm =

nf
∑

l=1

Sm
l pl~nl

−−→
Mm =

−→
M(Bm) =

nf
∑

l=1

−−−→
BmGl ∧ (Sm

l pl~nl)

[12]

The aerodynamic pressure load and moment transferred to the structural mesh
node Bm is the sum of all the forces and moments applied on the slice m whose
center is Bm. Using Sm

l to weigh the aerodynamic loads associated with the fluid in-
terface l when evaluating the aerodynamic loads on the slice m enables the algorithm
to sum over the whole set of fluid interfaces without making any distinction between
those that do and those that do not intersect the slice l (since this weight is equal to
zero when the interface is not included in the slice). Precisely, −→Fm and −−→

Mm are given
by Equation [12].























−→
F fluid surface =

nf
∑

l=1

Slpl~nl

−→
Mfluid surface =

nf
∑

l=1

−−→
OGl ∧ Slpl~nl

[13]
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This ensures the load transfer to be consistent (i.e. such that the total forces and
moments transferred to the beam are the same as those evaluated on the grid surface).
In fact, on one hand, the total aerodynamic force and moment, say at O, on the fluid
surface mesh are given by Equation [13], and on the other hand, the total force and
moment, still at O, transferred to the structural mesh are calculated according to Equa-
tions [14] and [15].

−→
F structural mesh =

ns
∑

m=1

nf
∑

l=1

plS
m
l ~nl =

nf
∑

l=1

(

ns
∑

m=1

Sm
l

)

pl~nl =

nf
∑

l=1

plSl~nl [14]

−→
Mstructural mesh =

ns
∑

m=1

(−−→
Mm +

−−−→
OBm ∧

−→
Fm

)

=

nf
∑

l=1

ns
∑

m=1

Sm
l

−−−→
BmGl ∧ pl~nl +

nf
∑

l=1

ns
∑

m=1

Sm
l

−−−→
OBm ∧ pl~nl

=

nf
∑

l=1

(

ns
∑

m=1

Sm
l

)

−−→
OGl ∧ pl~nl =

nf
∑

l=1

−−→
OGl ∧ plSl~nl

[15]

The transfer is also conservative, i.e. the virtual work done by a virtual infinitesi-
mal displacement of the structural mesh is the same as the virtual work done by the
reported virtual infinitesimal displacement on the fluid surface. Any structural displa-
cements field is reported on the volumic fluid grid according to Equation [10]. So that,
the infinitesimal bending displacement, δωm

z , and the infinitesimal torsion, δθm
y , ap-

plied on the structural mesh node Bm induce the infinitesimal displacement −→δωl on
the barycenter of the fluid interface l (Equation [16]).

−→
δωl =

ns
∑

m=1

Sm
l

Sl

δωm
z ~z +

ns
∑

m=1

Sm
l

Sl

−−−→
GlBm ∧ δθm

y ~y [16]

The virtual work on the structural mesh and on the fluid surface mesh are respec-
tively given by Equation [17] and Equation [18].

δWstructural mesh =

ns
∑

m=1

(−→
Fm · δωm

z ~z +
−−→
Mm · δθm

y ~y
)

=

ns
∑

m=1

nf
∑

l=1

(

δωm
z Sm

l pl (~nl · ~z) +
(−−−→
BmGl ∧ Sm

l pl~nl

)

· δθm
y ~y
)

[17]

δWfluid surface =

nf
∑

l=1

−→
δωl · Slpl~nl =

nf
∑

i=1

ns
∑

m=1

(

Sm
l δωm

z ~z · pl~nl + Sm
l

(−−−→
GlBm ∧ δθm

y ~y
)

· pl~nl

)

[18]



Aero-structural sensitivity analysis 1087

Since Equation [19] is satisfied, it implies that δWbeam mesh = δWfluid surface.

(−−−→
GlBm ∧ δθm

y ~y
)

· pl~nl =
(

pl~nl ∧
−−−→
GlBm

)

· δθm
y ~y =

(−−−→
BmGl ∧ pl~nl

)

· δθm
y ~y

[19]

3.3. Iterative procedure towards the static aeroelastic equilibrium of the strongly
coupled aeroelastic system

This procedure is deliberately restricted to small displacement cases. So that, even
though the structural mesh Z can depend on the design parameter vector α, i.e. not
be a constant in the overall optimization process, it remains at its inital position Zrig

(depending on the design case being considered) during the fluid/structure iterations
towards the static aeroelastic equilibrium.

The equilibrium solution of the coupled system is found by the following iterative
fixed point procedure (the superscript (n) designates the nth iteration) :

1) initialize the process by assuming D(1) = 0 so that X(1) = Xrig

2) compute the flow steady-state W (n) on the X(n)(Xrig, Zrig , D
(n)) fluid grid

3) compute and transfer the aerodynamic loads to the beam according to Equa-
tion [16]

4) compute its displacement D(n+1) and analytically deform Xrig according to
Equation [16] to obtain X (n+1)(Xrig, Zrig , D

(n+1))

5) evaluate the new flow steady-state W (n+1)

6) check convergence by inspecting the following criteria εa and εs are user-fixed
tolerances)







||Ra||2 ≤ εa

||D(n+1) − D(n)||2 ≤ εs||D
(n)||2

[20]

7) if the criteria are satisfied then stop the process, else go back to step 2.

4. Sensitivity analysis of the strongly coupled aeroelastic system

In the following, the vector of beam grid nodes is designated by Z and we consider
the generic case for which J depends on the aerodynamic grid and field (X and W ),
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and on the structural grid and field (Z and D). The gradient of J with respect to α is
then given by Equation [21].

dJ

dα
=

∂J

∂α
+

∂J

∂W

dW

dα
+

∂J

∂D

dD

dα
+

∂J

∂Z

dZ

dα

+
∂J

∂X

(

∂X

∂Xrig

dXrig

dα
+

∂X

∂Zrig

dZrig

dα
+

∂X

∂D

dD

dα

)

[21]

In this expression, the term between brakets represents the sensitivity of the reme-
shing process with respect to α. Since the new location of the grid nodes after every
remeshing step is a function of the initial grid node locations Xrig, of the initial struc-
tural node locations Zrig and of the structural displacement field D, the sensitivities
of this three variables with respect to α have to be computed. The sensitivity of Xrig

and Zrig with respect to α is related to the optimization problem, more precisely to the
design parameters being considered. On the contrary, the sensitivity of D with respect
to α is not known a priori and has to be calculated. In the framework we have develop-
ped, all the derivatives appearing in the remeshing process related sensitivity term are
computed analytically using the discrete formulation of the remeshing process, except
dXrig/dα and dZrig/dα which depend on the design problem and may be calculated
using the approximative numerical finite difference technique.

4.1. Discrete direct differentiation method

If the direct differentiation method is to be used, one has to solve first for the
sensitivities of the state variables W and D with respect to the design variables vec-
tor α. They are solutions of the system of Equations [22] obtained by differentiating
Equation [6], where I denotes the identity matrix.
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[22]

The three terms ∂L/∂W , ∂L/∂X and ∂L/∂Zrig respectively represent the sen-
sitivity of the aerodynamic loads transfering process with respect to the aerodynamic
field above the wet surface, the fluid grid node coordinates and the structural mesh
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node coordinates. In the framework we have developped, all these terms are derived
analytically using the discrete formulation of the load transfer.
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[23]

In order to simplify the resolution and to make the implementation modular, an
iterative process similar to the static aeroelastic computation process is used. It is
inspired from the process described in (Martins, 2000; Martins et al., 2004) and
called “lagged” procedure. Namely, a discipline related sensitivity is calculated at
the current iteration based on the other discipline sensitivity at the previous iteration.
Moreover, to avoid the large matrix F (∂L/∂X)(∂X/∂D) inversion, we have splitted
the term multiplying (dD/dαi) into (dD/dαi)

(n+1), i.e. a term evaluated at the
current solving iteration n + 1, and a delayed term depending on (dD/dαi)

(n), i.e. on
a term already evaluated at the previous solving iteration n. The iterative procedure
solving for Equation [22] is then doubly delayed : it contains a discipline-to-discipline
delay similar to Martins’ lagged procedure, as well as a related-to-structure only
delay that we have introduced.

For every design parameter αi, the linear system Equation [23] is solved iteratively
(the superscript (n) designates the nth iteration) :

1) initialize the process by assuming that (dD/dαi)
(1)

= 0

2) compute the flow state sensitivity (dW/dαi)
(n) based on (dD/dαi)

(n)

3) use (dW/dαi)
(n) and (dD/dαi)

(n) to compute (dD/dαi)
(n+1)

4) check convergence by inspecting the following criteria (εda and εds are user-
fixed tolerances)
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∣
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∣
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2
[24]

5) if the criteria are satisfied then stop the process, else go back to step 2.
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The computation of the sensitivities of the nf functions of interest with respect
to the nα considered design parameters (see Section 2), expected in particular by a
gradient-based optimizer, requires either at least nα + 1 nonlinear system resolutions
if the finite differencing method is used (with first-order formula), or one nonlinear
system resolution (aeroelastic equilibrium calculation) added to nα linear system re-
solutions (state variable gradients computation) if, on the contrary, the direct differen-
tiation method is employed. In terms of CPU time, the iterative resolution of the linear
System [22] is up to two times lower than the iterative resolution of the nonlinear Sys-
tem [6]. In terms of accuracy, since the direct differentiation method is an analytical
method, it is reckoned to be also more precise.

4.2. Discrete adjoint vector method

If the discrete adjoint method is to be used, one has to solve the coupled system
composed of Equations [25] and [26] where λa and λs are the adjoint vectors, as-
sociated with J , corresponding respectively to the aerodynamic and structure state
equations.
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)T

[26]

As in the direct differentiation method case, an iterative process is designed to
simplify the resolution of the coupled system of Equations [25] and [26] and make its
implementation modular, avoiding thus the inversion of a large sparse fluid/structure
matrix.
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[27]

This process is embodied by Equation [27]. It is also in part inspired from the
Martins’ lagged procedure (Martins et al., 2004). Namely, a discipline related adjoint
vector is calculated at the current solving iteration based on the other discipline adjoint
vector at the previous iteration. To avoid the large matrix (F (∂L/∂X)(∂X/∂D))T

inversion, we have furthermore splitted the term multiplying λs into λs|
(n+1), i.e. a

term evaluated at the current solving iteration n + 1, and a delayed term depending
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on λs|
(n), i.e. on a term already evaluated at the previous solving iteration n. The

iterative procedure solving for the coupled system of Equations [25] and [26] is then
doubly delayed : it contains a discipline-to-discipline delay similar to Martins’ lagged
procedure, as well as a related-to-structure only delay that we have introduced.

Precisely, every function to be differentiated requires the discrete adjoint linear
system (Equation [27]) to be solved. This is achieved iteratively using the following
process (the superscript (n) designates the nth iteration) :

1) initialize the process by assuming that λs
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fixed tolerances)
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[28]

5) if the criteria are satisfied then stop the process, else go back to step 2.

The gradient of J is then given by Equation [29], once the adjoint vector λa and λs

have been calculated they are plugged back in Equation [29] to access the sensitivity
of J with respect to α.
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The computation of the sensitivities of the nf functions of interest with respect
to the nα considered design parameters (see Section 2), expected in particular by a
gradient-based optimizer, requires either at least nα + 1 nonlinear system resolutions
if the finite differencing method is used (with first-order formula), or one nonlinear
system resolution (aeroelastic equilibrium calculation) added to nf linear system
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resolutions (adjoint vectors computation) if, on the contrary, the adjoint method
is employed. In terms of CPU time, the iterative resolution of the linear system
composed of Equations [25] and [26] can be up to three times higher than the iterative
resolution of the nonlinear System [6]. However, since in common shape optimization
problems, the number of functions of interest (tens or so) is far less than the number
of design parameters (hundreds or so), evaluating their gradients with the adjoint
method is faster than using a finite differencing method. In terms of accuracy, the
adjoint method being an analytical method, it is expected to be also more accurate.

Solving the discrete direct and adjoint systems arises two major difficulties. First,
one has to transfer data back and forth between the two separate subsytems. Second,
the computation of the partial derivatives terms, in particular the cross discipline
terms, is particularly laborious. For instance, if one wishes to compute the sensitivity
of the aerodynamic loads transferred to the beam with respect to the aerodynamic
grid coordinates (∂L/∂X), one has first to compute the sensitivities of these loads
with respect to the boundary surface and to the boundary flow variables, and then to
compute the sensitivity of the boundary surface and of the boundary flow variables
with respect to each aerodynamic grid node coordinate.

In the present work, every terms appearing in Equation [23] and Equa-
tion [27] are calculated analytically, except the terms (∂Ra/∂X ∗ dX/dαi) and
(∂Ra/∂X ∗ ∂X/∂D), which are numerically evaluated (central finite differences).
The aerodynamic subsystem is solved by a Newton-like method with an approximate
jacobian. At each Newton-like iteration the linearized problem is solved by a LU re-
laxation method (Peter, 2006).

5. Applications

Here, we apply the coupled direct and adjoint methods to the sensitivity analysis
of the DLR F4 wing-body configuration (Redeker et al., 1983). First, the static aeroe-
lastic analysis is described, then the analytical sensitivity derivatives are compared
to the finite difference values for three different design parameters. The aircraft is
assumed to fly in symmetric cruise conditions. Consequently, only the flow around
the right part of the F4 wing-body configuration is considered. The flow is governed
by the Euler equations, the fluid computational domain (scale model dimensions) is
covered with a multiblock mesh composed of 313, 650 nodes. Besides, only the wing
is supposed to deform due to aerodynamic loads. The fuselage remains rigid while
a beam mesh is defined to simulate the aeroelastic displacement of the wing. The
free-stream conditions are summarized in Table 1. In particular, three free-stream
angle of attack (aoa) have been considered.
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Figure 3. Aircraft static aeroelastic position (upper) versus jig-shape position (lower)
(0.93◦ aoa)

The beam geometry is discretized by 250 nodes and its structural characteristics
are reported in Table 2, they have been deduced from the experimental aeroelastic
displacements data available for the European project HiReTT wing-fuselage confi-
guration (Braun et al., 2003). For each beam section, the quadratic momentums I and
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J , respectively related to the bending and torsional structural motion, are analytically
calculated based on the wing cross section geometries assuming solid body structure
made of isotropic material (aluminium).
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Figure 4. Beam displacement at the static aeroelastic equilibrium (0.93◦ aoa)

Table 1. Cruise flight conditions

Angle of attack −1◦ ,0.93◦,3◦
Free-stream density 9.015 kg/m3

Free-stream static pressure 6.977 · 104 N/m2

Free-stream Mach number 0.75

Table 2. Beam material characteristics

Young’s modulus E = 1.813 · 1011 N/m2

Shear modulus G = 0.682 · 1011 N/m2

Poisson’s ratio ν = 0.33

The equilibrium position of the swecond flight condition is reached after about six
fluid-structure coupling iterations (cf. Figure 3 and Figure 4) : the iterative process
described in Section 3.3 is then converged with εa = 10−3 and εs = 10−4. The rate
of convergence of the aeroelastic system depends on the angle of attack of the free
stream. This is illustrated by Figure 6 which shows the rates of convergence of the
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square norm of the aerodynamic equations residual over the global fluid/structure
iterative process solving for the static aeroelastic equilibrium for the three different
free-stream angles of attack that have been considered. Similarly, the structural
displacement field is convergent (cf. Figure 10), it reaches a constant value at the end
of the fluid/structure iterative process. The static aeroelastic position of the aircraft is
in fact the so called 1-g shape which has been recovered by the aeroelastic iterative
process starting with the rigid jig-shape of the aircraft.
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Figure 5. Beam displacement sensitivities wrt α1, α2, and α3 (0.93◦ aoa)

The effects of three design parameters on the aerodynamic lift and drag co-
efficients, respectively denoted by Cl and Cd, are computed (Destarac, 2003).
The first parameter (α1) modifies the built-in spanwise twist law of the wing, the
second parameter (α2) introduces a spanwise bump along the wing, and the third
parameter (α3) introduces a linear variation of the airfoil maximum camber along
the span (cf. Figure 2). These parameters do not affect the structural characteristics
of the wing so that dF/dα = 0 and dZ/dα = 0. A series of decreasing steps
have been tested during the finite difference derivatives computation process, so
that the values reported on the graphs and in the tables can be considered as converged.

The direct method actually solves for the beam displacements derivatives and
the conservative flow state variables derivatives, from which the pressure coefficient
derivatives can be deduced straightforwardly. These derivatives are shown in Fi-
gure 5 and 9. They compare very well with the finite difference respective sensitivities.
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Figure 6. Residual convergence over the fluid/structure iterative process

The derivatives of Cl and Cd have been computed by the methods described in
this paper and are summarized in Tables 3, 4 and 5. In cruise conditions (0.93◦ aoa),
an increase in the wing built-in twist or in the wing camber law augments the outer
wing loading, which increases the lift coefficient as well as the drag coefficient due in
particular to a rise in the induced drag. This also results, due to aeroelastic coupling,
in an increase of the wing deflection and a decrease of the wing twist due to the
stabilizing bending-twist geometrical coupling of backward swept wings.
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Table 3. The sensitivity derivatives of the drag and lift coefficients (0.93◦ aoa)

dCd/dα1 dCd/dα2 dCd/dα3 dCl/dα1 dCl/dα2 dCl/dα3

Direct differentiation method (DDM) :
3.146 10−3 0.03187 0.1215 0.03966 0.3587 3.0457

Adjoint vector method (AVM) :
3.142 10−3 0.03189 0.1207 0.03967 0.3585 3.0452

Finite difference method (FD) :
3.138 10−3 0.03183 0.1201 0.03962 0.3591 3.0601

AVM vs DDM :
0% 0% 0% 0% 0% 0%

DDM vs FD :
0.3% 0% 0% 0% 0.2% 0.6%

AVM vs FD :
0.3% 0% 0% 0% 0.2% 0.6%
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Figure 7. Convergence of the square norm of the right hand side (rhs) of the equa-
tion [22] solving for dW/dα1 (associated with the first fluid state variable) over the
fluid/structure iterative process for 3 aoa

The iterative process used to solve the coupled discrete direct and discrete adjoint
systems needs generally few iterations to converge. In fact, the process described in
Section 4.1 requires six iterations to converge with εda = 10−3 and εds = 10−4.



1098 Revue européenne de mécanique numérique. Volume 17 – no 8/2008

Table 4. The sensitivity derivatives of the drag and lift coefficients (−1◦ aoa)

dCd/dα1 dCd/dα2 dCd/dα3 dCl/dα1 dCl/dα2 dCl/dα3

Direct differentiation method (DDM) :
−7.795 10−4 0.012017 0.1027 −0.0298 0.2166 2.9345

Adjoint vector method (AVM) :
−7.797 10−4 0.012013 0.1019 −0.0297 0.2167 2.9343

Finite difference method (FD) :
−7.786 10−4 0.012005 0.1013 −0.0290 0.2152 2.9502

AVM vs DDM :
0% 0% 0% 0% 0% 0%

DDM vs FD :
0.1% 0% 0% 0% 0.4% 0.6%

AVM vs FD :
0.1% 0% 0% 0% 0.4% 0.6%
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Figure 8. Convergence of the square norm of the rhs of the equation [25] solving
for λa (associated with the first fluid state equation) over the fluid/structure iterative
process for 3 aoa

Similarly, after six data transfers between the fluid solver and the structure solver,
the iterative process conceived to solve the coupled discrete direct differentiation
system described in Section 4.2 is converged with εda = 10−5 and εds = 10−4 (using
Equation [28] notations). To illustrate this convergence, the square norms of the right
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hand side of Equation [22], solving for dW/dα, and of Equation [25], solving for λa,
over the iterative solving process have been reported on Figures 7 and 8. Since, they
converge to constant values, it indicates that their solutions dW/dα and λa behave
the same.
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Figure 9. Cp sensitivity on the wing cross-section at mid-span (discrete direct diffe-
rentiation method) (0.93◦ aoa)

Likewise, the rates of convergence of dD/dα1 (direct method) and of λs (adjoint
method) associated with each displacement equation, namely the twist and the
bending equations, and corresponding to the two functions that have been considered,
namely Cl and Cd, at wing tip are described by Figures 11 and 12.
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Table 5. The sensitivity derivatives of the drag and lift coefficients (3◦ aoa)

dCd/dα1 dCd/dα2 dCd/dα3 dCl/dα1 dCl/dα2 dCl/dα3

Direct differentiation method (DDM) :
−3.668 10−3 0.039775 0.1033 −0.0287 0.3514 2.7559

Adjoint vector method (AVM) :
−3.667 10−3 0.039769 0.1029 −0.0285 0.3512 2.7553

Finite difference method (FD) :
−3.713 10−3 0.039821 0.1041 −0.0288 0.3530 2.7609

AVM vs DDM :
0% 0% 0% 0% 0% 0%

DDM vs FD :
2% 0.3% 0% 0% 0.5% 0.4%

AVM vs FD :
2% 0.3% 0% 0% 0.5% 0.4%
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Figure 10. Wing tip displacement convergence over the fluid/structure iterative pro-
cess for 3 aoa

The analytical results compare very well with the finite difference values (cf.
Tables 3, 4 and 5), which, given the coding complexity of these techniques, proves the
successful implementation of the analytical methods and opens up the possibility of
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using analytical gradients in the shape optimization process of fluid-structure coupled
systems, whose advantages with respect to the finite difference values in terms of
accuracy and computational time saving are obvious. Besides, the present work shows
that not taking fluid-structure interaction into account leads to significantly different
results. In fact, using the pure aerodynamic approach to compute the aerodynamic
coefficients sensitivities can cause the values to be up to 50% different from those
calculated using the aeroelastic approach (cf. Table 6).

Table 6. The sensitivities of the drag and lift aerodynamic coefficients computed with
and without taking fluid-structure interactions into account

dCd/dα1 dCd/dα2 dCd/dα3 dCl/dα1 dCl/dα2 dCl/dα3

No coupling :
2.341 10−3 3.788 10−2 0.1802 0.0402 0.3271 4.2532

F/S coupling :
3.149 10−3 3.189 10−2 0.1224 0.0396 0.3584 3.0403

Relative difference :
25% 19% 50% 1.5% 9% 40%
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Figure 11. Convergence of beam displacement sensitivity at wing tip wrt α1 over the
fluid/structure iterative process for 3 aoa



1102 Revue européenne de mécanique numérique. Volume 17 – no 8/2008

iteration

la
m

b
da

S
(a

ss
oc

ia
te

d
w

ith
tw

is
ta

n
d

C
l)

2

2

4

4

6

6

8

8

10

10

12

12

-0.0002 -0.0002

-1E-04 -1E-04

0 0

0.0001 0.0001

0.0002 0.0002

a.o.a = 0.93 degree
a.o.a = -1 degree
a.o.a = 3 degrees

(a) Corresponding to Cl and associated
with twist

iteration

la
m

bd
aS

(a
ss

oc
ia

te
d

w
ith

tw
is

ta
n

d
C

d)

2

2

4

4

6

6

8

8

10

10

12

12

-0.002 -0.002

-0.0015 -0.0015

-0.001 -0.001

-0.0005 -0.0005

0 0

0.0005 0.0005

a.o.a = 0.93 degree
a.o.a = -1 degree
a.o.a = 3 degrees

(b) Corresponding to Cd and associated
with twist

iteration

la
m

bd
aS

(a
ss

oc
ia

te
d

w
ith

b
en

d
an

d
C

l)

2

2

4

4

6

6

8

8

10

10

12

12

-0.01 -0.01

-0.005 -0.005

0 0

0.005 0.005

0.01 0.01

0.015 0.015

a.o.a = 0.93 degree
a.o.a = -1 degree
a.o.a = 3 degrees

(c) Corresponding to Cl and associated
with bending

iteration

la
m

bd
aS

(a
ss

o
ci

at
ed

w
ith

be
nd

an
d

C
d

)

2

2

4

4

6

6

8

8

10

10

12

12

-0.3 -0.3

-0.2 -0.2

-0.1 -0.1

0 0

a.o.a = 0.93 degree
a.o.a = -1 degree
a.o.a = 3 degrees

(d) Corresponding to Cd and associated
with bending

Figure 12. Convergence of the adjoint structural vectors over the fluid/structure ite-
rative process for 3 aoa at wing tip

6. Conclusions

A computational framework for the sensitivity analysis of an steady nonlinear
aeroelastic system has been described. The aeroelastic state is predicted based on
beam theory and Euler equations, and the sensitivities of the coupled system can be
analytically computed either by the discrete direct or the discrete adjoint method.
Such a framework has never been presented before, however it is particularly well-
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adapted to preliminary design phases enabling the designer to take fluid-structure
coupling into account from the first design phase. The aeroelastic analysis and the
sensitivity derivatives calculation rely on two different lagged algorithms, whose
solutions are the conservative flow state variables and the structural displacements
at the aeroelastic equilibrium and either the state variables derivatives or the adjoint
vectors. The proposed methodology has been applied to the sensitivity analysis of
the flexible DLR F4 wing-body configuration with respect to three design parameters
using both the coupled discrete direct differentiation and coupled discrete adjoint
methods. This application has proved the accuracy and the computational efficiency
of the analytical analyses. Future studies will include the extension of the proposed
methodology to Reynolds Average Navier-Stokes equations for evaluating the fluid
variables and to finite-element model for predicting the structural displacement field.
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