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ABSTRACT. This communication summarizes recent investigations on the identification of 
defects (cavities, inclusions) of unknown geometry and topology by means of the concept of 
topological sensitivity. This approach leads to the fast computation (equivalent to performing 
a few direct solutions), by means of ordinary numerical solution methods such as the BEM 
(used here), the FEM or the FDM, of defect indicator functions. Substantial further 
acceleration is obtained by using fast multipole accelerated BEMs. Possibilities afforded by 
this approach are demonstrated on numerical examples. The paper concludes with a 
discussion of further research on theoretical and numerical issues. 
RÉSUMÉ. Cette communication présente une synthèse de travaux consacrés à l’identification de 
défauts (cavités, inclusions) de géométrie et topologie a priori inconnus par des approches 
non itératives reposant sur la notion de sensibilité topologique. Ces méthodes permettent des 
calculs rapides (coût de l’ordre de quelques calculs directs), par des méthodes numériques 
ordinaires, de champs indicateurs de défauts, et peuvent être accélérés par la méthode 
multipôle rapide. Quelques possibilités de ces approches sont illustrées sur des exemples 
numériques. Des perspectives touchant la théorie et la mise en œuvre numérique sont 
présentées. 
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1. Introduction

The reconstruction of obstacles embedded in an acoustic medium is a challeng-
ing subject with application to e.g. sonar detection and medical imaging (Lambert et
al., 2006; Colton et al., 2000). It is often formulated in terms of the minimization of
a cost function featuring the experimental data and (possibly) prior information. Such
cost functions are non-convex and exhibit local minima. Global search techniques,
e.g. evolutionary algorithms (Michalewicz and Fogel, 2004) or parameter space sam-
pling methods (Tarantola, 2005) require very large numbers of cost function evalu-
ations, and hence are usually prohibitively expensive in the context of wave-based
approaches. Hence, traditional minimization methods, or Newton-type algorithms for
solving the observation equations, are often preferred, as they may converge within
moderate iteration counts for obstacles described in terms of a small number of geo-
metrical parameters. To optimize computational efficiency, such solution techniques
are often used in conjunction with shape sensitivity techniques (Bonnet, 1995; Guzina
et al., 2003; Farhat et al., 2002) or level-set methods (Litman et al., 1998).

Still, the stand-alone use of gradient-based algorithms for such purposes is not
always satisfactory due to their strong dependence on a reliable prior information
about the geometry of the hidden object. This has prompted, over the last decade
the development of alternative, non-iterative, approaches, which may be used either in
isolation or as a preliminary step providing adequate initial guesses to subsequent it-
erative schemes. Now referred to as “sampling” or “probe” methods (Potthast, 2006),
they aim at replacing the usual optimization approach with the definition of a defect
indicator function. They include approaches based on linear sampling (Colton and
Kirsch, 1996), not pursued here, or on the concept of topological sensitivity (Bonnet
and Guzina, 2004; Guzina and Bonnet, 2004), or more generally on small-defect
asymptotics (Ammari and Kang, 2004). This communication aims at summarizing
contributions we made in this area over the last few years.

2. Topological sensitivity and inversion

The concept of topological derivative first appeared in (Eschenauer et al., 1994;
Schumacher, 1995) in the context of topological optimization of mechanical struc-
tures, allowing to define algorithms where “excess” material is iteratively removed
until a satisfactory shape and topology is reached. Following investigations by e.g.
Sokolowski and Zochowski (1999) and Garreau et al. (2001) for the Laplace equation
or Samet et al. (2004) and Pommier and Samet (2005) for the Helmholtz and Maxwell
equations, we study here the usefulness of the topological sensitivity field as a defect
indicator function. Our work addresses only 3-D configurations, but 2-D cases are
considered by e.g. Feijóo (2004) or Gallego and Rus (2004).

This approach rests upon quantifying the sensitivity of the cost function to the
nucleation of an object, of specified physical properties and small characteristic size
ε, at a specified location xs in the reference medium. Letting J(ε, xs) denote the
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value achieved by the featured cost function of the inverse problem when only the
infinitesimal obstacle located at xs is present, the topological sensitivity T3(xs) of J
is (for 3D configurations involving either sound-hard or penetrable obstacles, i.e. such
that either Neumann or transmission conditions are assumed on the obstacle surface)
defined through the expansion

J(ε, xs)− J(0,xs) = ε3T3(xs) + o(ε3) [1]

Note that the value J(0,xs) of J for the obstacle-free reference medium does not ac-
tually depend on xs. The topological sensitivity field T3(xs) is then used as a defect
indicator function. Heuristically, regions in the probed medium in which the nucle-
ation of a small defect induces the strongest decrease of J are expected to be those
where the field T3(xs) attains its most pronounced negative values. A simple ap-
proach then consists in computing the field T3(xs) over a region of space susceptible
of housing defects and look for locations where T3 attains its lowest negative values.

The topological sensitivity field T3(xs) may be given an explicit expression in
terms of the Green’s function associated with the reference domain, its physical prop-
erties, and the type of boundary conditions assumed for the external boundary. In prac-
tice, the relevant Green’s function is not known in explicit form. Another approach,
better suited to numerical computations, consists in expressing T3(xs) in terms of the
free field u (response of the reference, i.e. defect-free, medium to the probing excita-
tion) and the adjoint solution û (induced by an adjoint load defined in terms of the cost
function). For example, the topological sensitivity field T3(xs) corresponding to the
nucleation of a small sound-hard spherical scatterer, under time-harmonic conditions,
in a linearly acoustic reference medium characterized by wave number k is found (e.g.
Nemitz and Bonnet (2007)) to be given by

T3(xs) =
4π

3
[3
2
∇u.∇û− k2uû

]
(xs) [2]

Expressions of T3(xs) have also been established for other 3-D configurations.
Such results include, for the time-harmonic case, acoustic media containing pen-
etrable obstacles (Guzina and Bonnet, 2006), elastic media with cavities (Guzina
and Bonnet, 2004; Bonnet and Guzina, 2004) or elastic inclusions (Guzina and Chi-
kichev, 2007), and electromagnetic media containing penetrable inclusions (Ammari
and Kang, 2004; Masmoudi et al., 2005). For time domain analyses, similar formulae
have been established for T3(xs), in which bilinear expressions in (u, û) such as [2]
become time convolution products between free and adjoint fields (Bonnet, 2006). It
is useful to note that expressions such as [2] are formally similar to sums of a strain
energy and a kinetic energy, and thus are well suited to any usual computational ap-
proach, such as the finite element method (FEM) or the boundary element method
(BEM) used in our numerical experiments to date.

3. Topological sensitivity and fast multipole method

When the reference medium is endowed with simple (linear, piecewise-
homogeneous) constitutive properties, the topological sensitivity field T3(xs) may be
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formulated using integral representation formulae (Bonnet, 1999a), the free and ad-
joint fields then being first computed over the external boundary by means of a BEM.
This approach is in particular well suited to dealing with unbounded reference media.
As probing a 3-D region of space may necessitate large numbers of sampling points
xs, such computation may nevertheless entail high CPU and memory requirement,
because of the fully-populated nature of the BEM influence matrix. The Fast Mul-
tipole Method (FMM) (Greengard and Rokhlin, 1997; Nishimura, 2002; Margonari
and Bonnet, 2005; Nemitz, 2006; Chaillat et al., 2007) addresses these concerns, as
it provides considerable speedup and memory savings. For a frequency-domain anal-
ysis involving N BEM DOFs and M sampling points, computing the field T3(xs)
requires O(NLogN) operations per GMRES iteration (for the BEM solution phase)
and O(MLogM) operations (subsequent evaluation of T3(xs) at sampling points),
whereas the corresponding complexities for a traditional BEM are O(N2) per solver
iteration (or O(N3) for direct solvers) and O(MN). The FMM allows to handle
computational models with N,M = O(106) on an ordinary PC.

Numerical example. The above-summarized approach combining the topolog-
ical sensitivity and the FMM (Nemitz and Bonnet, 2007) is now demonstrated on
the following configuration: the bounded acoustic domain is the cube defined by
Ω = { |ξi| ≤ 8a (i = 1, 2, 3) }, where a is a reference length. A simulated testing
configuration is based on 30 experiments, each of which consists in applying a uni-
form excitation over a small region Sq (1 ≤ q ≤ 30) of the external boundary S and
recording the acoustic pressure over all of S (i.e. at all BE mesh nodes). The acoustic
excitation is such that the wavelength is λ = 3a. Each of the six faces of the cubi-
cal domain Ω supports five excitation surfaces Sq, each a disk of radius a. The cost
function for the inverse problem is defined by

J (Ω?) =
1
2

30∑
q=1

∫
S

|u? − uobs
q |2 dΓξ [3]

where uobs
q is the data obtained for the q-th applied excitation, with uobs

q = utrue in
the absence of data noise. The centroid xtrue of true scatterer Btrue to be identified is
located at xtrue = (2a, 3a, 2a). To facilitate the graphical interpretation, a thresholded
variant T̂ (xs) of T (xs) is introduced according to

T̂3(xs) = T3(xs) (T3 ≤ C Tmin), T̂3(xs) = 0 (T3 > C Tmin), [4]

with C = 0.25 used here. The BE meshes used for computing the free field u, the
adjoint field û and the simulated data utrue

q are made of three-noded flat triangular
elements, arranged in a regular mesh with approximately 15 nodes per wavelength.
For the purposes of computing the simulated error-free data utrue for each synthetic
experiment, BE meshes of the true scatterer Γtrue have been set up as well. Table 1
indicates the numbers of nodes and elements supported by the BE meshes.

The identification of one spherical scatterer of radius 0.4a is considered. The
field T has been computed on the basis of error-free synthetic data, over a sampling
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Table 1. Number of element and DOFs supported by the BE meshes

Cube size Cube Obstacle Total
Elements nodes Elements nodes Elements nodes

2L = 16a 76800 38402 336 170 77136 38572
2L = 32a 307200 153602 336 170 307536 153772

grid made of 100× 100× 100 sampling points located on the vertices of a regular
cubic grid, centered at the origin and with grid spacing ∆xs = 16a/101, uniformly
filling the whole acoustic domain bounded by S.Figure 1 shows the distribution of
the thresholded topological sensitivity T̂ defined by (4) in the three coordinate planes
containing the true scatterer centroid xtrue. T̂ (and hence T ) is seen to attain its lowest
values in zones corresponding to, or close to, the actual true scatterer location.

(a) (b)

(c)

Figure 1. Identification of spherical hard scatterer of radius 0.4a: distribution of
thresholded topological sensitivity T̂ (xs) for sampling points xs in coordinate planes
ξ1 = xtrue

1 (a), x2 = xtrue
2 (b) and x3 = xtrue

3 (c)



576 REMN – 17/2008. Giens 2007

Figure 2. Identification of spherical hard scatterer of radius 0.4a: iso-surfaces of
T (xs) for T = 0.55Tmin, computed on a truncated search grid such that { |ξi| ≤
5a (i = 1, 2, 3) }. Values of T (xs) lower than the iso-value are inside the iso-surface

Table 2. CPU times and (in parentheses) GMRES iteration count for computing the
true, free and adjoint solutions on the boundary, and CPU times for computing the
topological sensitivity over the whole sampling grid

utrue on S∪Γtrue u on S û on S T in Ω

2L = 16a 1444s (435) 969s (282) 1163s (342) 852s
2L = 32a 6461s (439) 5615s (388) 6818s (476) 1860s

Figure 2 shows the iso-surfaces of the field T corresponding to T = 0.55Tmin,
computed on a truncated sampling grid such that { |ξi| ≤ 5a (i = 1, 2, 3) }, i.e. in
which sampling points whose distance to S is less than 3a have been taken out. In
this central region, low negative values of T occur only in the vicinity of the actual
scatterer location. It should be mentioned that T has been observed to also achieve
low values in zones located near edges or corners of S, where there is no scatterer.

For completeness, Table 2 provides typical CPU and iteration counts, for a cube
of size 2L = 16a as above and for a cube of size 2L = 32a (the wavelength being
kept at λ = 3a). It is interesting to observe that the overall CPU times for Ω(32a),
which involves roughly 4 times as many nodal unknowns as Ω(16a), are about 5
times higher than those for Ω(16a) (while the expected ratio for traditional BEM
would be 43 = 64), and that the GMRES iteration counts are only fractionally higher
for Ω(32a). These observations are consistent with the almost-linear O(NLogN)
complexity per iteration predicted by theoretical analyses of the FMM (Nishimura,
2002; Darve, 2000; Sylvand, 2003). All computations have been performed on a Linux
PC computer with one 3 GHz processor.

Similar computations featuring noisy data have also been performed. For cost
functions that are quadratic with respect to measurement residuals, the adjoint field û
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undergoes perturbations that are proportional to the data noise. From [2], the pertur-
bation induced on T3 therefore also depends linearly on the noise level. The present
approach is therefore less sensitive to noise than conventional inversion techniques.

4. Higher-order topological expansion

The numerical experiments performed thus far clearly establish the usefulness of
the topological sensitivity field T3(xs) as a defect indicator function. The information
provided by T3(xs) is, however, of a qualitative nature only, as approximation [1] of
J at points xs such that T3(xs) < 0 is not amenable to minimization with respect
to the obstacle size ε. One is hence led to consider expanding J(ε, xs) to higher
order in ε for the purpose of a subsequent minimization with respect to the obstacle
size. As quadratic cost functions are often used in practice, such expansion should
in view of [1] be carried out to order O(ε6), so as to square the O(ε3) leading order
in [1]. This approach has for now been considered for the scalar Helmholtz equation
(Bonnet, 2007), but can be extended to e.g. 3-D elastodynamics. The expansion of J
for any centrally-symmetric sound-hard scatterer, of characteristic size ε and centered
at xs, is found to have the form

J(ε, xs)− J(0,xs) = ε3T3(xs) + ε5T5(xs) + ε6T6(xs)︸ ︷︷ ︸
J6(ε,xs)

+o(ε6) [5]

The previously known topological derivative T3(xs) and the new coefficients
T5(xs), T6(xs) have explicit expressions (not given hre for brevity) in terms of the
acoustic Green’s function associated with the reference acoustic domain and the struc-
ture of external boundary conditions. Due to the symmetry assumption for the small
obstacle, there is no O(ε4) contribution in [5]. For cases where the Green’s function
is not known analytically, setting up T3(xs) T5(xs), T6(xs) entails solving boundary
integral equations for (a) the forward and adjoint acoustic fields, and (b) auxiliary solu-
tions generated by acoustic point sources at sampling points xs. All of these solutions
are governed by the same (integral) linear operator, associated with the Helmholtz
equation in the reference (i.e. obstacle-free) domain, which makes the required sup-
plementary computational work modest relative to the cost of one forward solution.

A simple approximate global search procedure. Expansions of the form [5]
offer the option of minimizing the approximate polynomial expression J6(ε;xs) for
sampling points chosen a priori. This task is, for each sampling point, simple and
computationally very light. Hence, it can conceivably be performed for locations xs
spanning a fine search grid G, thereby defining an approximate global search proce-
dure over the spatial region sampled by means of G. The best estimate of the unknown
scatterer Btrue yielded by this procedure is defined by the location xs = xest and size
ε = Rest leading to an absolute minimum of J6(ε;xs) over G. In practice, a partial
minimization of J6(ε;xs) w.r.t. ε is performed for each xs, and one defines the best
estimate of the unknown scatterer over G in terms of its radius Rest and center xest by

(Rest,xest) = arg min
ε>0, xs∈G

J6(ε, xs) [6]
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Figure 3. Identification of a spherical or ellipsoidal sound-hard scatterer in a acoustic
half-space: geometry and notation

Numerical results. To demonstrate the proposed approximate search procedure
and thereby demonstrate the usefulness of the O(ε6) expansion of J(ε;xs), the identi-
fication of a hard scatterer embedded in an acoustic medium occupying the half-space
Ω = {ξ | ξ3 ≤ 0} is considered, as depicted in Figure 3. A homogeneous Neumann
condition is assumed on the surface x3 = 0. Under these conditions, the relevant
Green’s function is, as mentioned earlier, explicitly known.

Three synthetic testing configurations are considered (hereinafter labelled T (1),
T (2), T (3)), where the square region −5a ≤ ξ1, ξ2 ≤ 5a on the surface x3 = 0 is di-
vided into 5×5, 10×10 and 20×20 squares, respectively (a being a reference length).
Sensors are placed at all vertices xm (1 ≤ m ≤ M ) of the squares thus defined, so
that T (1), T (2), T (3) feature M = 36, 121, 441 points, respectively. Acoustic point
sources of unit magnitude are placed in succession at all centers of the previously de-
fined squares. The scattered field generated by each source is recorded at all sensors,
so that T (1), T (2), T (3) support N = 25, 100, 400 synthetic experiments, respec-
tively. This is a situation of limited aperture, since data is available only on part of
the surface of the half-space. The identification is performed on the basis of the least-
squares cost function

J (Ω?) =
1
2

N∑
q=1

M∑
m=1

∣∣uobs
q (xm)− u?

q(xm)
∣∣2 [7]

where uobs
q and u?

q denote the acoustic fields induced by a unit point source placed at
xq and for the ‘true’ and ‘trial’ configurations Ωtrue = Ω \Btrue and Ω? = Ω \B?.

The approximate global search procedure has been performed on a search grid G
of 51×51×25 = 65025 regularly spaced sampling points spanning the 3-D box-shaped
region defined by −10a ≤ x1, x2 ≤ 10a,−10a ≤ x3 ≤ −0.4a. The approximate
cost function J6(ε;xs) with coefficients T3(xs), T5(xs), T6(xs) defined with reference
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Table 3. Radius estimate Rest (best estimate over sampling grid G) for testing config-
urations T (1), T (2), T (3) and noise-free synthetic data: sphere (a), horizontally elon-
gated ellipsoid (b) and vertically elongated ellipsoid (c). A distance ‖xest

s −xtrue‖ =
0.2a was found in all cases

Rest/Rtrue − 1

T (1) T (2) T (3)

ka = 0.5 −4.18e−02 −4.20e−02 −4.20e−02
(S) ka = 1 −1.26e−01 −1.26e−01 −1.26e−01

ka = 2 −3.33e−01 −3.34e−01 −3.34e−01

ka = 0.5 −2.31e−04 9.05e−04 8.89e−04
(H) ka = 1 −1.65e−01 −1.65e−01 −1.65e−01

ka = 2 −4.22e−01 −4.22e−01 −4.22e−01

ka = 0.5 −7.42e−02 −7.51e−02 −7.51e−02
(V) ka = 1 −2.04e−01 −2.06e−01 −2.06e−01

ka = 2 −4.64e−01 −4.67e−01 −4.67e−01

to a small trial spherical scatterer , has been set up for all 65025 sampling points xs ∈G
of the search grid thus defined and using the explicit Green’s function.

The scatterer Btrue to be identified is centered at xtrue = (2a, 1.2a,−3a). Three
geometries are considered for Btrue: a sphere (S) of radius 0.5a, a horizontally elon-
gated ellipsoid (H) with semiaxes (a, 0.5a, 0.5a) and a vertically elongated ellipsoid
(V) with semiaxes (0.5a, 0.5a, a). For comparison purposes, a ‘true’ radius Rtrue is de-
fined for (S) by Rtrue = 0.5a and for (H) and (V) by Rtrue = 2−2/3a, i.e. as the radius of
the sphere having the same volume as (H) or (V). Three wavenumbers ka = 0.5, 1, 2
have been considered. Note that xtrue 6∈ G: the sampling points closest to xtrue are
located above and below xtrue and are separated from xtrue by a vertical distance 0.2a.

The obstacle radius estimate Rest (best estimate over sampling grid G) obtained
for the three frequencies considered and using the three testing configurations are
compared to Rtrue in table 3, for the three geometries (S), (H) and (V), using exact
synthetic data. The lower-frequency case k = 0.5a is seen to yield the most accurate
estimation of Rtrue. In all cases, a distance ‖xest

s −xtrue‖= 0.2a is found, i.e. the grid
point xest

s at which J6(ε;xs) achieves its lowest value Ĵmin
6 is one of the two closest to

xtrue featured by the sampling grid G. For the cases (H) and (V) where the shapes of
the trial and true scatterers do not match, the ‘equivalent radius’ Rtrue is nevertheless
reasonably well estimated, and the location xest

s found is also optimal among the sites
allowed by the chosen search grid.
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Here again, similar examples featuring simulated data noise have been considered.
Numerical results for estimates (Rest,xest) were only moderately affected by the noise,
except in some of the cases where the coarsest testing configuration T (1) was used.

5. Conclusions

The approaches summarized herein are promising in that numerical experimenta-
tions performed thus far demonstrate their ability for approximate defect identification
within computational costs of the order of a few forward solutions, i.e. substantially
lower than that entailed by classical gradient-based “blind” minimization schemes
and far lower than that required by global search algorithms. Moreover, they perform
a search of global character through either the definition of a defect indicator function
or the global minimization of an approximation to the original cost function. Their
computational efficiency is further enhanced by resorting to fast multipole accelerated
integral formulations.

Many theoretical and implementational issues remain open. The concept of topo-
logical sensitivity as defect indicator being heuristic, further theoretical study (possi-
bly exploiting higher-order expansions) is desirable in order to e.g. better understand
the conditions under which the approach can be a priori expected to perform well.
Another open issue revolves around the identification of constitutive properties of in-
clusions from topological sensitivity formulations, for which promising preliminary
results have been obtained by Guzina and Bonnet (2006) and Guzina and Chikichev
(2007) but a complete analysis is still lacking. Extending the topological sensitiv-
ity to the case of vibratory measurements is also of interest, as formulations estab-
lished so far are applicable only away from eigenfrequencies. Moreover, the issue of
whether there are links between the present approach and that based on the distributed
error in constitutive equation, which is also known from extensive numerical experi-
ments to have the ability to (approximately) locate defects in structures (Ladeveze et
al., 1993; Ladevèze and Chouaki, 1999; Bonnet and Reynier, 1998). Finally, from a
computational standpoint, a finite element, discrete version of topological sensitivity
might consist in considering perturbations of constitutive parameters (or nucleation of
holes) over the scale of one finite element. Finally, applications to real data from e.g.
NDT experiments sill remains to be done. Extensions to other physical contexts are
currently under investigation, in particular in connection with infrared thermography.
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