
REMN – 17/2008. Giens 2007, pages 583 to 595 

On the frontier of the simulation world 
 
 
When models involve excessive degrees of freedom  
 
 
Francisco Chinesta* — Amine Ammar**  
 
* Laboratoire de Mécanique des Systèmes et des Procédés – LMSP 
UMR 8106 CNRS-ENSAM 
151 Boulevard de l’Hôpital, F-75013 Paris 
francisco.chinesta@paris.ensam.fr  
 
** Laboratoire de Rhéologie, UMR 5520 CNRS – INPG – UJF  
1301 rue de la piscine, BP 53 Domaine universitaire 
F-38041 Grenoble cedex 9 
Amine.Ammar@ujf-grenoble.fr 
 
ABSTRACT. In the last years, we have assisted to an impressive progression in the numerical 
modeling capabilities as a result of the progression in computer science but also in the 
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finer physical models. In this work we focus on some models encountered in the microscopic 
description of the physics, all of them with a common particularity: they involve an 
impressive number of degrees of freedom or are defined in highly multidimensional spaces.  
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1. Introduction 

The fine description of the mechanics and structure of materials at the micro, 
nano and sub-nanometric scales introduces some specific challenges related to the 
impressive number of degrees of freedom required or to the highly dimensional 
spaces in which those models are defined. Despite the fact that spectacular 
progresses have been accomplished in the context of computational mechanics in the 
last decade, the efficient treatment of those models, as we describe in the present 
work, needs further developments.  

The brut force approach cannot be considered as a possibility for treating this 
kind of models. Even some specialists, as the Nobel Prize R.G. Laughlin, affirmed 
that no computer existing, or that will ever exist, can break the barriers found in 
quantum mechanics because it is a catastrophe of dimension (Laughlin, 2000). We 
can understand the catastrophe of dimension by assuming a model defined in a 

hyper-cube Ω  of dimension D: ] [, DL LΩ = − . Now, if we define a grid to 
discretize the model, as it is usually performed in the vast majority of numerical 
methods (finite differences, finite elements, finite volumes, spectral methods etc.), 
consisting of N nodes on each direction, the total number of nodes will be DN . If 
we assume that for example 10N =  (an extremely coarse description) and 

80D =  (much lower than the usual dimensions required in quantum or statistical 
mechanics) the number of nodes in Ω  reaches the astronomical value of 8010  that 
represents the presumed number of elementary particles in the universe! 

We come back to the analysis of these systems later. In any case, the progress on 
this field requires further developments on the physical modeling as well as on the 
introduction of new ideas and methods in the context of computational physics. 

In this work we are exploring two model reduction strategies. The first one, 
based on the use of the Karhunen-Loève decomposition, will be applied for treating 
models defined in moderate dimensional spaces. The other technique allows treating 
models defined in highly multidimensional spaces as those encountered in quantum 
mechanics or in kinetic theory descriptions of simple fluid and gases, complex fluids 
involving evolving micro or nanostructures, etc. 

In quantum mechanics one is confronted with the solution of Schrödinger 
equation giving the electronic and nuclei distribution. If we assume a system 
composed of pN  particles (electrons and nuclei), the evolution of the joint 

wavefunction ( )1 2, , , ,
pN tΨ = Ψ x x x  is governed by the Schrödinger equation 

whose dimensionless form in absence of relativistic and spin effects, writes (Cook, 
2005): 
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j ∈x R , 1i = −  and  

represents the Planck’s constant divided by 2π . The differential operator 2
p∇  is 

defined in the conformation space of each particle, i.e. 
2 2 2 2 2 2 2
p p p px y z∇ = ∂ ∂ +∂ ∂ +∂ ∂ . The Coulomb’s potential accounting for the inter-

particles interactions writes: 

p k
pk

p k

q q
V

×
=

−x x
 [2] 

where the masses pm  are unity for electrons, the charges jq  are 1−  for electrons 
and jZ+  (atomic numbers) for nuclei.  

The wavefunction function is then defined in a highly multidimensional space: 

( ) 3
1 2, , , , : p

p

N
N t × +Ψ = Ψ × →x x x . Due to the curse of dimensionality, 

illustrated above, its direct solution has been only possible for very reduced quantum 
systems composed of some particles (one or two nuclei and very few electrons). 
Some approximated techniques have been proposed for solving higher systems 
(more complex molecules and crystals), being the most widely used the Hartree-
Fock (HF) method and the Density Functional Theory (DFT). They made possible 
the analysis of multi-electronic systems, but nowadays it is mostly accepted that in 
some particular cases they represent crude approximations. In these cases the 
interest of solving directly the Schrödinger equation is renewed.  

The concern of performing accurate solutions of the Schrödinger equation lies in 
the possibility to determine quantum-based inter-atomic potentials that could be 
injected in molecular dynamics simulations, to address some scenarios, badly 
represented by ordinary pair-wise or N-body inter-atomic potentials, as the ones 
encountered in the vicinity of interfaces, cracks, defaults… 

Other scale that allows continuous descriptions is the one related to statistical 
mechanics, in which the individuality of each particle is sacrificed in favor of an 
averaged description that introduces a distribution function giving the probability of 
finding at a certain point of the space and time, the microstructure described by the 
so-called conformational coordinates. Thus, for example, when we are considering a 
suspension of short fibers, the orientation distribution given the fraction of fibers 
that a certain point x  and time t  are oriented on a certain direction p  writes: 

( ) ( )3, , : 0,1t S + +Ψ × × →x p , where ( )0,1S  represents the surface of 
the unit sphere spanned by the unit orientation vector p . This model is defined in a 
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moderate multidimensional space, but other models involve excessive dimensions 
(as the case of the Schrödinger equation). One example lies in the kinetic theory 
modeling of macromolecules that are viewed as a Bead-Spring Chain – BSC –. The 
BSC chain consists of N+1 beads connected by N springs. The bead serves as an 
interaction point with the solvent and the spring contains the local stiffness 
information depending on local stretching (see Bird et al., 1987, for more details). In 
this case the microstructure can be described from the distribution function: 
( ) 3 3

1
N

N t × + +Ψ × × →x,q , ,q , : , where iq  are the vectors 
representing the connectors.  

In the kinetic theory framework the equation governing the evolution of 
conformation distribution is known as the Fokker-Planck equation. This equation 
results from a simple conservation balance of such distribution function: 

( ) ( )( )
1

j

N

j
jt =

∂Ψ +∇ ⋅ Ψ = − ∇ ⋅ Ψ
∂ ∑x qv q   [3] 

In that follows, we are focusing on the numerical issues associated with the 
numerical solution of the Fokker-Planck equation because the treatment of the 
Schrödinger equations needs the introduction of additional elements, as the Pauli 
principle, the Born-Oppenheimer model… whose description is too ambitious for 
the purpose of the present short paper. 

2. On the Fokker-Planck numerical solvers 

The Fokker-Planck formalism allows describing the evolution of the 
configuration distribution function, which represents the probability of finding the 
microstructure in a particular configuration. Obviously this function depends on 
time, space and configuration coordinates.  

The most usual solutions of kinetic theory models associated with complex fluid 
flows concern the Brownian dynamics approach used in the CONNFESSIT 
approach (Ottinger, 1992). The stochastic approach was considered in Somasi et al., 
(2002) for treating MBS (multi-bead-spring) models defined in highly 
multidimensional conformation spaces. The same idea was considered in the case of 
short fiber suspensions flows in Chinesta et al., (2003). In that work, the 
discretization of the advection dominated Fokker-Planck equation governing the 
fibers orientation was carried out using a particle technique, where the diffusion 
term was modeled using random walks. The combination of Brownian dynamics 
with a macroscopic treatment of motion equations is at the basis of the micro-macro 
approaches deeply reviewed in Keunings (2004). The reader can find in this 
excellent review numerous and highly valuable descriptions and references. 
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The main advantage of Brownian dynamics – BD – simulations is that the 
computational complexity does not scale exponentially (as in the case of mesh-based 
techniques) with the dimension of the spaces in which the models are defined, 
because in general, only the moments of the conformation distribution function (and 
not the distribution function itself) are needed and then computed. In spite of this 
important advantage, the solutions computed in the framework of BD contain a 
significant statistical noise (that makes difficult its use in inverse identification or 
oprimization procedures). This noise can be reduced by increasing the number of 
realizations of the associated stochastic processes or by using advanced variance 
reduction techniques. 

Thus, when noise-free solutions are required, continuous approximations using 
either mesh-based or meshless techniques seem to be suitable. Obviously the 
simulation in the limit case of low or vanishing diffusion effects must be stabilized 
using a well-established numerical scheme (characteristics based integration, 
upwinding, etc.). In a pioneering work Chaubal et al., (1997) considered the smooth 
particle hydrodynamics – a meshless strategy – for solving kinetic theory models, 
described using the Fokker-Planck formalism, encountered in complex fluid flows 
modeling. A deterministic particle approach, very close to that proposed in Chaubal 
et al., (1997), was analyzed in Ammar and Chinesta (2005) and Ammar, Chinesta 
and Ryckelynck (2006) using smooth particles, but it was noticed that the impact of 
smoothing on the solution can be significant.  

Some attempts of solving the Fokker-Planck equation using a fixed mesh 
discretisation exist, for example the one performed in Lozinski and Chauviere 
(2003). The main difficulties of mesh-based approaches are related to the 
multidimensional character of the problem. Thus, the linear systems obtained after 
usual implicit or semi-implicit discretizations are extremely large for a practical 
inversion. On the other hand, explicit discretizations, which do not require matrix 
inversions, have the constraint of too small time steps. We can affirm that the 
applicability of standard mesh-based techniques is restricted to low-dimensional 
conformation spaces.  

New advanced numerical strategies for solving accurately and efficiently the 
Fokker-Planck equation will be described in the next section. The first numerical 
strategy can be coupled with standard mesh-based discretizations allowing an 
impressive reduction of the number of degrees of freedom involved by using 
reduced approximation bases. The reduced approximation basis is constructed by 
invoking the Karhunen-Loève – KL – decomposition (also known as proper 
orthogonal decomposition – POD –) in tandem with an approximation basis 
enrichment algorithm based on the use of some Krylov’s subspaces generated by the 
PDE residual. As this strategy is coupled with standard discretization techniques it 
can be only used when the kinetic theory model involves a reduced number of 
dimensions. In highly multidimensional models, standard (mesh-based) 
discretization techniques fail, and then the just refereed strategy cannot be applied.  
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When the dimension of the spaces in which the kinetic theory models are 
described increases significantly, the only possibility of applying deterministic 
techniques lies in the use of separated representations and tensor product 
approximation bases. In the next section a new strategy based on these concepts will 
be described.  

3. New advanced numerical strategies 

3.1. Model reduction based on the Karhunen-Loève decomposition 

In this section we introduce a numerical approach allowing fast and accurate 
computations. The idea is very simple: to consider a domain where a certain model 
is defined and the associated cloud of nodes are able to represent by interpolation 
the solution everywhere. In general the number of unknowns scales with the number 
of nodes, and for this reason even if the solution is evolving in time smoothly all the 
nodes are used for describing it at each time step. In the reduced modeling that we 
are describing in that follows the numerical algorithm is able to extract the optimal 
information describing the evolution of the solution in the entire time simulation 
interval. Thus, the evolution of the solution can be expressed as a linear combination 
of a reduced number of functions allowing significant CPU time savings.  

The extraction of this relevant information is a well known topic based on the 
application of the proper orthogonal decomposition, also known as Karhunen-Loève 
decomposition (see Ryckelynck et al., (2006) and the references therein). Usual 
reduced models perform the simulation of some similar problem or the desired one 
in a short time interval. From these solutions the Karhunen-Loève decomposition 
can be applied, that allows to extract the most relevant functions describing the 
solution evolution (Lorenz, 1956). Now, it is assumed that the solution of a 
“similar” problem can be expressed using this reduced approximation basis, 
allowing a significant reduction on the discrete problem size and then significant 
CPU time savings (Park and Cho, 1996). However, in general the question related to 
the accuracy of the computed solutions is usually ignored. An original approach 
combining the model reduction and the control of the solution accuracy was 
proposed by Ryckelynck (2005), and applied later in different domains (Ryckelynck 
et al., 2006; Ammar, Ryckelynck et al., 2006). 

3.1.1. The Karhunen-Loève decomposition 

We assume known the evolution of a certain field (scalar, vectorial or tensorial) 
– that from now on and for the sake of simplicity we assume scalar – depending on 
the physical space x  and on time t, ( ),u tx . In practical applications, this field is 
expressed in a discrete form, i.e., it is known at the nodes of a spatial mesh and for 
some times ( ), p p

i iu t u≡x . We introduce also the notation: 
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( ) ( ) [ ],  ;  1, ,pu u t p t p P≡ = ∆ ∀ ∈x x . The main idea of the Karhunen-Loève (KL) 

decomposition is how to obtain the most typical or characteristic structure ( )ϕ x  

among these ( ) ,  pu p∀x . This is equivalent to obtain functions ( )ϕ x  maximizing 
α : 

( ) ( )

( )( )

2

1 1

2

1

 
p P i N

p
i i

p i
i N

i
i

uϕ
α

ϕ

= =

= =
=

=

 
  =

∑ ∑

∑

x x

x
 [4] 

The maximization 0δα =  leads to the eigenproblem: 

α=kφ φ      [5] 

where the two points correlation matrix is given by 

( ) ( ) ( )T

1 1
  

p P p P
p p p p

ij i j
p p

u u
= =

= =

= ⇔ =∑ ∑k x x k u u      [6] 

3.1.2. “A posteriori” Reduced modeling 

If the evolution of a certain field is known: ( ), p p
i iu t u≡x , [ ]1, ,i N∀ ∈ , 

[ ]1, ,p P∀ ∈ , then the matrix k  can be computed and the eigenproblem given by 
Equation [5] solved. The solution of Equation [5] results in N couples of eigenvalue-
eigenvector. However, in a large variety of models involving regular time evolutions 
of the solution, the magnitude of the eigenvalues decreases very fast, evidencing that 
the solution evolution can be represented as a linear combination of a reduced 
number of functions (the eigenvectors related to the highest eigenvalues). In our 
numerical simulations we consider the eigenvalues ordered 1 2 Nα α α> > > . The n 
eigenvalues belonging to the interval 1 nα α> >  with 8

1 10nα α −> ×  and 
8

1 1 10nα α −
+ < ×  are selected, because their associated eigenvectors are enough to 

represent accurately the entire solution evolution. In a large variety of models 
n N  and moreover n only depends on the regularity of the solution evolution, but 
neither on the dimension of the physical space (1D, 2D or 3D) nor on the size of the 
model N. 

The reduced approximation basis consists of the n eigenvectors 1, , nφ φ , 
allowing to define the basis transformation matrix B : 

( )1 2, , , n=B φ φ φ  [7] 
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whose size is N n× . Thus, the vector containing the unknown field nodal values u  
can be expressed by: 

1

( )  ( )
n

i i
i

t tξ
=

= =∑u φ B ξ  [8] 

Now, if we consider the linear system of equations resulting from the 
discretization of a partial differential equation in the form  

1p p−=Au f  [9] 

where 1p−f  accounts for the solution at the previous time step, then, by introducing 
Equation [8] it results 

1 1 p p p p− −= ⇒A u f A B ξ = f   [10]  

or by multiplying both terms by TB : 

T T 1p p−B A B ξ = B f  [11] 

which proves that the final system of equations is of low order, i.e. the dimensions 
of T  B A B  are n n× , with n N<< , and dimensions of ξ  and T 1p−B f  are 1n× . 

3.1.3. Enriching the reduced approximation basis  

The just described strategy allows very fast computation of large size models. 
However, it is not guaranteed that this reduced basis that has been built from the 
solution evolving in a short time interval (or from the solution of a “similar model”) 
remains accurate for describing the solution in the entire simulation interval (or in 
the actual model). In this manner, if one compute reduced model solutions and wish 
to keep the confidence on the related solution, an accuracy check would have been 
performed and an enrichment strategy would have been defined to adapt the reduced 
approximation basis in order to capture the new events present in the solution 
evolutions which could not be described accurately from the original reduced 
approximation basis. For this purpose, Ryckelynck proposed (Ryckelynck, 2005) to 
start with a low order approximation basis, using some simple functions (e.g. the 
initial condition in transient problems) or using the eigenvectors of a “similar 
problem” previously solved or the ones coming from a non-reduced simulation in a 
short time interval. Then, we compute S time steps of the evolution problem using 
the reduced model [11] without changing the approximation basis. After these S 
time steps, the complete discrete system [10] is built-up, and the residual R  
evaluated: 
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1 1S S S S− −R = Au - f = ABξ - f  [12] 

If the norm of the residual is small enough, ε<R , with ε  a threshold value 
small enough, we can continue for other S time steps using the same approximation 
basis. On the contrary, if the residual norm is too large, ε≥R , we must enrich the 
approximation basis and compute again the last S time steps. This enrichment is 
built using some Krylov’s subspaces, in our simulations the three first subspaces: 

( )2←B B,R, AR, A R . One could expect that the enrichment process is increasing 
continuously the size of the reduced approximation basis, but in fact, after reaching 
the convergence, a Karhunen-Loève decomposition is performed on the whole past 
time interval in order to extract the significant information as well as to define an 
orthogonal reduced approximation basis. Now, the resulting updated reduced basis 
is used for computing the next S time steps.  

3.2. Model reduction based on the use of separated representations 

The model reduction technique described in the previous section allows 
significant computing time savings; however it can be only applied when the 
associated model can be treated by using standard mesh-based discretizations. Thus, 
for addressing models defined in highly multidimensional spaces, new reduction 
strategies whose computational complexity must scale linearly with the dimension 
of the space should be proposed and checked.  

For this purpose we start writing the polynomial approximation of a generic 
function ( ) ( )1 2, , , DT T x x x=x  in the whole domain as:  

( ) ( ) ( ) ( )1 1
1 1 1

 
i I i I k D

i i i
i D D i k k

i i k

T T x T x T xα α
= = =

= = =

≈ × × =∑ ∑ ∏x  [13] 

The coefficients alpha in the expression [13] are retained in order to consider in 
the expansion normalized functions ( )i

k kT x . It is also well known that several 
model solutions can be approximated by a finite, and sometimes so reduced, number 
of functions products. Expression [13] involves I N D× ×  degrees of freedom 
instead of the DN  required by the mesh-based discretization techniques.  

In that follows we are describing a new advanced technique, in our knowledge 
never used until now, that combines a separated representation and an adaptation 
procedure able to build up gradually each product of functions until reaching the 
convergence. It has some resemblances with the functional approximation used 
within the LATIN framework (see P. Ladeveze, 1999 and the references therein) as 
well as with to the ones employed in the post-Hartree-Fock methods (Cancès et al., 
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2003). This technique has been successfully applied in a variety of linear, non linear, 
stationary and non stationary problems inspired from polymer kinetic theory 
(Ammar, Mokdad et al., 2006; Ammar et al., 2007; Mokdad et al., 2007). For the 
sake of simplicity we are considering a simple multi-dimensional diffusion problem: 

( ) ( ) ] [
( )

2
1,  , , 0,  

0

DT
DT f x x L

T

∇ = = ∈Ω =


∈∂Ω =

x x
x

 [14] 

where the general form of the right term is given by  

( ) ( ) ( ) ( )1 1
1 1 1

 
i m i m k D

i i i
i D D i k k

i i k

f a F x F x a F x
= = =

= = =

× × =∑ ∑ ∏x  [15] 

expansion that can be performed by using singular value decomposition.  

The iteration scheme used to build up the solution proceeds performing a 
projection and basis enrichment at each iteration: 

1. Projection step. If we consider the basis function known at the nth iteration:  

( ) ( ) ( ) ( )1 1
1 1 1

 
i n i n k D

i i i
i D D i k k

i i k

T T x T x T xα α
= = =

= = =

≈ × × =∑ ∑ ∏x  [16] 

the alpha coefficients can be computed by discretizing the weak formulation of the 
problem. For this purpose we must define the test functions that in the Galerkin’s 
framework are given by: 

( ) ( ) ( ) ( )* * *
1 1

1 1 1

 
i n i n k D

i i i
i D D i k k

i i k

T T x T x T xα α
= = =

= = =

≈ × × =∑ ∑ ∏x  [17] 

The resulting linear system has generally a reduced size n n× , reaching its 
maximum size (just before the convergence) of I I× , that in the case considered 
results ~ 10 10I I× × . 

2. Enrichment step. Giving the n alpha coefficients, the approximation basis 

could be enriched by adding a new product of functions ( )1

1

k D
n

k k
k

T x
=

+

=
∏  that needs 

for the determination of the D involved functions ( )1n
k kT x+ . For this purpose the 

trial function:  
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( ) ( ) ( )
1 1 1

i n k D k D
i

i k k k k
i k k

T T x R xα
= = =

= = =

= +∑ ∏ ∏x  [18] 

is injected in the weak formulation, where ( )k kR x  are the unknown quantities of 

the non linear system obtained, whose size is D N× . The associated test functions 
are taken, again in the Galerkin’s framework, as:  

( ) ( ) ( )* *

1 1

j D k D

j j k k
j k

k j

T R x R x
= =

= =
≠

 
 =   
 

∑ ∏x  [19] 

Now, as soon as the functions ( )k kR x  have been determined, the searched 

functions ( )1n
k kT x+  are obtained by normalizing ( )k kR x . 

This algorithm has been successfully used to solve models involving hundred 
dimensions needing of the order of ~10300 degrees of freedom if one proceeds in the 
finite element framework, solution that only needed of around 20 minutes using a 
standard personal computer!. A multi-dimensional model with known analytical 
solution was solved to conclude about the solver accuracy. When piecewise linear 
one-dimensional approximations of all the involved functions were used, a 
convergence rate of four was noticed, two times higher than the expected rate. In 
principle the convergence rates could be enhanced by using richer approximations. 
The separate representation considered in [13] only needs one-dimensional 
approximations and one-dimensional integrations, because the integral of a product of 
functions in a hyper-domain can be written as the product of the one-dimensional 
integrals. 

REMARKS 
– if in the resolution of the non-linear model an alternating directions fixed point 

scheme is used and piecewise linear 1D-interpolations are considered, then the 
resulting N N×  linear systems to be solved are tri-diagonal; 

– the transient models can be solved by assuming that the time is an additional 
coordinate. However, the stability needs an up-winding of the time derivatives 
(Ammar et al., 2007);  

– the case of non-homogeneous initial or boundary conditions can be addressed 
by introducing an appropriate change of variables. In some cases the change of 
variable to be applied is evident, but in others it is a bit more sophisticated. The use 
of R-functions is being analyzed and the first promising results are being obtained, 

– some models (as the ones coming from the kinetic theory descriptions of 
complex fluid flows) are defined in hyper-spaces that involve the physical domain, 
eventually geometrically complex, and the multidimensional conformational space, 
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in general geometrically simple. One example concerns the Fokker-Planck equation 
associated to short fiber suspensions that, as indicated in the first section, makes use 
of a orientation distribution function ( ) ( )3, , : 0,1t S + +Ψ Ω∈ × × →x p . 
The most general and simplest separated representation (that only involves products 
of functions up to 3D) writes:  

( ) ( ) ( ) ( )
1

, ,
i

i i i i
i

t F G J tα
=∞

=

Ψ =∑x p x p  [20] 

4. Conclusions 

Despite the first promising results that we obtained, and that allow to compute 
numerical solutions of models until now never solved, there are numerous open 
questions. Some of them are: (i) stabilization of the advection terms appearing in the 
Fokker-Planck equation where the usual (non-separable) upwinding techniques fail (the 
technique based on the use of residual free bubbles seems to be an appealing choice 
because no knowledge about the advection direction is a priori required); (ii) error 
estimation and refinement of the 1D descriptions (this could be carried out by using 
either 1D wavelet approximations in order to take advantage of its multirresolution 
properties or by invoking again the appealing properties of residual bubbles); 
(iii) efficient separation of source terms via multi-linear singular value decompositions 
(iv) multidimensional integration of poorly-separable functions by using a Monte-Carlo 
technique; (v) use of parallel computing platforms; (vi) use of richer one-dimensional 
approximations (spectral) to improve – if possible – the convergence rates and 
(vii) treatment of non-homogeneous boundary and initial conditions… 
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