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ABSTRACT. Conventionally, dynamic crack propagation is modelled using fracture mechanics
(either linear elastic, or with an extension to confined plasticity). Herein, we propose a
different view, based on a coupling between an atomic description at the crack tip and a
classical continuum description away from it. The paper presents the theoretical background
and some first numerical results.

RESUME. La modélisation de la propagation de fissure repose principalement sur une bonne
utilisation de la mécanique de la rupture (dans le cadre élastique linéaire ou bien dans des
extensions a la plasticité confinée). Nous proposons ici une approche différente, tant sur la
modélisation numérique que physique, qui consiste a coupler une vision atomique en pointe
de fissure a une description classique continue. Cet article présente le cadre théorique du
couplage ainsi que quelques résultats numériques en dimension 1.
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1. Introduction

In most approaches to date, fracture is modelled using ancamh approach, ei-
ther using linear-elastic fracture mechanics, or with aemsion to take care of con-
fined inelastic yielding, or crack bridging effects, suchiragsohesive-zone models.
In this contribution we shall describe a novel approach aetfire. The basic idea is
that the crack tip is described by an atomistic model whike ghrrounding will be
described as a continuum, discretized via a finite elementadethat exploits the
partition-of-unity property of finite element shape fuects. Indeed, by using en-
riched interpolation functions to capture cracks that mayifcompatible with the
underlying mesh structure no remeshing is needed. At the siame, there is no need
to use asymptotic enriched functions at the continuum Jesiete the crack tip is de-
scribed by an atomistic model. At the atomistic scale, eithelassical molecular
dynamics description or quantum mechanics can be employkd.latter approach
relies on a very detailed description: The Schrédinger #oids solved as a func-
tion of the electronic configuration (Maet al., 2000). The major inconveniency of
such a description is its cost. A more pragmatic approacltt,ishused here (Zhoet
al., 1997; Sutmann, 2002), employs a classical molecular agprwith interatomic
interactions being captured by a potential.

The coupling of the two descriptions is the major challenfthis contribution.
Indeed, away from the crack tip we have a classical contintuin its vicinity a
discrete atomistic model is used. A crucial difficulty ofgf@pproach is that charac-
teristic parameters in space and time are much smaller attimeic level than those
at the continuum level, which are used in the finite elementkition.

Many coupling methods have been developed €tial, 2006; Xiacet al., 2004).
Herein, we propose a weak coupling between the two modetselyean energy cou-
pling. Its major advantage is that energy has the same @iysieaning in both do-
mains. To be more precise, the continuum equations arercastveak form and are
coupled to the atomic description via a partition of the gger

2. Problem statement
2.1. Changing scalesin the crack propagation problem

Dynamick crack propagation can be described as follows: skatitinuity, the
crackrl, is included in a structure described as the closure of theeoopen sed.
The displacements are fixed on a bound®§ and external loads are given 65Q.
Finally, a volumic forces fieldgy, is applied inQ (Figure 1).

We consider a subdomat®y, of Q that includes the crack tip. The goal is to link
an atomic description in the subdomddy, to a continuum approach i0\Qp, i.e.
outside the zone of the crack tip. In order to separate thebnesQ, can be defined
spatially as the crak tip domain to which the plastic zoneitined, so that the macro
subdomain outside this plastic zone can be captured by sticedtress-strain relation.
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Figure 1. Global problem

2.2. Formulations

Denoting byu andd the displacements in the continuum and in the discrete zone,
respectively, we have the initial-value problem in the gmnim subdomain:

Forx € Qu (t) andt € [0;T] , knowing (u(x,0),u(x,0)),
find (u,0) € 129 x 529 such that: ]
pi = div o+ gy
with:

w2 = {u=u(xt) € [#1(Qu)]*; u=wona1Q, vt e [0,T]}

s = {osz(u(x,t)) € [LZ(QM)}6 ; o.n=Fqond,Q, Vvt € [O,T}}

and in the discrete subdomafdy,, where we build a discrete grid &f; atoms, the
second initial-value problem reads as follows:

For 1<i<Na(t) andt € [0;T] , knowing (d(0),d(0)),

t)
find (d, f) € 22 x F24 such that: 2]

nWi(-ji =
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with:

pad _ {d = (ch(1)) i, VEE [o,T}}

j:ad:{f: (fi(t):—DiW(d(t))> ,VIE[O’T]}

1<i<Na

The interatomic forces are given by differentation of a ptitd. A good descrip-
tion relies on the proper choice of this potential. To testdbupling method a classical
potential, such as that of Lennard-Jones or of Morse, saffice

Wy =4 ((")12— (0)6> . Whiose=D (1 e 10’ 3]

r r

The parameters, g, D anda are material properties ardis the interatomic dis-
tance, withre that at equilibrium. We note that other potentials have lmeloped,
allowing for a better description of the metallic bond, faample - EAM potential
(Daw, 1989). The atomic problem relies on the resolutionaof-inear equations with
non-convex potentials. The study of existence and unicgsepeperties for this kind
of problem is not the aim of this contribution, see e.g., (iset al, 1965) for more
information.

In order to get an energetic framework and allow for a diszatibn, the contin-
uum problem is rewritten in a weak format, as follows:

W e 140, knowing (u(x,0),u(x,0)),
find u € ¢34 such that:

/pU-\f*dQ+ e(U) K :e(v)dQ = Fd~\f*d8+/ G- V'dQ [4]
Qm Qm OQQ Qm

or, written in a more concise way:
aw (U,V) = Iy (V") [5]
The atomic problem becomes:

vw* € D240 knowing (d (0),d(0)),
find d € D24 such that:

Na Na
.Zmdr\/\ff +'Z‘DiW(d)'V\ff=am(d7V\f*)=0 [6]
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2.3. Coupling models

In order to achieve an efficient coupling between the two lgml introduced
before and to specify the coupling conditions, we assume akweupling on the
common zone. We consider the mechanical energy as a priahauaintity. Dual-
izing formulations and writing them in a weak format allows t@ obtain a global
description that preserves the descriptive propertieacii enodel, and focuses on the
quantity of interest, the energy, which must not depend emtbdel.

In the common, or handshaking, zof® = Qu N Qny, a velocity coupling is
adopted using a weak format. Moreover, the energy is diggibbetween the two
models inside the coupling zone in a partition of the unityssee(Dhiaet al.,, 2005).
More precisely, on the whole domath we split the energy between the two models
in the following sense:

ax)=1 forx € Qm\Qc
B(x)=1 forx € Qm\Q¢ [7]
a(x)+Bx)=1 forx e Qc

and we subsequently obtain the weak formulation for theibigion of the energy:

v (v, w¥) € 1290 5 D20 knowing (u(x,0),U(x,0),d(0),d(0)),
find (u,d) € U2 x D3 such that:

oaam (u,v*) + Bam (d,w*) = aly (v¥) [8]
Lo P A S a
0 ‘ S
On | | Qu
Q¢

Figure 2. Partition of unity for the energy distribution

As stated before, the displacement and velocity fields irdtrmeainsQy andQp,
have a different nature. One field is a continuous in its diedimspace, while the other
has a discrete character and is only defined at the geonigtairds that correspond
to the atoms. In order to construct a velocity coupling, waiage an equality between
the velocities as we go from one model to the other. This ¢mmdhas to be written
in a weak form, which means in a “global”, or “integral” mamne

Accordingly, a new space is constructed, denotedbyand called the “mediator
space”, on which we will project the fieldsandd in order to compare them. The
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nature ofM is determined by the discrete property of the atomic fieldsleéd, no
extrapolation outside the atomic positions is possibledgfwish to keep a physical
sense at the fine scale. Theil, has to be a sub-space of the physical atomic space.

More precisely, through the operatdrwe can project the velocities onto a dis-
crete subse®, of the atomic positions included @.. Considering tha®/ has been
constructed as a Hilbert space, we introduce a scalar pradrmm M x M into R,
and we write the velocity coupling as:

Ve, c(w,Nu—nd)=<p,Nu—nd>,=0 [9]

This formulation allows us to finally write the global equats coupled with Lagrange
multipliers:

¥ (VW ) € 1290 x D290 5 af | knowing (u(x,0),1(x,0),d (0),d(0)),
find (u,d,A) € 1 x D x 3 such that:

aaw (U,v*) 4 Bam (d,w*) +c (A, MV —Nw*) = aly (V)

c(u,Mu—nd)=0 [10]

3. Discretization

We now introduce two main discretizations. First, the mgmmablem inQy, has to
be discretized with a finite element interpolation, and egbently, a time discretiza-
tion is needed to solve the dynamic global problem. Moreavemwill use a Heaviside
enrichment at the crack in order to avoid remeshing by etiptpthe partition-of-unity
property of finite element shape functions (M@&tsl, 1999; Remmerst al,, 2003).
3.1. Spatial discretization for the continuum problem

The weak formulation allows us to adopt a finite element foonthe macro-

problem. With the shape functiod$ and nodal unknown vectors, using the Heav-
iside step function to take into account the discontinuhg obtains:

VXEQM , Un(X) =Y UiNi(x)+ S UFNi()# (x) = NTU [11]
N %

With the latter notation, the bilinear fora(.,.) and the linear formly (.), become:

aam (Un, Vi) =V TMU +V*TKU [12]

aly (V) =V*TFy [13]
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Moreover, with the classical scalar product, the couplemgtin the continuum be-
comes:

c(\,Mv;y) =V TCuA =V*TFy, [14]

which leads to the typical matrix formulation:

MU +KU =Fy —Fk = Fy —CuA [15]

Remark 1: The added terrfr |, is a fictitious force due to the coupling with Lagrange
multipliers. This force has non-zero value only in the cingpkoneQ.

Remark 2: The matricesM, K and the vectoF), contain information about the en-
ergy distribution,i.e. in the domainQc, the repartition functioru is used to
build their elementary terms.

Remark 3: The vectorA stands for the Lagrange unknowns and its size is equal to
the Q. subset cardinal times the dimension of the considered space

3.2. Timeintegration scheme

In order to solve the coupled system we use a standard celiffexbnce scheme.
This scheme is widely used in classical molecular dynamick ia also known as
Verlet algorithm. Yet, as it is explicit, its stability res on an appropriate choice of
the time step size. For the continuum problem other timerselsecould have been
used, but for simplicity the central difference scheme Hss been adopted for this
subdomain.

The global coupling equations are:

MU +KU =Fy —Fy

md=f+fh [16]
vure M, c(W,Mdp—Md) =0
Similar to the continuum model, the equation for the atomaleincludes the repar-

tition function B, and a fictitious coupling forcék, is introduced. The matrixn is
diagonal with elementary ter@m, and the coupling force is:

fl,=CmA [17]
The system can be rewritten with the three main vedtdrsl, A\):

MU +KU = Fy —CuA

md = f +Cp/ [18]
chu =cCld
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The time scheme relies on discretization with a time &tepnd has four stages:

— given the quantities at step compute the displacemertts, . ; anddn 1,
— compute the acceleratiobls,, 1 anddn, 1, neglecting the Lagrange forces,
— compute the predictive velociti€s, . ; andd,, ;,

— adjust these velocities to give the final velociti#s.1 andd,1 by taking into
account the coupling terms and Lagrange multipliggs; .

The three first steps are simple and do not need further exjibemn The last step
computes the coupling terms and enforces condition (9).

From (9) and (18) with the matrild standing forM|umpea the coupling condition
becomes:

cl, (U - I\7I_1€Mf\n+1At) ol (d§+1 + m*lcmi\nﬂm) [19]

Where/N\nH = % (Ant1+An). The new Lagrange multiplielfan are subsequently
computed by solving:

AAni1=bni1 [20]
with:
— Tt T 1
{ A = (ch¥ oy +Clmic At 21]
bn+1 = C-{AU;H_C-Ir;wd:H

andb,, stands for the weak coupling condition on the predictivesitles. Thus,
this term is a measure of the error compared to the solutiansidtisfies the system
(18).

3.3. A multiscale time decomposition

As we have very different orders of magnitude in the models, uiseful to con-
struct a multiscale time integration scheme. Indeed, aathmic scale, we need a
very fine time scale to achieve sufficient accuracy and tefyatie critical time step
condition. The concept is simple: LAt be the fine time step,e. for the atomistic
problem, and\T be the coarse time step, such thdt = kAt with k € N*. The entire
atomistic resolution is done at the fine scale, but the mpooblem is solved only at
coarse time steps. For consistency between the modelspthing condition has
been enforced at each fine time stej an interpolation of the macro acceleration.
Indeed, there is no need to compute all the macro quantitigeenfine grid, but we
must approximate the acceleration in order to update thecitids for the coupling
condition.
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Figure 3. Wave propagation in a one-dimensional beam
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4. One-dimensional results

As an example we consider a longitudinal bar, which is dbsdriwith finite el-
ements and with molecular dynamics, with a coupling regioiétween. The bar
is submitted to a traction wave, the initial configuratioringedisplaced on the left-
most ten elements. The right-hand side is fixed. The wholeailons 881563 1m
long and we put 176 atoms in the molecular domain. The irderat distance is
re = 0.32531m, and the finite elements sizelis= 4r.. In the molecular model, we
use a Lennard Jones potential, with- 43.306zJ and a massn = 0.00448/g. These
parameters come from FCC Al properties, and the proper rabfgoperties for the
finite element model are derived from the atomic propertiegzigure 3, we see the
displacements in the bar as the wave propagates. The zodish®{es how the atoms
fit the travelling wave in the coupling zone.

We now focus on the mechanical energy transfer when the wasseg through the
coupling zone from the finite elements to the molecular domiai the first case (Fig-
ure 4(a)), the coupling lengthy covers 4 elements. The wave passes from one domain
to the other, but there is a non-negligible energy loss. Whetovers 10 elements,
i.e. the second case (Figure 4(b)) the mechanical enesggfer has improved. A
good transfer is reached whga= —_C — 1, and then we have negligible energy losses
(< 1%). On the contrary, when the coupling length is too smathgared to the wave
length, there is some reflection in the finite element domain.

Mechanical energy (zJ)
Mechanical energy (zJ)

T T T T T T T T T T
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

Time steps Time steps

(a) Coupling lengthLc = 4h (b) Coupling lengthL; = 10h
Figure 4. Mechanical energy transfer from FE to MD

In Figure 4, we have plotted the energy transfer ratio - whenwave passes
from the finite element to the molecular domain - as a functbmhe number of
atoms involved in the coupling domain, for different muétkcratios (fromh =re to
h = 10rg). We observe that it does not depend on the multiscale asgaay the
number of atoms has an influence. To achieve a good energgdeala sufficient
number of atoms in the coupling zone is needed: With appratéiy 20 atoms we
obtain less than 2% of energy loss.
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Figure 5. Energy transfer ratio depending on the multiscale ratio

5. Conclusion

We have given the theoretical concepts of a coupling metlebadden two models
that are physically different. The formulation has beentteni in a weak format in
order to preserve the accuracy of each model and the meethaniergy as the funda-
mental quantity. We have studied this method in a one-dilnaakexample and have
observed the energy transfer as information passes frordamain to the other. The
coupling length and the number of atoms involved in the itEmmszone have a major
influence on the energy balance.
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