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Abstract

The first family of structure-dependent integration methods have been suc-
cessfully developed for nonlinear dynamic analysis. Although its numerical
properties were evaluated and its performance was numerically corroborated
for both linear and nonlinear systems, its feasibility is still under debate
due to the lack of a theoretical background. It seems that an eigen-based
theory can provide a fundamental basis for the proof of the feasibility of
structure-dependent integration methods. This can be manifested from each
major stage of the development of structure-dependent integration methods.
Therefore, the development of the first family of structure-dependent inte-
gration methods will be presented and the correlation between each major
stage and an eigen-based theory will be explored and explained. Besides, this
developing sequence can lay a typical procedure for developing a general
structure-dependent integration method.
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1 Introduction

An unconditionally stable, explicit Structure-Dependent Integration Method
(SDIM) was first developed by Chang in 2002 [1] for the pseudo-dynamic
testing. Subsequently, some improved integration methods of the same type
were further developed [2–6]. SDIMs are different from conventional inte-
gration methods [7–19] in the coefficients of displacement and/or velocity
difference equations. The coefficients are scalar constants for conventional
integration methods while for SDIMs they can be functions of initial struc-
tural properties for defining the problem under analysis [1–6]. The most
promising property of SDIMs is that it can combine unconditional stability
and explicit formulation at the same time and thus it can be very computation-
ally efficient for solving inertial problems although explicit formulation and
unconditional stability are the repellent properties for a numerical method
based on the Dahlquist theorem [20], which states that there does not
exist any explicit method that is absolutely stable in the linear multistep
methods.

Numerical properties of the first family of SDIMs that is explicit and
unconditionally stable [3] have been explored for both linear elastic and
nonlinear systems in the early stage of development and the feasibility of
nonlinear performance is also numerically validated. However, the devel-
opment details are undisclosed. In addition, there is still lack of a solid
fundamental base for this development. This family of SDIM will be referred
as the Chang Family Method (CFM). This method is a semi-explicit method
since it involves an explicit displacement difference equation and an implicit
velocity difference equation. An eigen-based theory is applicable to disclose
why CFM can combine unconditional stability and explicitness of each step.
Hence, it is of interest to apply it to gain an insight into CFM. In addition, a
useful procedure for developing such a SDIM can be also constructed from
the use of an eigen-based theory to each major step. Thus, a summary of
developing procedure is described next. Conceptually, a coupled equation of
motion can be first decomposed into a system of uncoupled modal equations
of motion. Subsequently, an Eigen-Dependent Integration Method (EDIM)
can be developed to solve each modal equation of motion, where the low
frequency modes must be accurately integrated while no instability must
be guaranteed for high frequency modes. Finally, all the EDIMs will be
converted to a SDIM since this conversion can enable the feasibility of this
type of integration methods for practical applications. Besides, this procedure
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can be used to develop a general SDIM, such as CFM. The development
details of CFM will be presented in this work.

2 Concept of Eigen-based Theory

In structural dynamics or earthquake engineering, an equation of motion for
a multiple degree of freedom system is a second-order ordinary differen-
tial equation and is used to govern the dynamic behaviors of the system.
Although an analytical solution might be theoretically obtained based on the
fundamental theory of structural dynamics for some specific problems, it is
a difficult task or impossible to solve a dynamic problem with an arbitrary
dynamic loading, such as an earthquake ground shaking, or a nonlinear
structural system [21]. As a consequence, an integration method is generally
adopted as an alternative for solving such problems. A structural dynamic
problem is often classified as an inertial problem since its total response is
often dominated by low frequency modes while high frequency responses
contribute insignificantly. As a result, an implicit integration method is best
suited to solving such a problem since it can accurately achieve low frequency
results while no abnormal amplitude growth is found for high frequency
modes although a significant period distortion is often found for a high
frequency mode [22].

Clearly, the critical drawback of an implicit integration method for solv-
ing a general structural dynamics problem is the implicitness of each step
since it requires an iteration procedure for each step. Thus, an integration
method will be promising for solving inertial problems if it can combine
explicit formulation and unconditional stability together at the same time.
However, it is forbidden by Dahlquist barrier: there exists no linear multistep
methods that can have explicit formulation and absolute stability simultane-
ously. There is a motivation to develop a new type of integration methods
by using matrix coefficients to replace scalar coefficients for determining the
displacement and/or velocity difference equations. This concept is intended
to overcome the Dahlquist barrier that has been proved for linear multistep
methods with scalar coefficients but not for matrix coefficients.

A coupled equation of motion can be decomposed into a set of uncoupled
equations of motion by exploiting an eigen-decomposition technique. Hence,
a total solution can be accurately obtained if the responses for the modes
of interest are accurately integrated. This indicates that each modal equation
of motion of interest must be reliably integrated by an integration method.
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Besides, it is found that the characteristic equation of a conventional inte-
gration method for solving a single degree of freedom system is, in general,
a function of Ω = ω(∆t), where ω is a natural frequency and ∆t is a step
size. It is natural to assume that the coefficients of the displacement and/or
velocity difference equation are functions of Ω(k) = ω(k)(∆t), where ω(k)

is introduced to denote the natural frequency of the k-th the mode, since this
assumption will also result in a characteristic equation that is also a function
of Ω(k) for using the integration method to solve the k-th modal equation of
motion. As a consequence, an EDIM is proposed to solve the modal equation
of motion for the k-th mode since the eigendata of the k-th mode ω(k) is
involved in the formulation. Each modal equation of motion will be solved
by the corresponding EDIM. In addition, modal solutions for low frequency
modes must be accurately obtained while no instability experiences for high
frequency modes.

Clearly, it is impractical to solve each modal equation of motion of
interest by using a different EDIM. This is because an eigen-analysis must
be conducted so that the eigendata of each mode can be obtained and it
is time consuming for a matrix of large order. Besides, after solving each
modal equation of motion of interest, it is also impractical to use a modal
superposition method to sum up the modal solutions of interest. Notice that
the eigendata may vary per step, which implies that an eigen-analysis must
be performed as the structural properties vary. It will be too complex and
too time consuming to conduct an eigen-analysis for each time step. As an
alternative, it is very important to transform all the EDIMs into a SDIM
by using a reverse procedure of an eigen-decomposition technique. This
integration method is no longer eigen dependent but structure dependent after
this transformation. Thus, a SDIM can be developed.

3 Development of CFM

After a literature review, it can be found that CFM is the first family of
the SDIMs [3]. It has been shown that it can have the same characteristic
equation as that of the Newmark family method (NFM) [7] for linear elastic
systems. Hence, it exhibits the same numerical properties as those of NFM
since these numerical properties are derived from the same characteristic
equation. Besides, its feasibility for solving nonlinear structural systems were
numerically confirmed. However, the detailed development of this family of
SDIMs is still covered and the simultaneous combination of the unconditional
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stability and explicitness of each step is still unclear. Thus, both topics will
be explored next.

3.1 Eigen-Decomposition of Equation of Motion

In structural dynamics, the governing equation for an n degree of freedom
system can be, in general, expressed as:

Müi+1 + Cu̇i+1 + Kui+1 = fi+1. (1)

where M, C and K are the mass, viscous damping and stiffness matrices,
respectively; and ui+1, u̇i+1, üi+1 and fi+1 are in correspondence to the
vectors of the displacement, velocity, acceleration and dynamic loading at
the end of the (i+1)-th time step. After conducting an eigen-analysis of
Equation (1), the natural frequencies ω(k) and corresponding eigenvectors
φ(k) can be found for k = 1, 2, 3, . . . , n, where ω(1) ≤ ω(2) ≤ · · · ≤ ω(k).
In general, Equation (1) is a coupled equation of motion through the mass
or stiffness matrix or both matrices and it can be decoupled into a series of
uncoupled modal equations of motion:

m(k)ü(k) + c(k)u̇(k) + k(k)u(k) = f (k), k = 1, 2, 3, . . . , n. (2)

where
m(k) = [φ(k)]TMφ(k), c(k) = [φ(k)]TCφ(k)

k(k) = [φ(k)]TKφ(k), f (k) = [φ(k)]Tf(t)
. (3)

for k = 1, 2, . . . , n. In addition, m(k), c(k), k(k) and f (k) are the generalized
terms of mass, viscous damping coefficient, stiffness and dynamic loading
for the k-th mode, respectively [21]. Notice that a classical damping matrix
is assumed so that the coupled equations of motion can be decoupled in the
derivation. However, the application of this method is not limited and will be
shown later. In the subsequent study, the superscript (k) for representing the
k-th mode will be deleted from its original expression for brevity although
the k-th mode is still indicated.

Equation (2) is an uncoupled modal equation of motion and an integration
method can be applied to solve it. To develop the novel type of SDIMs,
an EDIM must be developed to solve each modal equation of motion of
Equation (2) at first. Based on the concept of an eigen-based theory, either the
displacement and/or velocity difference equation can be chosen to be eigen
dependent or structure dependent [1]. In developing CFM, the displacement
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difference equation is assumed to be eigen dependent and the velocity dif-
ference equation used by NFM is adopted. As a result, an EDIM for solving
Equation (2) can be expressed as:

mai+1 + cvi+1 + kdi+1 = fi+1

di+1 = di + β1(∆t)vi + β2(∆t)
2ai + 1

m(∆t)2pi+1

vi+1 = vi + (∆t)[(1− γ)ai + γai+1]

. (4)

where β1 and β2 are eigen-dependent coefficients and pi+1 is a load-
dependent term; and γ is a scalar constant. Clearly, the second line of this
equation is an explicit displacement difference equation since it involves no
current step data. Although the load-dependent term pi+1 has never been
seen in the difference equations of a conventional integration method, it
is important to include it since it can be applied to eliminate an adverse
overshoot in high frequency steady-state responses [23].

3.2 An Eigen-Dependent Integration Method

The core to successfully develop an EDIM is that it can accurately solve
low frequency modes while no instability occurs for high frequency modes.
For this purpose, the basic assumptions for β1 and β2 play a key role since
both will be involved in the characteristic equation, which controls numerical
properties, such as stability, accuracy and numerical damping. In addition,
the behaviors in the limit of Ω0 → 0 and Ω0 → ∞ indicate the behaviors of
low and high frequency modes, respectively, where Ω0 = ω0(∆t) is defined;
ω0 =

√
k0/m is an initial natural frequency and k0 is an initial stiffness.

Two simple guidelines can be used to assume the formulations of β1 and β2.
One is to assume that β1 and β2 are fractions of Ω0 and the other is to assume
that the asymptotic values of β1 and β2 are scalar constants in the limit of
Ω0 → 0 and Ω0 →∞. For simplicity, the numerator of β1 and β2 is assumed
to be a linear polynomial function of Ω0 while the denominator is a quadratic
polynomial function of Ω0. As a consequence, the formulation of β1 and β2
can be written as:

βi =
1

D
(gi + hi2ξΩ0), i = 1, 2. (5)

where gi and hi are scalar constants and the denominator ofD = 1+γ2ξΩ0+
βΩ2

0 is chosen. This choice of D can be referred to NFM for simplicity.
Notice that it can be also assumed in a different polynomial form or even
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other higher order forms. However, the highest power of Ω0 in numerator
must be no more than that of the denominator. This is because numerical
explosions will occur if it is greater than that of the denominator.

Clearly, gi and hi must be properly determined so that desired numerical
properties can be yielded. Since any numerical method must be a convergent
method, the satisfaction of the convergence can be used to determine the
scalar coefficients of gi and hi. Besides, consistency together with stability
can imply the convergence of a numerical method based on the Lax or
Dahlquist equivalence theory [24, 25]. To prove consistency, one can show
that the proposed EDIM has at least a first order accuracy. The detailed
derivation of its local truncation error for a free vibration response can be
found in [22]. As a result, it is:

E =
1

BD
(1− g1)üi +

1

BD
[(1− g1) + (γ − h1)2ξΩ]2ξω0u̇i

+
1

BD

[(
2γ − 1

2
− h1

)
+

(
γ − 1

2

)
γ2ξΩ0

]
2ξΩ0üi

+
1

BD
{[g2 − g1(1− γ)] + [β + h2 − (1− γ)h1]2ξΩ0}Ω0ω0u̇i

+
1

BD

{[
β − 1

2
g2 +

1

2
g1(1− γ)

]
+

[
βγ − 1

2
h2 +

1

2
h1(1− γ)

]
2ξΩ0

}
Ω2
0üi

+
1

6

1

BD
2ξΩ0(∆t)

...
u i +

1

24

1

BD
2(∆t)2

....
u i +O[(∆t)3]. (6)

where B = 1 + γ2ξΩ0. In general, a competitive integration method must
possess at least a second order accuracy and thus the coefficients of the terms
that have an order of accuracy less than 2 must be equal to zero. Utilizing the
first three terms on the right side of this equation, one can have g1 = 1 and
h1 = γ. Evidently, the first two terms disappear and the third term becomes
(γ − 1

2)2ξΩ0üi/D, where both numerator and denominator have the factor
of B and thus it can be removed. Similarly, one can also assume that the
numerator of the fourth term also possesses the factor of B. As a result, the
following equation can be found:

[g2 − g1(1− γ)]γ = β + h2 − (1− γ)h1. (7)
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After substituting g1 = 1 and h1 = γ into this equation, g2γ = β + h2 is
achieved and the fourth term will become (g2−1+γ)Ω0ω0u̇i/D. As a result,
based on the assumption of g2 − 1 + γ = γ − 1/2, the results of g2 = 1/2
and h2 = γ/2 − β can be found. Thus, the eigen-dependent coefficients of
β1 and β2 are summarized to be:

β1 =
1

D
(1 + γ2ξΩ0), β2 =

1

D

[
1

2
+

(
1

2
γ − β

)
2ξΩ0

]
. (8)

Clearly, both β1 and β2 are eigen-dependent coefficients. At first glance,
it seems that only consistency is required to determine the scalar constant
coefficients of β1 and β2 while the condition of stability is not involved up
to this time. In fact, it has been implicitly adopted in the assumed general
formulation of β1 and β2, where the maximum order of numerator must be
no more than that of denominator so that instability can be automatically
avoided.

After determining β1 and β2, the load-dependent term pi+1 must be
further derived and it can be also determined from a local truncation error. In
this case, a local truncation error is no longer determined from a free vibration
response but a forced vibration response since the dynamic loading must be
considered for determining the order of accuracy of the proposed EDIM. As
a result, it is found to be:

E = − 1

D

(
γ − 1

2

)
(∆t)

...
u i +

1

D
βΩ2

0üi

− 1

D

1

2

(
γ − 1

2

)
[2ξΩ0(∆t)

...
u i + (∆t)2

....
u i]

+
1

D

(
1

6

)
2ξΩ0(∆t)

...
u i +

1

D

1

12
(∆t)2

....
u i +

1

BD
β2ξΩ0

1

m
(∆t)ḟi

− 1

BD

1

2
β2ξΩ0

1

m
(∆t)2f̈i +

(
1− 1

B
2ξΩ0

)
pi − pi+1 +O[(∆t)3].

(9)

This equation reveals that CFM can generally possess a first order accuracy
for zero dynamic load while a second order accuracy can be achieved for γ =
1/2. However, it can only have a first order accuracy for nonzero dynamic
loading even for γ = 1/2. The term of βΩ2

0üi/D is the only quadratic error
term of Ω0 for γ = 1/2 and it has been shown that it will lead to an adverse
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overshoot in high frequency steady-state responses [23]. Thus, it must be
removed from the local truncation error to eliminate this overshoot. Since the
displacement and velocity difference equations are involved in the derivation
of a local truncation error, the addition of the load-dependent term into the
displacement difference equation is intended to remove the dominant error
term for CFM.

For this purpose, the following relation will be applied to take out the
adverse dominant error term of βΩ2

0üi/D:

(∆t)2
....
u i +2ξΩ0(∆t)

...
u i =

1

m
(∆t)2f̈i − Ω2

0üi. (10)

Clearly, this equation is directly derived from the second time derivative of
the equation of motion. It can be found that the maximum order of Ω0 is 1 on
the left side while on the right side it is 2. As a result, the left two terms can
replace the right two terms and then the quadratic term of βΩ2

0üi/D can be
removed and the order of Ω0 is reduced. As a result, an adverse overshoot can
be eliminated. It is worth noting that the equation of motion and its first time
derivative has been used in determining the scalar constant coefficients of β1
and β2. Finally, the load-dependent term can be derived from Equation (9)
and is found to be:

pi+1 =
1

D
β(fi+1 − fi). (11)

Finally, after substituting Equation (11) into Equation (9), the final form of
the local truncation error for the proposed EDIM will become:

E = − 1

D

(
γ − 1

2

)
(∆t)

...
u i +

1

D

[
1

6
− β +

1

2

(
γ − 1

2

)]
2ξΩ0(∆t)

...
u i

+
1

D

[
1

12
− β +

1

2

(
γ − 1

2

)]
(∆t)2

....
u i +O[(∆t)3]. (12)

It is disclosed by this equation that the proposed EDIM can generally have
a first order accuracy for classical damping and dynamic loading. A second
order accuracy can be further achieved if γ = 1/2 is adopted. As a result,
an EDIM for solving the modal equation of motion of the k-th mode is
developed. This EDIM also implies that a total number of n EDIMs are
developed for solving the n modal equations of motion for k = 1, 2, . . . , n,
respectively.

It is important to examine whether the proposed EDIM can satisfy the
major goal to successfully develop an EDIM. Therefore, the limiting cases of
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Ω0 → 0 and Ω0 →∞ are considered. In the limit Ω0 → 0, the displacement
difference equation will reduce to be:

di+1 = di + (∆t)vi +
1

2
(∆t)2ai. (13)

Clearly, it can be manifested from Equation (4) that the proposed EDIM
becomes the Newmark explicit method for any β and γ = 1/2. Thus, the
performance of the proposed EDIM will be the roughly same as the Newmark
explicit method in the limit Ω0 → 0 or low frequency modes. On the
other hand, in the limit Ω0 → ∞, the displacement difference equation will
become:

di+1 = di. (14)

It can be found that the characteristic equation of Equation (4) with the
displacement difference equation given in Equation (14) is:[

λ2 −
(

2− 2ξΩ0

1 + 2γξΩ0

)
λ+

(
1− 2ξΩ0

1 + 2γξΩ0

)]
λ = 0. (15)

It is very important to find that the characteristic equation in the limit Ω0 →
∞ has three different eigenvalues. In fact, they are found to be:

λ1 = 0, λ2 = 1− γ2ξΩ0

1 + γ2ξΩ0
, λ3 = 1. (16)

Since all the three eigenvalues are less than or equal to 1, an unconditional
stability can be achieved in the limit Ω0 → ∞ or high frequency modes.
Hence, the proposed EDIM can meet the major goal to successfully develop
an EDIM. In addition, it will exhibit no weak instability since it can have
three linearly independent eigenvectors in the limiting case of Ω0 →∞ [26].

To decompose the equation of motion into a set of uncoupled equations
of motion, it is required to assume that the damping matrix is a classical
damping matrix. However, the extreme cases of Ω0 → 0 and Ω0 →∞ seem
to reveal that the assumption is unnecessary. In the limit Ω0 → 0 or low
frequency modes, D = 1 + γ2ξΩ0 + βΩ2

0 is controlled by the constant of 1
and is unaffected by damping. On the other hand, in the limit Ω0 →∞ or high
frequency modes, D = 1 +γ2ξΩ0 +βΩ2

0 is dominated by the quadratic term
of βΩ2

0 and is nothing to do with damping. As a consequence, this assumption
is to give a rigorous fundamental basis for derivation but it is unnecessary for
practical applications.

Using the fundamental theory of structural dynamics, one can have
(k0/m)(∆t)2 = Ω2

0 and (c0/m)(∆t) = 2ξΩ0. They can be applied to



Insight Into Feasibility of Structure-Dependent Methods for Dynamic Analysis 565

convert an EDIM to a generalized modal equation of motion [21]. As a result,
β1, β2 and pi+1 become:

β1 =
1

D
[m+ γ(∆t)c0]

β2 =
1

D

[
1

2
m+

(
1

2
γ − β

)
(∆t)c0

]
(17)

pi+1 =
1

D
β(fi+1 − fi).

for the EDIM for solving the modal equation of motion of the k-th mode for
k = 1, 2, 3, . . . , n. As a summary, a total number of n EDIMs are devel-
oped to solve the n uncoupled modal equations of motion correspondingly.
Besides, the low frequency modal equations of motion can be solved almost
as accurately as those by the Newmark explicit method while no abnormal
amplitude growth in high frequency modal equations of motion is guaranteed.

3.3 A Structure-Dependent Integration Method

Although an EDIM is successfully developed for solving each modal equa-
tion of motion, it is still inconvenient and time consuming if using a modal
superposition scheme to sum up each modal response to yield a complete
solution. An eigen-analysis must be frequently conducted as the structural
properties of the coupled equation of motion might vary during time inte-
gration. This is because that eigendata will be involved both in developing
an EDIM and in adding up all modal responses. This seems impractical for
practical applications.

It is learned from an eigen-decomposition technique that it can decom-
pose a coupled equation of motion into a series of uncoupled equations of
motion. As a consequence, there is a great motivation to apply the reverse
procedure of the eigen-decomposition technique to transform all the devel-
oped EDIMs into a SDIM so that the time consuming eigen-analysis can
be avoided. As a consequence, the following equation of Equation (18) can
be yielded after the transformation. The reverse of the eigen-decomposition
technique implies that Equation (4) can be obtained after Equation (18) is
decomposed [2, 5, 27].

Mai+1 + Ci+1vi+1 + Ki+1di+1 = fi+1

di+1 = di + B1(∆t)vi + B2(∆t)
2ai + (∆t)2pi+1

vi+1 = vi + (∆t)[(1− γ)ai + γai+1]

. (18)
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where
B1 = D−1[M + γ(∆t)C0]

B2 = D−1

[
1

2
M +

(
1

2
γ − β

)
(∆t)C0

]
pi+1 = βD−1(fi+1 − fi)

. (19)

where D = M + γ(∆t)C0 + β(∆t)2K0. Note that C0 and K0 are in corre-
spondence to the initial damping coefficient matrix and the initial stiffness
matrix. Clearly, C0 and K0 may be different from Ci+1 and Ki+1 for a
nonlinear system. The displacement difference equation is a function of the
initial structural properties, such as M, C0 and K0, and the step size ∆t.
Hence, CFM is a SDIM. In addition, the displacement difference equation
can be completely determined from the previous step data and thus CFM is
an explicit integration method.

4 Dual Implementations for CFM

An explicit formulation for a SDIM is addressed in the development of
structure-dependent methods since it has a better computational efficiency
in contrast to an implicit formulation. However, it is worth noting that a
SDIM can also have an implicit formulation. In general, structure-dependent
coefficients are determined from the initial structural properties for a SDIM
and then it can be explicitly implemented. In contrast, if initial structural
properties are replaced by current structural properties to derive structure-
dependent coefficients for a SDIM, an implicit formulation of the SDIM can
be obtained and it can be implicitly implemented. Both implementations for
CFM are shown next.

4.1 An Explicit Implementation

After conducting the time integration of the i-th time step, the displacement
vector for the next time step can be determined from the second line of
Equation (18) and is numerically equivalent to solve the following equation:

Ddi+1 = Ddi + [M + γ(∆t)C0](∆t)vi

+

[
1

2
M−

(
β − 1

2
γ

)
(∆t)C0

]
(∆t)2ai.

+ β(∆t)2(fi+1 − fi) (20)
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After obtaining di+1, an assumed force-displacement relation can be used to
determine the restoring force vector ri+1 = Ki+1di+1. Next, the velocity
vector can be determined from the first and third lines of Equation (18) after
eliminating the acceleration vector and is numerically equivalent to solve:

[M + γ(∆t)Ci+1]vi+1 = M[vi + (1− γ)(∆t)ai] + γ(∆t)(fi+1 − ri+1).

(21)

Similarly, the damping force vector can be alternatively denoted by si+1 =
Ci+1vi+1 for an assumed nonlinear damping type. Finally, the acceleration
vector can be calculated by:

Mai+1 = fi+1 − si+1 − ri+1. (22)

Since the matrices of D and M are invariant, a direct elimination method can
be applied to solve Equation (20) and (22). Notice that Equation (21) must
be iteratively solved if a nonlinear damping matrix is adopted. However, a
constant damping matrix is generally used in nonlinear dynamic analysis,
i.e., Ci+1 = C0 is taken. Hence, a direct elimination method can be also used
to solve Equation (21). An elimination method consists of a triangulation and
a substitution; and a triangulation consumes most computational efforts. Only
a triangulation is needed if D, M + γ(∆t)C0 and M are invariant.

4.2 An Implicit Implementation

It is seen that Equation (20) will become a nonlinear equation if current
structural properties are used to replace the initial structural properties. Thus,
D = M + γ(∆t)C0 + β(∆t)2K0 becomes D = M + γ(∆t)Ci+1 +
β(∆t)2Ki+1. As a result, an iteration procedure must be adopted to solve
Equation (20) since Ci+1 is generally a function of the current step data.
Next, the calculations of the velocity and acceleration vectors are the same as
those of the explicit implementation and will not be elaborated again.

It is important to note that an explicit implementation or an implicit
implementation of CFM can have a comparable accuracy. This is because
that CFM meets the major goal to successfully develop an EDIM, where low
frequency modes can be accurately integrated while there exists no numerical
instability in high frequency modes. This also indicates that the numerical
accuracy of CFM is almost unaffected by using γ(∆t)C0 + β(∆t)2K0 or
γ(∆t)Ci+1+β(∆t)2Ki+1 to compute D while both choices can lead to a sta-
ble solution for high frequency modes. Therefore, an explicit implementation
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is preferred over an implicit implementation for CFM due to the saving of
computational efforts.

Notice that an implicit implementation of CFM must be adopted for
solving systems with nonlinear damping forces that are velocity dependent.
This is because that an implicit difference equation is adopted by CFM for
calculating the next step velocity, i.e., the third line of Equation (4) or (18).
In this case, the implicit difference equation cannot be directly used to
compute the next step velocity. As a result, an iterative procedure must be
involved.

5 Comparisons of Accuracy

It is shown in the previous section that CFM can be both explicitly and
implicitly implemented for time integration and an unconditional stability
can be achieved for both implementations for solving general structural
dynamics problems. Thus, it is of interest to explore the accuracy of NFM
and the two implementations of CFM for both linear elastic and nonlinear
systems. For this purpose, a parameter, which is named instantaneous degree
of nonlinearity δi, has been defined to monitor the stiffness change for a
nonlinear system [2, 5]. In general, for the i-th time step, it can be written
as δi = ki/k0, where ki is the stiffness of the i-th time step while k0 is the
initial stiffness.

The general formulation of the well-known Newmark family of integra-
tion methods for a single degree of freedom system can be written as:

mai+1 + cvi+1 + kdi+1 = fi+1

di+1 = di + (∆t)vi + (∆t)2[(1− β)ai + βai+1]

vi+1 = vi + (∆t)[(1− γ)ai + γai+1]

. (23)

Besides, its characteristic equation for solving a general nonlinear system is
found to be:

λ

{
λ2 −

[
2−

(
γ + 1

2

)
Ω2
i+1

1 + βΩ2
i+1

]
λ+

[
1−

(
γ − 1

2

)
Ω2
i+1

1 + βΩ2
i+1

]}
= 0. (24)

In the subsequent study, an Explicit implementation of CFM is referred as
ECFM while its Implicit implementation is referred as ICFM. The character-
istic equation of CFM is also derived for comparison. It is interesting to find
that the characteristic equation of ICFM is the same as that of NFM. Whereas,
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that of ECFM has a different equation and is:

λ

{
λ2 −

[
2−

(
γ + 1

2

)
Ω2
i+1

1 + βΩ2
0

]
λ+

[
1−

(
γ − 1

2

)
Ω2
i+1

1 + βΩ2
0

]}
= 0. (25)

After comparing Equation (24) with (25), it is evident that the only difference
between NFM and ECFM is the denominator. Notice that both characteristic
equations will become the same for a linear elastic system.

To assess the numerical accuracy of NFM and ECFM for solving non-
linear systems, variations of the relative period errors versus ∆t/T0, where
T0 = 2π/ω0, are calculated and plotted in Figure 1. The results of β = 1/4
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Figure 1 Variations of relative period errors with ∆t/T0.
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and γ = 1/2 are shown in Figure 1(a) while those of β = γ = 1/2 are
plotted in Figure 1(b). It is seen in Figure 1(a) that the relative period error
is small as ∆t/T0 ≤ 1/20 for δi+1 = 0.5, 1.0 and 2.0 for both NFM and
ECFM. Thus, it is evident that ECFM can have a comparable accuracy with
NFM. It is also found that ECFM has the same period distortion as that
of NFM for δi+1 = 1.0. Whereas, the relative period error of ECFM for
δi+1 = 0.5 is larger than that of NFM while it is less than that of NFM for
δi+1 = 2.0. This implies that ECFM can have a better performance than for
NFM for stiffness hardening systems while NFM performs better for stiffness
softening systems. Similar phenomena are also found in Figure 1(b) except
that the member of β = γ = 1/2 exhibits a slightly larger period distortion
in contrast to the member of β = 1/4 and γ = 1/2.

To corroborate the analytical results as shown in Figure 1, a simplified
Duffing equation is solved and it can be expressed as:

ü+ u+ αu3 = 0. (26)

In general, α > 0 can simulate a hardening spring while a softening spring is
mimicked by α < 0. Notice that α = 0 implies a linear elastic spring. Thus,
the cases of α = −0.5, 0 and 0.5 are used to simulate a softening spring, a
linear elastic spring and a hardening spring correspondingly. The member of
β = 1/4 and γ = 1/2 for NFM, ECFM and ICFM is chosen to calculate the
free vibration responses of u(0) = 1 and u̇(0) = 0. A time step of ∆t =
0.5 sec is used for time integration and the numerical results are plotted in
Figures 2 to 4. Notice that a relative tolerance of 10−6 is used for NFM and
ICFM in this paper. Figure 2(b) reveals that a softening spring is simulated
since δi+1 varies in the interval of 0.5 ≤ δi+1 ≤ 1. Whereas, a hardening
spring is revealed by Figure 4(b) since δi+1 varies in the interval of 1 ≤
δi+1 ≤ 1.5. Clearly, Figure 3(b) implies a linear elastic spring since δi+1 =
1 is found. It is seen in Figures 2(a) to 4(a) that the results obtained from
ICFM are overlapped with those obtained from NFM. This implies that the
performance of ICFM is the same as that of NFM for both linear elastic and
nonlinear systems. It is also found in Figure 2(a) that the result obtained from
NFM is more accurate than that obtained from ECFM for the softening spring
while ECFM can give a more accurate solution than that obtained from NFM
for the hardening spring in Figure 4(a). The calculated results of NFM and
ECFM coincide together for linear elastic spring in Figure 3(a). Clearly, these
numerical results are consistent with the analytical predictions in Figure 1,
where ECFM has more period distortion for softening systems and less period
distortion for hardening systems in contrast NFM.
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Figure 2 Free vibration responses to a softening spring.
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Figure 3 Free vibration responses to a linear elastic spring.
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Figure 4 Free vibration responses to a hardening spring.

The results for plotting Figures 2 to 4 are calculated from ∆t = 0.5 sec,
which is in correspondence to ∆t/T0 = 0.08. As a consequence, these results
considerably deviate from the reference solutions. More accurate solutions
can be obtained for NFM, ICFM and ECFM if a smaller time step is adopted,
such as a time step of ∆t = 0.2 sec. This time step corresponds to ∆t/T0 =
0.03. The results obtained from ∆t = 0.2 sec are plotted in Figure 5. Since
∆t/T0 ≤ 1/20 can be considered as a rule of thumb to yield an accurate
solution, it is anticipated that reliable solutions can be achieved for using a
step size of ∆t = 0.2 sec. It is evident from Figure 5 that ECFM can have
almost the same performance as that of NFM in the step-by-step solution of
either linear elastic or nonlinear systems.

6 Applications

6.1 A Non-classical Damping System

To affirm that problem-dependent methods can be used to solve systems
with non-classical damping, a second order equation of motion with a
non-classical damping is solved and it can be expressed as:

ü+
1

1 + |u̇|
u̇+ 25u = 0. (27)
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Figure 5 Free vibration responses to Duffing equations.

where the coefficient of the velocity term u̇ is 1/(1 + |u̇|). It is evident
that the damping force is not only non-classical but also nonlinear. There-
fore, this equation must be solved iteratively by using ICFM and ECFM is
inappropriate due to the adoption of an implicit velocity difference equation.

An initial natural frequency of the system is found to be 5 rad/sec. The
initial condition of u(0) = 0 and u̇(0) = 10 is considered in the subsequent
calculations. Evidently, the nonlinearity of the system comes from the change
of u̇. The reference solution is computed from AAM with a step size of
∆t = 0.001 sec for comparison. On the other hand, both AAM and ICFM
are also applied to solve the same problem with the step sizes of ∆t = 0.05
sec and 0.03 sec. All calculated results are plotted in Figure 6. It is seen in
Figure 6(a) that the solution obtained from ICFM almost coincides together
with that calculated by AAM with the time step of ∆t = 0.05 sec although
considerable errors are found for both integration methods when compared to
the reference solution. On the other hand, an accurate solution is yielded for
both methods if a smaller time step of ∆t = 0.03 is adopted to compute the
results as shown in Figure 6(b). Consequently, it is affirmed that ICFM can
have a comparable accuracy with AAM in the solution of the second order
ODE with a non-classical type of nonlinear damping force.
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Figure 6 Numerical solution of single degree of freedom system with a non-classical
damping force.
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Figure 7 A multistory building of 10 stories.

6.2 A Multi-story Building of 10 Stories

To show that CFM can be used to solve a system with a non-classical damping
type for a multiple degree of freedom system. A multi-story building of
10 stories is considered as shown in Figure 7. For simplicity, the building
is mathematically modelled as a shear building. This simplified model is
very useful to yield dynamic data for the preliminary design. The damping
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force of each story is nonlinear velocity dependent and is a non-classical
type. Meanwhile, the spring force of each story is nonlinear displacement
dependent. The lumped mass of each story is taken to be mi = 105 kg. The
damping coefficient of each story is assumed as:

c1 = 106(1− 0.1
√
|u̇1|) N − s/m

ci = 106
[
1− 0.1

(
ui − ui−1

ui + ui−1

)√
|u̇i − u̇i−1|

]
N − s/m. (28)

where i = 2, 3, . . . , 10. It is evidently that a nonlinear damping force is
not only velocity dependent but also displacement dependent. Notice that
some buildings were equipped with a variety of nonlinear viscous and/or
viscoelastic dampers to largely absorb seismic energy and thus to suppress
dynamic responses [28, 29]. Such dampers are often classified as velocity-
dependent dampers since the damping forces are mainly a function of the
relative velocity or the frequency of motion [30]. On the other hand, the
stiffness of each story is:

k1 = 108(1− 2
√
|u1|) N/m

ki = 108(1− 2
√
|ui − ui−1|) N/m. (29)

where i = 2, 3, . . . , 10. In general, the story stiffness will be degraded if
ui − ui−1 6= 0.

The equation of motion for the multi-story building as shown in Figure 7
can be written as shown in Equation (1), where the mass matrix is a diagonal
matrix and each diagonal term is mi = 104 kg, for i = 1, 2, . . . , 10; the
damping matrix C and stiffness matrix K can be explicitly written as:

C =


c1 + c2 −c2 0 0
−c2 c2 + c3 −c3 0

0 −c3 · · · −cn
0 0 −cn cn

,

K =


k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0

0 −k3 · · · −kn
0 0 −kn kn

. (30)

where C is a nonlinear function of displacement as well as velocity and
K is a nonlinear function of displacement. The smallest and largest initial
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Figure 8 Seismic responses of a multi-story building of 10 stories.

natural frequencies of the building are found to be 4.73 and 62.54 rad/sec,
respectively. This building is excited by a ground acceleration record of Chi-
Chi earthquake in 1999 in Taiwan. TCU129 is chosen as the seismic input
and it has a peak ground acceleration of 989.2 cm/sec2. In this study, the
peak ground acceleration of TCU129 is scaled to 1g.

The seismic responses calculated from AAM with the time step of ∆t =
0.005 sec is treated as a reference solution. Besides, both AAM and ICFM
with ∆t = 0.05 sec are also used to compute the lateral displacement
responses. All the numerical results of the 1st, 5th and 10th floors are
shown in Figure 8. It is revealed by the three plots that ICFM gives almost
the same solutions as those calculated from AAM. This implies that both
ICFM and AAM can faithfully seize the nonlinear variations of the damping
and restoring forces due to a complicated ground shaking arising from an
earthquake. Hence, it is substantiated that CFM can be also used to solve
multiple degree of freedom systems with a damping force that is non-classical
and nonlinear.

6.3 A Series of Large Spring-Mass Systems

A 1000-degree-of-freedom system is particularly chosen for examining the
performance of ECFM in the solution of nonlinear multiple degree of
freedom systems. The system is shown in Figure 9, where the lumped mass
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Figure 10 Forced vibration responses to a spring-mass system.

ml and the spring constant of k(l) are correspondent to the l-th degree of
freedom. Clearly, the spring constant k(l) will decrease for a nonzero story
drift, i.e., |u(l) − u(l−1)| 6= 0. It is found that the initial lowest and highest
natural frequencies are found to be 4.965 and 6325 rad/sec, respectively. This
spring-mass system is subjected to a sinusoidal acceleration 10 sin(0.5t) at its
base. For simplicity, zero viscous damping is assumed in all computations.

Both ECFM and NFM with β = 1/4 and γ = 1/2 are adopted to
calculate the responses by using a time step of ∆t = 0.05 and 0.1 sec.
Besides, the solution calculated from NFM with ∆t = 0.01 sec is treated as a
reference solution for comparison. Numerical results are plotted in Figure 10.
It is seen in Figure 10(a) that the result obtained from ECFM almost coincides
together with that calculated from NFM for using ∆t = 0.05 sec. A very
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similar phenomenon is also found in Figure 7(b) for ∆t = 0.1 sec although
these results have more significant errors in contrast to the reference solution.
Since the value of Ω0 = ω

(1000)
0 (∆t) is as large as 632.5 as ∆t = 0.1 sec,

an unconditional stability of ECFM is implied. Besides, it is affirmed that
the low frequency modes can be accurately integrated while there is no
excessive amplitude growth or even instability for high frequency modes.
As a consequence, a reliable solution can be yielded.

The CPU time consumed for each nonlinear dynamic analysis is also
recorded. In fact, NFM consumes a CPU time of 7590 and 4192 sec for using
∆t = 0.05 and 0.1 sec, respectively. In contrast, ECFM only consume a CPU
time of 26 and 13, correspondingly. Hence, many computational efforts can
be saved for ECFM since it involves no nonlinear iterations for each step.
Meanwhile, an iteration procedure is required for NFM for each step. In fact,
an average iteration number is about 2.8 for using ∆t = 0.05 sec while for
∆t = 0.1 sec it is about 3.2.

7 Conclusions

Although structure-dependent integration methods have been successfully
developed for time integration in the literature, it is still undisclosed for
the derivation details and there does not exist a solid fundamental base to
prove or support its feasibility for time integration. In this work, a typical
procedure to develop structure-dependent integration methods is constructed
from an eigen-based theory and then it seems that it can provide a funda-
mental basis for validating the feasibility of structure-dependent integration
methods for conducting dynamic analysis of both linear elastic and nonlinear
systems. For verification purpose, the first family of non-dissipative structure-
dependent integration methods is developed herein in details for illustrating
the developing procedure and its feasibility for time integration can be evident
from the eigen-based theory. Because the numerical properties of this family
structure-dependent integration methods have been explored for both linear
elastic and nonlinear systems and its performance have been explored, they
will not be elaborated again.
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