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ABSTRACT. This work concerns finite element formulations of structural-acoustic interior
problems with dissipative interfaces. The main purpose is to establish the link between wall
acoustic impedance models and poroelastic appraoches based on the Biot theory. The
proposed method consists in determining the acoustic impedance parameters starting from
intrinsic characteristics of the porous medium. This impedance is then introduced into the
vibroacoustic finite element formulation to take into account the dissipative aspect of the
Sfluid-structure interface.

RESUME. Ce travail porte sur la modélisation éléments finis de probléemes de vibroacoustique
interne avec interfaces dissipatives. L’ objectif est de faire le lien entre une modélisation du
matériau absorbant par impédance de paroi et une modélisation de type poroélastique
s ‘appuyant sur la théorie de Biot. L approche proposée consiste a déterminer les paramétres
de l'impédance de paroi a partir de caractéristiques intrinseques du milieu poreux. Cette
impédance est ensuite introduite dans la formulation éléments finis du probléme
vibroacoustique pour tenir compte de I’aspect dissipatif a |'interface fluide-structure.
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1. Introduction

In recent years, considerable research has been devotkd tevelopment and
testing of noise reduction techniques by passive dampiegtrtrents. Many ap-
proaches have been proposed in the literature, in panti¢talanodel the absorb-
ing material. These approaches are often based on poioeasterial modeling
(Allard, 1993; Atallaet al., 1998; Géransson, 1998; Davidsson, 2004). In this work,
we focus on the formulation of structural-acoustic protdewith interface damp-
ing using a wall impedance approach. In this context, let estian the paper of
Kehr-Candille and Ohayon (Kehr-Candibéal., 1992), where a frequency-dependent
impedance is introduced to describe the absorbing matriké fluid-structure inter-
face, and where a substructuring method is used to solveissgative structural-
acoustic system. In that work, the fluid is described by assaaiknown field (pres-
sure or fluid displacement potential) and the problem is migaky solved in fre-
guency domain by the finite element method. Using the sameé &inapproach,
Bermudez and Rodriguez present in (Bermietez., 1999) a finite element method to
compute the dynamic response of an elastoacoustic systéndissipative interface
subject to external harmonic excitations. In their papéisplacement formulation is
used for both media, requiring a particular attention todiseretization of the admis-
sible class of irrotational motions of the fluid. More redgrén original formulation
for interior structural-acoustic dissipative problemaséd on the introduction of the
normal fluid displacement field at the fluid-structure irded, has been proposed by
the authors (Deét al.,, 2006; Larbiet al., 2006). In the present paper, the main purpose
is to establish the link between dissipative models by wadlstic impedance and by
poroelastic approach based on the Biot-Allard theory (@llld4993) (cf. Figurgll).

Kelvin-Voigt
wall impedance Z(®)

Porous medium (u*, p/)

Figure 1. Structural-acoustic problem with absorbing interface maled by: a)
porous medium, b) acoustic wall impedance

The dissipative structural-acoustic coupled problem ist&sf an elastic structure
covered by a thin layer of absorbing material and filled withimviscid, compress-
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ible and barotropic fluid, gravity effects being neglectéd.order to take the effect
of a thin layer of absorbing material at the fluid-structumteiface into account, a
wall impedance approach is used. The question is here howottelnand identify
this impedance. A first strategy consists in using expertaieneasurements in a par-
ticular frequency range (Pierce, 1989). Another choiceickwviis developed in this
paper, is to use refined poroelactic approaches. In thigggmwe present in the first
part of this paper the finite element modeling of poroelaaisorbing material based
on Biot-Allard theory. The associated acoustic wall impesacan then be predicted
from this numerical approach or by an analytical expressiohe case of laterally
infinite poroelastic materials excited by unit amplitudemal incidence plane wave.
Next, we present the finite element formulations of struadtacoustic problem with
absorbing interface considering (i) general acoustic thapee model and (ii) approxi-
mate Kelvin-Voigt model. In this last case, the associatattimsystem can be solved
in frequency and time domains using direct time integratimethods and/or modal
reduction approaches.

2. Poroelastic modeling of absorbing materials based on BiéAllard theory

In the literature, several 3D finite element models basediotAlard theory are
developed for the forced response of a poroelastic ma{&iatansson, 1998; Atallet
al., 1998; Davidssoet al., 2006). We recall in this section the pressure/displacémen
(u®,p’) finite element formulation developed by Atalla (Atat# al, 1998). This
numerical approach will be used to model and identify themadrincidence surface
impedanceZ (w).

2.1. Finite el ement formulation

We consider a single isotropic porous material describethbyBiot-Allard ap-
proach (Allard, 1993). This model is defined by (i) five georcel parameters (the
porosity ¢, the flow resistivityo, the tortuositye.,, the viscous characteristic length
A, and the thermal characteristic length, (i) the mechanical characteristics of the
skeleton, and (iii) the saturating fluid properties. A dethidescription of this model
can be found for example in (Atalkt al,, 1998).

The Biot-Allard poroelasticity equations are written hémeterms of the solid
phase displacement® and the interstitial fluid pressuge’. It is important to note
that the small movement of the fluid is not irrotational anel dissipation effects are
expressed by complex quantities which depend on the anfyatprencyw (cf. signs
"~"in the following equations).



680 REMN - 17/2008. Giens 2007

For harmonic motion, the local equations of the poroelasiéciium are given in
terms of(u®, p/) by

dive® (u®) 4+ w?pu’ + 4Vp/ = [1]
2022 f 022
Ap! + W2 Fdivu® =0 2
p TP Y (2]
whereo? is the in vacuo stress tensor of the poroelastlc aggregateedvier, we have
p=p11— Pla/Po2, 7 = d(pr2/p22 — Q/R), Q = (1 — $) K., R = ¢K, whereK,

is the bulk modulus of the fluid phasg;; is the corrected mass density for the solid
phase is the inertial coupling factor; ang,, is the corrected mass density of the
fluid phase. All these parameters are defined in terms of teéqursly mentioned
geometrical and mechanical properties of the porous medium

From EquationsJ1] and]2], the variational formulation dawritten in the fol-
lowing form

/0' es(éus)dvfwz/ pu’® - ou’dv
Q Q

P p

—/ AVp! - sud dv — / (o°n)-du’ds =0 Voéu® [3]
Q a0

I3

2
4 Vp! - Vép! dv — / d) fépfdv—/ Fu® - Vop! dv

25
Qp

Q, W7 P22
2 f
+/ (’yus~n ¢ ap)afdso vop!  [4]
o0,

w?pog On

where(2,, ando$2,, refer to the poroelastic domain and its boundary surfads,the
external normal vector of the boundad{?,,, €° is the strain tensor of the solid phase.

The discretization of the previous variational formulatieads to the following
matrix equation

(6 W) () - (& &) () - (&) °
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whereU? andP/ are the vectors of nodal valueswf andp/ respectively, and where
the submatrices of Equation [5] are given by

J

o*(u®) : e°(0u’) dv = SUSTKU® ; / pu’ - du’ dv = §USTMU®
Qp

5Vp! - dud dv = sUSTCP/ / Fut - Vop! dv = sP7 CTUS

p QP

/,
2 B 2 B
Ot eyt dv = 6P TEPT / O oF 5pf dv = 0P GP!
Q, P22 o, R

In structural-acoustic problem with absorbing materihis tapproach leads to a
coupling between porous material degrees of freedom andutmteunding fluid and
structure degrees of freedom. Therefore, the whole proldevery large and thus
computationally time consuming. One of the best ways todhthis problem is to use
a reduced or impedance models as described in the nextrsectio

2.2. Computation of normal incidence surface impedance

The surface impedance of laterally infinite poroelasticariat predicted by the
presentedu®, p/) model is investigated in this section. The configurationasrsdudy
is depicted in FigurE]2. The porous layer, of thicknéss 0.1m and material proper-
ties given in Tabl€l1, is bonded onto a rigid walkat 0. A normal incidence plane
wave of unit amplitude excites the absorbing material at — L.

0 Rigid wall (x=0)

Normal incidence
plane wave (x=-L)

Figure 2. Geometry of the normal acoustic impedance problem
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Table 1. Physical properties of the porous material
¢ o(Nsim') o, A(um) A (um) B, (kPa) v, 7. ps (kg/m’)
.94 40000 1.06 56 110 4400 0 1 130

The normal incidence surface impedance (Fidure 3a) is leaémliusing the dis-
placement of fluid and solid phases: andu/ respectively, at the input surface
(x = —L) for the unit acoustic pressure excitation by the followatgiation

1
iw[puf(=L) + (1 — p)u*(—L)]
where the displacement of fluid and solid phases are caétliaging the previous
(u®,p’) formulation.

Z(w) = (6]
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Figure 3. Real and imaginary parts of normal incidence surface impeéa (a) nor-
mal incidence surface impedance computed from Biot-Atlaedry, (b) identification
of normal impedance parametets andd’ in frequency range [0 - 300 Hz]

In frequency range [0 - 300 Hz], the normal incidence surfaqgedance can be
approached by a Kelvin-Voigt model, i.e. sum of a constaaitpart and an imaginary
part inversely proportional to the frequency:

Z(w) = d" +ik" Jw [7]

The parameterd’ andd’ (k! ~ 1.1 x 10% Pa/m andi’ ~ 1290 Pa.s/m), characteriz-
ing respectively the elastic and the viscous aspect of theraimg layer, are deduced
from the acoustic surface impedance by a least squares dn@yure 3b).

3. Finite element formulations of structural-acoustic prdolems with absorbing
interface

This section concerns the finite element modeling of strattacoustic prob-
lems with absorbing interfaces. The absorbing materialdsleted by a frequency-
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dependent wall acoustic impedance. We present here a pegdisplacement formu-
lation with (i) general acoustic impedance and (ii) KelWoigt impedance models.

3.1. General acoustic impedance model

We consider an elastic structure occupying the dorfigirat the equilibrium. The
structure is clamped on a pdrt, and subjected to surface force dendity on the
complementary part of its external bound&ky The damping interface between the
fluid and the structure corresponds to a third domain wittioickness. This domain
is modeled by a wall acoustic impedang€év). The local equations of this structural-
acoustic coupled problem with damped interface can beemriti terms of structure
displacement: and fluid pressure fielg by

diver(u) + psw’u =0 in Qg [8]
o(u)ng = F? onT’; [9]
o(u)ng = pn onx [10]
u=20 onl, [11]

W2
Ap+ —5p=0 inQp [12]

CF
Vp n=ppwiu-nt+il, ony [13]

Z(w)

whereng andn are the external unit normal fos and2; ps andpg are the structure
and fluid mass densities is the speed of sound in the fluid; aadis the structure
stress tensor.

The variational formulation of the problem is obtained gsthe test-function
method. For this purpose, we introduce the spd¢eandC,, of sufficiently smooth
functions associated with the field variableandp respectively.

Let du be the test function associated g belonging to the admissible space
Cr = {6u € Cy|éu = 00onT,}. Multiplying Equation [8] bydu € C}, applying
Green’s formula, and finally taking Equatioh$ [9] ahdl[1Gpiaccount, we have:

/ o(u) : g(du)dv — / pn - duds —w2/ psu - odudv
Qs b Qs

:/ F¢.6uds Véue Ct [14]
Ty



684 REMN - 17/2008. Giens 2007

Similarly, let§p be the test function, associateditobelonging to the admissible
spaceC,. Multiplying Equation [12] byép € C,, applying Green’s formula, and
finally taking Equation[[I13] into account, we obtain:

1
— Vp~V6pdv—iL/pépds—wZ/u~n6pds
PF JOp Z(w) Js by

O.)2

— 2/ popdv =0 Vépe Cp, [15]
PFCEr Jar

Thus, the variational unsymmetric formulation of the edasbustic problem with
interface damping consists, for given appropriate ing@iditions, in findingu, p) €
(Cy, Cp) such thaty(du, dp) € (C;, Cp) Equations[[I4] and [15] are satisfied.

After discretizing by the finite element method the bilinflams in Equationd14]
and [I5], we obtain the following matrix system of the cowapbeoblem:

K, —Cy,\ ., v (0 0\ /M, 0 U\ _ (F
0 K, "Zwy \o D,) " \cr M,/ \P) " \o
[16]
whereU andP are the vectors of nodal valueswindp respectivelyF is the vector

of external forces defined bﬁrt F?.5uds = JU”F; and the real and frequency-
independent submatrices of Equatibn][16] are given by:

/ o(u):e(du)dv = JUTK, U ; / psu-dudv = UM, U
Qs QS

1 1
— Vp-Vépdv = P'K,P ; — / pépdv = sPTM, P
PF JOp PFCE Jagp
/ pn.duds = dUTC,,P : / pépds = SPTD,P

b)) b))

3.2. Kelvin-Voigt impedance model

Due to the frequency complex dependence of the acoustidnvpidanceZ (w),

the previous unsymmetric formulation can be written onlyraguency domain and
allows to nonlinear system in terms of angular frequencylo avoid this problem, a
new finite element formulation based on the introductionrofdditional scalar un-
known, namely the normal fluid displacement figlat the dissipative interface, has
been recently presented by the authors (Btél., 2006; Larbiet al., 2006). In this
case, the acoustic wall impedangév) is approximated by a Kelvin-Voigt rheological
model, i.e. sum of a constant real part and an imaginary peersely proportional
to the frequency:Z(w) = d! + ik’ /w (see Sectiof]2). The local equations of the
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structural-acoustic problem with absorbing material dentbe written in terms of
structure displacement, fluid pressure» and normal fluid displacement at the inter-
facen:

— Structure
. 0%u .
dive(u) — PS5z =0 inQg [17]
o(u)n® =F? onT, [18]
u=0 onl, [19]
o()n® =|k'(n —u-n)+ dI(?)Z g—ltl ‘n)|n onx [20]
— Fluid
L% _, in [21]
2 ot? N F
°n
— Interface
p+Ek(u-n )+d1(?;tl nf%):() ony [23]

The variational formulation of the problem is obtained gsthe test-function
method.

Multiplying Equation [IT] bydu € C}, applying Green’s formula, and finally
taking Equationd[118] andT20] into account, we have:

/ U(u):5(5u)dv+k1/(u-n)n-éuds—I—dl/(a—u-n)n-(Suds
Qs = ot

P

—kl/nnﬁuds—dl/ @nﬂuds—i—/ psa 5 (5udv—/ F¢.5uds
» » at Qg at T,
[24]

Similarly, multiplying Equation[[2}L] byyp € C,, applying Green’s formula, and
finally taking Equation[[2R] into account, we obtain:

N va5pdv+ 1/ §6d+/—]§d70 [25]
PF prcs Jo, Ot
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Finally, we consider the spacg, of sufficiently regular functiong defined inx.
Multiplying Equation [23] byén € C,,, we have:

kl/nénds—kl/u-nénds
b b

on Ju
1 [ on a1 [ Ju _ _
+d /Eat onds —d /Eat ndnds /Epénds 0 [26]

Thus, the variational unsymmetric formulation of the edasbustic problem
with interface damping consists, for given appropriatéiahiconditions, in finding
(u,n,p) € (C%,Cy, Cp) such that¥(du, én, ép) € (Cy,Cy, Cyp), Equations[[21],
[25] and [26] are satisfied.

After discretizing by the finite element method the bilindarms in Equa-
tions [24], [25] and [[2B], we obtain the following matrix eafion of the coupled

system:
M, 0\ /U d'G, —d'G,, 0\ (U
0 o||H|+(-dGI, dG, of(H
o cI M,/ \p 0 0 0/ \p
K,+kG, —-k'G,, 0 U F
+| —k'GIL, G, -C,||(H|=(0] [27]
0 0 K, P 0

whereU, H andP are the vectors of nodal valueswfn andp respectively and the
new submatrices are given by

g;ﬂo (en)

0%n ..
/Z ponds = ¢H"C,,P : /Z wép ds = 0P"C] H
/z(u -n)n-duds = UTG,U ; /277577 ds = dH'G,H
/ mm - duds = 6UTGW,H ; / u-noénds = 5HTGZHU
by b

This formulation has the advantage that it can be solvedeiquigncy and in time
domain by introducing only one unknown per node on the dagpiterface (normal
fluid displacement)). On the other hand, it has the disadvantage of yieldingmnsy
metric matrices. The symmetric formulation can be obtathedugh the introduction
of an intermediate unknown field, namely fluid displacemexéptialy defined up to
an additive constant (Moraret al, 1995; Delet al,, 2006).
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4. Example: dissipative acoustic pipe submitted to a presse load

In this example, a pressure load is applied to the left edge sifaight pipe (of
lengthA = 5 m and widthB = 0.5 m) containing air (densityr = 1 kg/m?, speed
of soundcr = 340 m/s) and with an absorption wall at the right edge (Figurer)s
absorbing boundary is modeled by the previously descritetagoustic impedance
Z(w) = d' +ik! /w. The damping parameters, given in Secfiod 2.2, are chosen in
order to attenuate the vibration amplitudes without shiftthe frequencies in a too
significant way. The considered harmonic excitation haddtewing form p?(t) =
posin(27t/Ty) with 1/77 = 200 Hz andp, = 1000 Pa. Moreover, the transient
response of the acoustic pipe is computed using a directititagration method.

Absorbing wall

.
— Lr *M
pd(t)z,: QF FA 0.5m
Sm

Figure 4. Straight pipe submitted to a pressure load at the left end

Figure[4 shows the frequency responses of the damped andnpedaacoustic
pipe at the point MZ.5 m,0.4 m). This figure indicates that the damping significantly
reduced the first resonant peaks, with the largest redisctiohieved after the excita-
tion (at200 Hz). Moreover, it can be observed that the absorbing boynciused a
small shift of the resonant frequencies. This is due to thimggffect of the Kelvin-
Voigt model used for the impedance.

Spectrum (dB)

=70 - Undamped
——Damped

50 100 150 200 250 300
Frequency (Hz)

Figure 5. Pipe frequency responses to harmonic pressure in the darapddun-
damped cases
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5. Conclusions

Finite element formulations of interior vibroacoustic pted problems with ab-
sorbing interfaces have been presented in this work. Ttegpdive interface is mod-
eled by wall acoustic impedance in a limited frequency rangee used technique
is based on the prediction of the surface impedance paresnieten a Biot-Allard
poroelastic model. This approach, combined with an origitractural-acoustic finite
element formulation developed by the authors, is testechaacaustic pipe example
with damping interface.
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