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1. Introduction

In recent years, considerable research has been devoted to the development and
testing of noise reduction techniques by passive damping treatments. Many ap-
proaches have been proposed in the literature, in particular to model the absorb-
ing material. These approaches are often based on poroelastic material modeling
(Allard, 1993; Atallaet al., 1998; Göransson, 1998; Davidsson, 2004). In this work,
we focus on the formulation of structural-acoustic problems with interface damp-
ing using a wall impedance approach. In this context, let us mention the paper of
Kehr-Candille and Ohayon (Kehr-Candilleet al., 1992), where a frequency-dependent
impedance is introduced to describe the absorbing materialat the fluid-structure inter-
face, and where a substructuring method is used to solve the dissipative structural-
acoustic system. In that work, the fluid is described by a scalar unknown field (pres-
sure or fluid displacement potential) and the problem is numerically solved in fre-
quency domain by the finite element method. Using the same kind of approach,
Bermúdez and Rodríguez present in (Bermúdezet al., 1999) a finite element method to
compute the dynamic response of an elastoacoustic system with dissipative interface
subject to external harmonic excitations. In their paper, adisplacement formulation is
used for both media, requiring a particular attention to thediscretization of the admis-
sible class of irrotational motions of the fluid. More recently, an original formulation
for interior structural-acoustic dissipative problems, based on the introduction of the
normal fluid displacement field at the fluid-structure interface, has been proposed by
the authors (Deüet al., 2006; Larbiet al., 2006). In the present paper, the main purpose
is to establish the link between dissipative models by wall acoustic impedance and by
poroelastic approach based on the Biot-Allard theory (Allard, 1993) (cf. Figure 1).
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Figure 1. Structural-acoustic problem with absorbing interface modeled by: a)
porous medium, b) acoustic wall impedance

The dissipative structural-acoustic coupled problem consists of an elastic structure
covered by a thin layer of absorbing material and filled with an inviscid, compress-
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ible and barotropic fluid, gravity effects being neglected.In order to take the effect
of a thin layer of absorbing material at the fluid-structure interface into account, a
wall impedance approach is used. The question is here how to model and identify
this impedance. A first strategy consists in using experimental measurements in a par-
ticular frequency range (Pierce, 1989). Another choice, which is developed in this
paper, is to use refined poroelactic approaches. In this context, we present in the first
part of this paper the finite element modeling of poroelasticabsorbing material based
on Biot-Allard theory. The associated acoustic wall impedance can then be predicted
from this numerical approach or by an analytical expressionin the case of laterally
infinite poroelastic materials excited by unit amplitude normal incidence plane wave.
Next, we present the finite element formulations of structural-acoustic problem with
absorbing interface considering (i) general acoustic impedance model and (ii) approxi-
mate Kelvin-Voigt model. In this last case, the associated matrix system can be solved
in frequency and time domains using direct time integrationmethods and/or modal
reduction approaches.

2. Poroelastic modeling of absorbing materials based on Biot-Allard theory

In the literature, several 3D finite element models based on Biot-Allard theory are
developed for the forced response of a poroelastic material(Göransson, 1998; Atallaet
al., 1998; Davidssonet al., 2006). We recall in this section the pressure/displacement
(us, pf ) finite element formulation developed by Atalla (Atallaet al., 1998). This
numerical approach will be used to model and identify the normal incidence surface
impedanceZ(ω).

2.1. Finite element formulation

We consider a single isotropic porous material described bythe Biot-Allard ap-
proach (Allard, 1993). This model is defined by (i) five geometrical parameters (the
porosityφ, the flow resistivityσ, the tortuosityα∞, the viscous characteristic length
Λ, and the thermal characteristic lengthΛ

′

), (ii) the mechanical characteristics of the
skeleton, and (iii) the saturating fluid properties. A detailed description of this model
can be found for example in (Atallaet al., 1998).

The Biot-Allard poroelasticity equations are written herein terms of the solid
phase displacementus and the interstitial fluid pressurepf . It is important to note
that the small movement of the fluid is not irrotational and the dissipation effects are
expressed by complex quantities which depend on the angularfrequencyω (cf. signs
"~" in the following equations).
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For harmonic motion, the local equations of the poroelasticmedium are given in
terms of(us, pf ) by

divσ
s(us) + ω2ρ̃us + γ̃∇pf = 0 [1]

∆pf + ω2
ρ̃22

R̃
pf − ω2

ρ̃22

φ2
γ̃divus = 0 [2]

whereσ
s is the in vacuo stress tensor of the poroelastic aggregate. Moreover, we have

ρ̃ = ρ̃11 − ρ̃2
12/ρ̃22, γ̃ = φ(ρ̃12/ρ̃22 − Q̃/R̃), Q̃ = (1 − φ)K̃e, R̃ = φK̃e whereK̃e

is the bulk modulus of the fluid phase;ρ̃11 is the corrected mass density for the solid
phase;̃ρ12 is the inertial coupling factor; and̃ρ22 is the corrected mass density of the
fluid phase. All these parameters are defined in terms of the previously mentioned
geometrical and mechanical properties of the porous medium.

From Equations [1] and [2], the variational formulation canbe written in the fol-
lowing form

∫

Ωp

σ
s : ε

s(δus) dv − ω2

∫

Ωp

ρ̃us · δus dv

−

∫

Ωp

γ̃∇pf · δus dv −

∫

∂Ωp

(σs
n) · δus ds = 0 ∀ δus [3]

∫

Ωp

φ2

ω2ρ̃22

∇pf · ∇δpf dv −

∫

Ωp

φ2

R̃
pf δpf dv −

∫

Ωp

γ̃u
s · ∇δpf dv

+

∫

∂Ωp

(

γ̃u
s · n −

φ2

ω2ρ̃22

∂pf

∂n

)

δpf ds = 0 ∀ δpf [4]

whereΩp and∂Ωp refer to the poroelastic domain and its boundary surface,n is the
external normal vector of the boundary∂Ωp, ε

s is the strain tensor of the solid phase.

The discretization of the previous variational formulation leads to the following
matrix equation

(

K −C̃

0 H̃

) (

U
s

P
f

)

− ω2

(

M̃ 0

C̃
T

G̃

)(

U
s

P
f

)

=

(

F
s

F
f

)

[5]
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whereUs andP
f are the vectors of nodal values ofu

s andpf respectively, and where
the submatrices of Equation [5] are given by

∫

Ωp

σ
s(us) : ε

s(δus) dv ⇒ δUsT
KU

s ;

∫

Ωp

ρ̃us · δus dv ⇒ δUsT
M̃U

s

∫

Ωp

γ̃∇pf · δus dv ⇒ δUsT
C̃P

f ;

∫

Ωp

γ̃u
s · ∇δpf dv ⇒ δPf T

C̃
T
U

s

∫

Ωp

φ2

ρ̃22

∇pf · ∇δpf dv ⇒ δPf T
H̃P

f ;

∫

Ωp

φ2

R̃
pf δpf dv ⇒ δPf T

G̃P
f

In structural-acoustic problem with absorbing material, this approach leads to a
coupling between porous material degrees of freedom and thesurrounding fluid and
structure degrees of freedom. Therefore, the whole problemis very large and thus
computationally time consuming. One of the best ways to avoid this problem is to use
a reduced or impedance models as described in the next sections.

2.2. Computation of normal incidence surface impedance

The surface impedance of laterally infinite poroelastic material predicted by the
presented(us, pf ) model is investigated in this section. The configuration under study
is depicted in Figure 2. The porous layer, of thicknessL = 0.1m and material proper-
ties given in Table 1, is bonded onto a rigid wall atx = 0. A normal incidence plane
wave of unit amplitude excites the absorbing material atx = −L.

 Rigid wall (x=0)

Normal incidence

plane wave (x=-L)

L=0.1m

Figure 2. Geometry of the normal acoustic impedance problem



682 REMN – 17/2008. Giens 2007

Table 1. Physical properties of the porous material

φ σ (Ns/m4) α∞ Λ (µm) Λ
′

(µm) Es (kPa) νs ηs ρs (kg/m3)
.94 40000 1.06 56 110 4400 0 .1 130

The normal incidence surface impedance (Figure 3a) is calculated using the dis-
placement of fluid and solid phases,u

s and u
f respectively, at the input surface

(x = −L) for the unit acoustic pressure excitation by the followingequation

Z(ω) =
1

iω [φuf (−L) + (1 − φ)us(−L)]
[6]

where the displacement of fluid and solid phases are calculated using the previous
(us, pf ) formulation.
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Figure 3. Real and imaginary parts of normal incidence surface impedance: (a) nor-
mal incidence surface impedance computed from Biot-Allardtheory, (b) identification
of normal impedance parameterskI anddI in frequency range [0 - 300 Hz]

In frequency range [0 - 300 Hz], the normal incidence surfaceimpedance can be
approached by a Kelvin-Voigt model, i.e. sum of a constant real part and an imaginary
part inversely proportional to the frequency:

Z(ω) = dI + ikI/ω [7]

The parameterskI anddI (kI ≈ 1.1× 106 Pa/m anddI ≈ 1290 Pa.s/m), characteriz-
ing respectively the elastic and the viscous aspect of the absorbing layer, are deduced
from the acoustic surface impedance by a least squares method (Figure 3b).

3. Finite element formulations of structural-acoustic problems with absorbing
interface

This section concerns the finite element modeling of structural-acoustic prob-
lems with absorbing interfaces. The absorbing material is modeled by a frequency-
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dependent wall acoustic impedance. We present here a pressure/displacement formu-
lation with (i) general acoustic impedance and (ii) Kelvin-Voigt impedance models.

3.1. General acoustic impedance model

We consider an elastic structure occupying the domainΩS at the equilibrium. The
structure is clamped on a partΓu and subjected to surface force densityF

d on the
complementary part of its external boundaryΓt. The damping interfaceΣ between the
fluid and the structure corresponds to a third domain withoutthickness. This domain
is modeled by a wall acoustic impedanceZ(ω). The local equations of this structural-
acoustic coupled problem with damped interface can be written in terms of structure
displacementu and fluid pressure fieldp by

divσ(u) + ρSω2
u = 0 in ΩS [8]

σ(u)nS = F
d onΓt [9]

σ(u)nS = pn onΣ [10]

u = 0 onΓu [11]

∆p +
ω2

c2

F

p = 0 in ΩF [12]

∇p · n = ρF ω2
u · n + i

ρF ω

Z(ω)
p on Σ [13]

wherenS andn are the external unit normal toΩS andΩF ; ρS andρF are the structure
and fluid mass densities;cF is the speed of sound in the fluid; andσ is the structure
stress tensor.

The variational formulation of the problem is obtained using the test-function
method. For this purpose, we introduce the spacesCu andCp of sufficiently smooth
functions associated with the field variablesu andp respectively.

Let δu be the test function associated tou, belonging to the admissible space
C⋆

u = {δu ∈ Cu | δu = 0 onΓu}. Multiplying Equation [8] byδu ∈ C⋆
u, applying

Green’s formula, and finally taking Equations [9] and [10] into account, we have:

∫

ΩS

σ(u) : ε(δu) dv −

∫

Σ

pn · δu ds − ω2

∫

ΩS

ρSu · δu dv

=

∫

Γt

F
d · δu ds ∀δu ∈ C∗

u [14]
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Similarly, let δp be the test function, associated top, belonging to the admissible
spaceCp. Multiplying Equation [12] byδp ∈ Cp, applying Green’s formula, and
finally taking Equation [13] into account, we obtain:

1

ρF

∫

ΩF

∇p · ∇δp dv − i
ω

Z(ω)

∫

Σ

pδp ds − ω2

∫

Σ

u · nδp ds

−
ω2

ρF c2

F

∫

ΩF

p δp dv = 0 ∀δp ∈ Cp [15]

Thus, the variational unsymmetric formulation of the elastoacoustic problem with
interface damping consists, for given appropriate initialconditions, in finding(u, p) ∈
(C⋆

u, Cp) such that,∀(δu, δp) ∈ (C⋆
u, Cp) Equations [14] and [15] are satisfied.

After discretizing by the finite element method the bilinearforms in Equations [14]
and [15], we obtain the following matrix system of the coupled problem:

[(

Ku −Cup

0 Kp

)

− i
ω

Z(ω)

(

0 0

0 Dp

)

− ω2

(

Mu 0

C
T
up Mp

)](

U

P

)

=

(

F

0

)

[16]

whereU andP are the vectors of nodal values ofu andp respectively;F is the vector
of external forces defined by

∫

Γt
F

d · δu ds ⇒ δUT
F; and the real and frequency-

independent submatrices of Equation [16] are given by:
∫

ΩS

σ(u) : ε(δu) dv ⇒ δUT
KuU ;

∫

ΩS

ρSu · δu dv ⇒ δUT
MuU

1

ρF

∫

ΩF

∇p · ∇δp dv ⇒ δPT
KpP ;

1

ρF c2

F

∫

ΩF

pδp dv ⇒ δPT
MpP

∫

Σ

pn.δu ds ⇒ δUT
CupP ;

∫

Σ

pδp ds ⇒ δPT
DpP

3.2. Kelvin-Voigt impedance model

Due to the frequency complex dependence of the acoustic wallimpedanceZ(ω),
the previous unsymmetric formulation can be written only infrequency domain and
allows to nonlinear system in terms of angular frequencyω. To avoid this problem, a
new finite element formulation based on the introduction of an additional scalar un-
known, namely the normal fluid displacement fieldη at the dissipative interface, has
been recently presented by the authors (Deüet al., 2006; Larbiet al., 2006). In this
case, the acoustic wall impedanceZ(ω) is approximated by a Kelvin-Voigt rheological
model, i.e. sum of a constant real part and an imaginary part inversely proportional
to the frequency:Z(ω) = dI + ikI/ω (see Section 2). The local equations of the
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structural-acoustic problem with absorbing material can then be written in terms of
structure displacementu, fluid pressurep and normal fluid displacement at the inter-
faceη:

– Structure

divσ(u) − ρS

∂2
u

∂t2
=0 in ΩS [17]

σ(u)nS =F
d onΓt [18]

u =0 onΓu [19]

σ(u)nS =

[

kI(η − u · n) + dI(
∂η

∂t
−

∂u

∂t
· n)

]

n onΣ [20]

– Fluid

∆p −
1

c2

F

∂2p

∂t2
= 0 in ΩF [21]

∇p · n = −ρF

∂2η

∂t2
on Σ [22]

– Interface

p + kI(u · n − η) + dI(
∂u

∂t
· n −

∂η

∂t
) = 0 on Σ [23]

The variational formulation of the problem is obtained using the test-function
method.

Multiplying Equation [17] byδu ∈ C⋆
u, applying Green’s formula, and finally

taking Equations [18] and [20] into account, we have:

∫

ΩS

σ(u) : ε(δu) dv + kI

∫

Σ

(u · n)n · δu ds + dI

∫

Σ

(
∂u

∂t
· n)n · δu ds

−kI

∫

Σ

ηn·δu ds−dI

∫

Σ

∂η

∂t
n·δu ds+

∫

ΩS

ρS

∂2
u

∂t2
·δu dv =

∫

Γt

F
d ·δu ds

[24]

Similarly, multiplying Equation [21] byδp ∈ Cp, applying Green’s formula, and
finally taking Equation [22] into account, we obtain:

1

ρF

∫

ΩF

∇p · ∇ δp dv +
1

ρF c2

F

∫

ΩF

∂2p

∂t2
δp dv +

∫

Σ

∂2η

∂t2
δp ds = 0 [25]
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Finally, we consider the spaceCη of sufficiently regular functionsη defined inΣ.
Multiplying Equation [23] byδη ∈ Cη, we have:

kI

∫

Σ

η δη ds − kI

∫

Σ

u · n δη ds

+ dI

∫

Σ

∂η

∂t
δη ds − dI

∫

Σ

∂u

∂t
· n δη ds −

∫

Σ

p δη ds = 0 [26]

Thus, the variational unsymmetric formulation of the elastoacoustic problem
with interface damping consists, for given appropriate initial conditions, in finding
(u, η, p) ∈ (C⋆

u, Cη, Cp) such that,∀(δu, δη, δp) ∈ (C⋆
u, Cη, Cp), Equations [24],

[25] and [26] are satisfied.

After discretizing by the finite element method the bilinearforms in Equa-
tions [24], [25] and [26], we obtain the following matrix equation of the coupled
system:





Mu 0 0

0 0 0

0 C
T
ηp Mp









Ü

Ḧ

P̈



 +





dI
Gu −dI

Guη 0

−dI
G

T
uη dI

Gη 0

0 0 0









U̇

Ḣ

Ṗ





+





Ku + kI
Gu −kI

Guη 0

−kI
G

T
uη kI

Gη −Cηp

0 0 Kp









U

H

P



 =





F

0

0



 [27]

whereU, H andP are the vectors of nodal values ofu, η andp respectively and the
new submatrices are given by

∫

Σ

p δη ds ⇒ δHT
CηpP ;

∫

Σ

∂2η

∂t2
δp ds ⇒ δPT

C
T
ηpḦ

∫

Σ

(u · n)n · δu ds ⇒ δUT
GuU ;

∫

Σ

η δη ds ⇒ δHT
GηH

∫

Σ

ηn · δu ds ⇒ δUT
GuηH ;

∫

Σ

u · n δη ds ⇒ δHT
G

T
uηU

This formulation has the advantage that it can be solved in frequency and in time
domain by introducing only one unknown per node on the damping interface (normal
fluid displacementη). On the other hand, it has the disadvantage of yielding unsym-
metric matrices. The symmetric formulation can be obtainedthrough the introduction
of an intermediate unknown field, namely fluid displacement potentialϕ defined up to
an additive constant (Morandet al., 1995; Deüet al., 2006).



Abosrbing interfaces in vibroacoustics 687

4. Example: dissipative acoustic pipe submitted to a pressure load

In this example, a pressure load is applied to the left edge ofa straight pipe (of
lengthA = 5 m and widthB = 0.5 m) containing air (densityρF = 1 kg/m3, speed
of soundcF = 340 m/s) and with an absorption wall at the right edge (Figure 4).This
absorbing boundary is modeled by the previously described wall acoustic impedance
Z(ω) = dI + ikI/ω. The damping parameters, given in Section 2.2, are chosen in
order to attenuate the vibration amplitudes without shifting the frequencies in a too
significant way. The considered harmonic excitation has thefollowing form pd(t) =
p0 sin(2πt/T1) with 1/T1 = 200 Hz andp0 = 1000 Pa. Moreover, the transient
response of the acoustic pipe is computed using a direct timeintegration method.

0.5 m
ΓR

ΩF
ΓA

5 m

Absorbing wall

Μ
pd(t) 

Figure 4. Straight pipe submitted to a pressure load at the left end

Figure 4 shows the frequency responses of the damped and undamped acoustic
pipe at the point M (2.5 m,0.4 m). This figure indicates that the damping significantly
reduced the first resonant peaks, with the largest reductions achieved after the excita-
tion (at200 Hz). Moreover, it can be observed that the absorbing boundary caused a
small shift of the resonant frequencies. This is due to the spring effect of the Kelvin-
Voigt model used for the impedance.
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Figure 5. Pipe frequency responses to harmonic pressure in the dampedand un-
damped cases
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5. Conclusions

Finite element formulations of interior vibroacoustic coupled problems with ab-
sorbing interfaces have been presented in this work. The dissipative interface is mod-
eled by wall acoustic impedance in a limited frequency range. The used technique
is based on the prediction of the surface impedance parameters from a Biot-Allard
poroelastic model. This approach, combined with an original structural-acoustic finite
element formulation developed by the authors, is tested on an acoustic pipe example
with damping interface.
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