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ABSTRACT. The solution of the elastodynamic equations using boundary element methods
(BEMs) gives rise to fully-populated matrix equations. Earlier investigations on the
Helmholtz and Maxwell equations have established that the Fast Multipole (FM) method
reduces the complexity of a BEM solution to N log, N per GMRES iteration. The present
article addresses the extension of the FM-BEM strategy to 3D elastodynamics in the
frequency domain. Efficiency and accuracy are demonstrated on numerical examples
involving up to N = O(10) boundary nodal unknowns.

RESUME. La résolution des équations de |’élastodynamique par la méthode des éléments de
frontiéere (BEM) conduit a un systéme linéaire plein. Faisant suite a des travaux sur les
équations de Helmholtz et Maxwell ayant établi la capacité de la méthode multipéle rapide
(FM) a réduire la complexité de la BEM a N log, N par itération d’un solveur de type
GMRES, cet article présente la transposition de l'approche FM-BEM a [’élastodynamique 3D
dans le domaine fréquentiel. La précision et [’efficacité de la méthode sont illustrées sur des
exemples numériques mobilisant jusqu’a N = O(106) inconnues nodales de frontiere.
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1. Introduction

The boundary element method (BEM), pioneered in the sixi@&sise, 1969;
Rizzo, 1967), is a mesh reduction method, subject to réis&iconstitutive as-
sumptions but yielding highly accurate solutions. It is wrtcular well suited to
deal with unbounded-domain idealizations commonly usestismology (Danglat
al., 2005; Guzinaet al,, 2001) for example. In contrast with domain discretization
methods, artificial boundary conditions (Givoli, 1992) am# needed for dealing with
the radiation conditions, and grid dispersion cumulatiffeats are absent (Ihlenburg
et al, 1995; Semblagt al,, 2000).

However, in traditional boundary element (BE) implemeiotas, the dimen-
sional advantage with respect to domain discretizatiorhod is offset by the fully-
populated nature of the BEM coefficient matrix, with set-ng aolution times rapidly
increasing with the problem siz¥. It is thus essential to develop alternative, faster
strategies that allow to still exploit the known advantagé8EMs when largeN
prohibit the use of traditional implementations.

In other areas such as computational electromagnetismooistics, considerable
improvements in the computing speed and memory efficiencBE¥ algorithms
have been achieved on the basis of the Fast Multipole MetRlddA) (see the review
article by Nishimura (2002)), with solution times typigatf orderO(N log, N) per
iteration for frequency-domain wave propagation problginstead ofO(N?) per
iteration with traditional forms of the BEM).

This article is concerned with the formulation and impletagion of a multi-
level FM-BEM for 3-D elastodynamics in the frequency domaif@nly a few ref-
erences address this particular area of application. Twal three-dimensional
FM-BEMs for frequency-domain elastodynamics are propaeedrujiwara, 1998)
and (Fujiwara, 2000; Yoshida, 2001), respectively, whiteetdomain problems are
addressed in (Takahas#t al., 2003). The present work improves on the methodol-
ogy of (Fujiwara, 2000) by incorporating recent advancesMM implementations
for Maxwell equations (Darve, 2000a) for achieving optirmamputational efficiency.
Both the single-level and multi-level forms of the FM-BEMearonsidered, with em-
phasis on the latter.

2. Boundary integral method
2.1. Boundary integral representation

Let Q c R? denote the region of space occupied by a three-dimensitastie
solid with isotropic constitutive properties defined ppyshear modulus); (Poisson’s
ratio) andp (mass density). Time-harmonic motions, with circular fregcyw, in-
duced by a prescribed traction distributith on the boundarg2 and in the absence
of body forces, are considered for definiteness in thislartithe accommodation of
other boundary conditions requires only straight forwarddifications to the treat-
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ment proposed therein. The displacemeiis given at an interior point € 2 by the
following well-known representation formula (Bonnet, 299

wi@) =~ [ w)theyds, + [ PeUkeyes, W
o0 o0
whereUF (z, y; w) andT} (x, y; w) denote the-th components of the elastodynamic
fundamental solutioni,e. of the displacement and traction, respectively, generated
aty € R? by a unit point force applied at € R3 along the directiork, given
by (Eringenet al,, 1975):

1 g 0
F@,y50) = 75— ((04s0ik — Oqdis) 7 — — |k
Ut @, 30) = g (Gasdin = i) =5 Glly — s k)
g 0
—xlk 2
+ G oy Oy~ @l e)). (2]
0
TF(x, y;w) = Cijhfa_yzU}]f(way§w)nj(y)a [2b]
whereks andkp are the respective wavenumbers of S and P elastic wavesatso th
2
9 pw _ 2 1—2v
kS_ 1 ) k’P—’Yk’& v = 2(1_V)7 [3]

G(+; k) is the free-space Green’s function for the Helmholtz equmtvith wavenum-
berk, given by

exp(ikr)

G(r;k) = , (4]
n(y) is the unit normal t&d2 directed outwards of?, andC;;, are the components
of the fourth-order elasticity tensare..

2v

Cijhe = N[E(Sij(shé + 8indje + 05ndic . [5]

4mr

2.2. Boundary integral equation

Whenzx € 012, a singularity occurs iy = . With the help of a well-documented
limiting process (Brebbia, 1984), the integral represgoa[l] yields the integral
equation:

(Ku)(z) = f(x) (x € 00), [6]
with the linear integral operatd€ and the right-hand sidé defined by

(Ku)(@) = can(@)u (@) + (P.V.) , ui(y)Tf (x, y;w)dS, [7]

f(@) = /6 @)U @y, [8]
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where (P.V.) indicates a Cauchy principal value (CPV) slagintegral and thdree-
termc; () is equal td).54; in the usual case whet#) is smooth ate. The integral
operator [7] may be recast into alternative, equivalentlagzed forms which are
free of CPV integrals (Bonnet, 1999). Equations [1] and @& applicable to either
interior or exterior elastodynamic problems.

3. Fast Multipole Method: principle
3.1. Multipole expansions of the elastodynamic fundamental solutions

The FMM is based on a reformulation of the fundamental sohgiin terms of
products of functions af and ofy. This allows to re-use integrations with respecito
when the collocation point is changed, thereby lowering tli& N?) complexity per
iteration entailed by standard BEMs. The elastodynamidémmental solutions [2a,b]
are linear combinations of derivatives of the Green'’s fimc{4] for the Helmholtz
equation. On recasting the position veatos y —x in the formr = ro+ (y —y,) —
(x — =), wherexz, andy,, are two poles ana, = y, — x¢, the Helmholtz Green’s
function is shown (Eptoet al,, 1995; Darve, 2000b) to admit the decomposition

G(|r|;k) = lim e k8- W=v) G, (3;70; k)elFS-(®=20) g3 [9]
L—+4o00 ses
whereS is the unit sphere oR? and thetransfer functionGy, (3; ro; k) is defined in
terms of the Legendre polynomial$, and the spherical Hankel functions of the first

kind A" by:
ik

gL(g;To; /f) = W

> (@p+ DPAY (klro|) Py (cos(8, 7)) [10]
0<p<L

The decomposition [9]-[10] is seen to achieve the desirpdrsgion of variables:
andy. A similar multipole decomposition of the elastodynamindamental solutions
is easily obtained:

Uf(m,y;w) = lim e’ikpg'(y’yo)ukf(é;ro) elkps-(=x0) g3
L—+oo Jses "

+ Lhrf e—iks§~(y—yo)ujf(g;ro)eiksé.(m—mo) ds,  [11]
—TJses

Tf(m,y;w) — lim e—ikps.(y—yo) ,z—ikip(g;ro) eikps.(m—mo) ds
L—+co Jaes '

4 lim e—iksé.(y—yo) ,];kiS(§7 "“0) eiksé.(m—mo) ds, [12]
L—+o0 sesS i
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with the elastodynamic transfer functions given in termthefacoustic transfer func-
tion G, by

Uy (8;m0) = ;§i§k9L(§;To; kp), [13a]
kP s —iksy® s o a N
7.7 (8;m0) = p Cijne8e5n8:G1(8;7r0; kp)nj(y), [13D]
kS — 1 S, & a- .
U;p(8m0) = ;(5% — 818:)GL(8;r05 ks), [144]
- —ik . . .
7;{28(3%"‘0) S S(5hk — 815n)Cijne$eGr(8;ro; ks)n; (y). [14b]

In practice, the limiting procesé& — +oo in [9] or [11], [12] cannot be per-
formed exactly and is replaced with an evaluation for a sljtahosen finite value
of L. A key error analysis result (Darve, 2000b) states thatetlesist four constants
C1,Cs,C3,Cy such that

L=C1+ Czk|7' — ’I"o| + Cs 1n(k|r — ’I“()|) 4+ Cyln et
exp(iklr)

—/ eiikg'(yfyO)QL(&'ro;k)eikg'(mfmo) ds| < e [15]
drlr| zes

for any chosen error level < 1, whenever

Ir —rol/|ro| < 2/V5. [16]

The result [15], [16] implies that expansions [11], [12] mbg used for well-
separated sets of collocation and integration points etadtaround poles, andy,.

3.2. Single-level fast multipole formulation

In the single-level FMM, a 3D cubic grid of linear spacisigmbedding the bound-
ary 092 is introduced. The centers of the cubic cells thus definedaden as poles
xo Or y, in decompositions [11], [12]. Two cells are deensjacent(letting .A(C)
denote the set of cells which are adjacent to a given cubicgf they have at least
one common point, e.g. a vertex. Whenexeaindy belong to cell€, andC, that
are not adjacent, condition [16] is automatically fulfilladd expansions [11], [12]
can be safely used. Conversely, wherandy lie in adjacent cells, condition [16]
is not assured and the classical expressions [2a,b] of th@afuental solutions are
used instead. These considerations lead to reformulatessipns [7] and [8], for
any collocation poini lying in a given cellC,, as

(Ku)(@) = (Ku)"*(@) + (Ku)™ (),

(z € 90N Cy), [17]
f(x) = f*Nx) + M ()
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where the “near” parts are defined for each collocation ppias the net contributions
from the portion of boundary situated in cells adjacent ti tontaininge. The “FM”
parts then collect all contributions from cells that are adjacent ta,,.

The “near” contributions are evaluated by means of stanB&rtkechniques. The
treatment of the “FM” contributions exploits expansion$][112] truncated at a finite
L and in a manner suggested by their multiplicative form, (i) evaluate integrals
over each cell’, and associate obtained values to the cell cepje(ii) apply transfer
functions to obtain quantities associated to the cengeof cell C,, and (iii) evalu-
ate contribution at each collocation pointe C,. Accordingly, multipole moments
defined by

Ry“(8;C,) = —iks[0in8; + 618 — 28:8;8k)

<[ (e s, [18a]
a0Nc,
. 2
RP(8:C,) = —iksy® | 15, 61 + 2838
></ ui(y)nj(y)e_ikpg'(y_yo)ng [18Db]
oaNCy
1 A
RYN(8:Cy) = ~[Oka — 58] / ta(y)e ks W=v0)gg, [19a]
K a0NC,
7 ko
RPY(8:0,) = L / Suta(y)e P v g, [19b]
K Jaanc,

are computed for each cdll, (step (i)). ThenJocal expansiongor the cellC, are
evaluated by applying the transfer functions to the muléponoments according to

L3(5C) = > Gu(8roiks)RY(3:Cy), [20a]
C,ZA(C)

LP(8:C) = > Gr(8ro;kp)R™(5:Cy) [20b]
C,2A(C)

L£31(3;C,) = Z Gr(3ir0; ks)RY' (3:Cy), [21a]
CyZA(Cz)

LPH3:C) = Y GulEmoike)RP(5:C,), [21b]
Cy2A(C)

wherer, = y, — xo joins the centers of cell§, andC, (step (ii)). Upon multiply-
ing [20a,b], [21a,b] by the local factoesp ik, 3.(x — xo)] (step (iii)) and replacing
the integration over the unit sphere in [11], [12] by a nuro@rquadrature rule based
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on a set ofy quadrature point8, < S and weightsu,, the “FM” contributions finally
take the form

Q
’CU FM qu[ lkssq xr— :1:0)£S’U,(sq7c )
q=1

te ikp3g. (m—mo)(éq)kﬁPﬂL(gq; Cm):| [22]

Q
~ Zw |: iks8q.(x— mO);CSt(Sq,C )
g=1

el @mn) (3,), L4 (3,:C,)| ]

Expression [22] defines the “FM” contribution to the matvigetor product K{u},
and hence is evaluated once per GMRES iteration, while [&8}iges the “FM” con-
tribution to the right-hand sidgf } and is computed once, prior to calling the GMRES
solver.

The single-level elastodynamic FMM is more efficient thaa ttassical BEM,
with a complexity ofO(N3/2) per GMRES iteration. Further acceleration is achiev-
able by adopting a multi-level approach, as described roexthi present context of
3-D elastodynamics.

3.3. Multi-level fast multipole formulation

To have maximal efficiency, FM-BEM algorithms must confine+t€M calcula-
tions to the smallest possible portion of the boundary wtlilstering whenever pos-
sible the computation of influence terms into the largessids non-adjacent groups.
This is achieved by the multi-level FMM (Darve, 2000a; Nighia, 2002; Syl-
vand, 2002), which is based on using large cells and hieicalth subdividing each
cell into 2 x 2 x 2 = 8 children cubic cells. This cell-subdivision approach is-sy
tematized by means of an oct-tree structure of cells. Thel lew= 0, composed of
only one cubic cell containing the whole surfag®, is the tree root. The levél-cell
is divided into2 x 2 x 2 = 8 children cubic cells, which constitute the levek 1.
All level-1 cells being adjacent, the FMM cannot be applied to them. &hell = 2
is then defined by dividing each levéleell into 8 children cells, and so contai6$
cells. The subdivision process is further repeated urgifithest level = ¢, implicitly
defined by a preset subdivision-stopping criterion, is negc Level/ cells are usually
termedleaf cells

The multi-level approach basically consists in first appdythe FMM to all in-
fluence computations between disjoint leRetells (so as to use the largest clusters
whenever possible), and then recursively tracing the t@enevards, applying the
FMM to all interaction between disjoint levélcells that are children of adjacent
level-(¢ — 1) cells. Finally, interactions between adjacent leaf calsteeated using
traditional {.e. non FM-based) BE techniques. This approach thus minimizes t
overall proportion of influence computations requiring trelitional treatment.
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Previous studies for the Maxwell equations (Darve, 200@a¢testablished a cru-
cial practical consideration: for a given desired accuraogh the truncation param-
eter L in the transfer function [10] and the number of quadraturitscs, depend
on the subdivision level, and in fact increase wiitd (the cell-size-to-wavelength
ratio). The present implementation incorporates thesenfgs] whereas that of Fuji-
wara (2000) does not. Accounting for these effects, thertitaal complexity of the
multi-level FMM is O(N log, N) per iteration both for CPU time and memotiye(
somewhat higher than tlie(N') complexity for static FM-BEM, where the truncation
parameter in the FMM expansion is not level-dependent).

4. Fast Multipole Method: accuracy and computational efficency

Both the single-level and multi-level elastodynamic FMMé&aeen implemented,
for three-noded triangular boundary elements. All examplave been run on the
same single-processor PC (RAM: 3Go, CPU frequency: 3.40)GHzxcept where
indicated otherwise, the multi-level FMM is used.

4.1. Spherical cavity under internal pressure

A spherical cavity of radiug embedded in an elastic isotropic infinite medium
(with » = 0.25) is subjected to an internal time-harmonic uniform presdar This
problem has a simple, spherically-symmetric, exact sofufEringenet al., 1975)
against which numerically-computed solutions are congharging the root mean
square solution error. The results of such comparisongppeed for several nor-
malized frequenciess = kpR (i.€. np/7 is the number of P wavelengths spanned by
the sphere diameter) and various distances from the caaly(R < r <3R) are pre-
sented in Table 1. The present FM-BEM is seen to be very atsu@een in the nearly-
static caserfp = 0.01) for which the accuracy of FMM expansions of the form [9] is
known to deteriorate (Darve, 2000a), whereas the standaM 8oes not (Danglat
al., 2005). Moreover, the accuracy is seen to deteriorate, pesoted, for mesh densi-
ties below about eight nodes per S wabelength. In all sulesggasults, the meshes
are designed so as to feature at léd@shodes per S wavelength. Finally, the theoret-
ical complexitiesi(e. the CPU time spent for each GMRES iteration as a function of
N) are now compared against recorded CPU times, on the piesdwpherical cav-
ity problem. The numerical experiments corroborate presip mentioned theoretical
complexity estimates for standard BEM, single-level FMMI anulti-level FMM, as
seen in Figure 1. This complexity study involves problenesiaf up taV ~ 1.2 109,
while the examples of Fujiwara (2000) usad< 2.5 10%.
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Table 1. Pressurized spherical cavity: RMS solution error on theityaand in the
domain

np = kpR/m 0.01 | 0.50 | 1.00 | 2.00

# nodes/\s 800 16 8 4
RMS error,r = R (cavity wall) | 0.018 | 0.006| 0.006| 0.021
RMS error,R<r<3R (domain)| 0.017 | 0.006| 0.008| 0.031

1e+0: le+0G————m T e O RARLY
-
—~ //
o 7z
=3 [
_ le+02— < le+04- q
D) 5
— ©
£ E
= E P
- L L 4
g 1e+00 m 1e+03
o S
1 o L e e
o single-level FMM3 N E o single-level FM
. 3l 1 » [ 3l
- —— ON f —— o\
le0z- - & multi-level FMM || 1e+0g e & multi-level FMM []
- —— O(N logN) e —— O(Nlog,N)
P Y Y U eY R P S Y S AU Y R
le+02 1e+03 le+04 1e+05 1e+06 1le+02 1e+03 1le+04 1e+05 1le+06
N N
(a) CPU time (b) Memory

Figure 1. Complexity of the standard BEM, single-level FMM and miekiel FMM

4.2. Diffraction of an incident P plane wave by a semi-spherical canyon

This example is concerned with the diffraction by a semiespal canyon of a
plane P-wave of unit amplitude travelling vertically in alastic homogeneous ir-
regular half-space (Figure 2), with again= 0.25. The semi-spherical surface of the
canyon and the surrounding portion of free surface lyinglies disk of radiu® > R
are discretized using boundary elements. Such a configaretirepresentative of a
"topographic site effect” in seismology, and has been thgstiof numerous studies,
see (Dangla&t al,, 2005; Sdnchez-Sesma, 1983) where diffraction of wavesitigice
heterogeneities is considered.

Here, results obtained by the present FM-BEM for the (lowymalized frequency
np = 0.25, by means of a BE mesh featuring = 23382 DOFs, are compared to cor-
responding results from Sanchez-Sesma (1983) (based omi-@salytical approach)
and Reinoset al. (1997) (obtained using a standard elastodynamic BEM).rEi§u
shows that the horizontal and vertical displacements anABC (with points A, B,
C defined on Figure 2) produced by the three approaches aowohagreement. Note
that the corresponding results in Sdnchez-Sesma (198 eindscet al. (1997) are
plotted against the horizontal coordingtevhereas the arc-length coordinatalong
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ABC is used in Figure 3. The same valile= 3R of the truncation radius has been
used for all three sets of results. The present computagiquired 7 GMRES itera-
tions an24s of CPU time per iteration.

free surface R

A elastic half-space
J
D=3R L
Y
plane P wave

Figure 2. Diffraction of an incident P plane wave by a semi-spherialyon: nota-
tion

- Uy (presen‘t FMM)

Floo ful (Sanchez-Sesmpa)
o U (Reinoso et al.)
M— v (present FMM) 3
o |u,| (Sanchez-Sesmg)
r| = |u,(Reinosoetal)

w

displacement modulus
N

[
T
|

ER-

o
e g"i”ﬁ“‘rovﬂ’-»e,_
\\\\\ P LS| . | . |

2 3
s/R

Figure 3. Diffraction of an incident P plane wave by a semi-sphericatyon: hori-
zontal and vertical computed displacement on line ABC (piimts A, B, C defined
on Fig. 2) plotted against arc-length abscissalong ABC ¢(p = 0.25)

Moreover, the FM-BEM allows to deal with non-dimension@duencies signifi-
cantly higher than those considered in previous studiegurEi4 shows the displace-
ments along line ABC computed for a nondimensional frequepc= 5 using the
present method. This time, the problem si¥e= 287 946 is well beyond the capa-
bilities of standard BEM. This computation requirgél GMRES iterations (without
preconditioning) and mn CPU time per iteration.

The displacement near the canyon edge ¢ = R ands = 7R/2, see Figure 2)
has strong variations, as expected.
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- T -
|uy| (present FMM
— 4 (present FMM

displacement modulus

|
2
s/R

Figure 4. Diffraction of an incident P plane wave by a semi-sphericatyon: hori-
zontal and vertical computed displacement on line ABC (piimts A, B, C defined
on Figure 2) plotted against arc-length abscissalong ABC (p = 5)

The size of the problems that can be solved is now limited bynilimber of iter-
ations of the iterative solver. Reducing the iteration daenuires a preconditioning
strategy. This critical component of the development otedfit FM-BEM algorithms
remains in the authors’ view a largely open issue and is ndtess$ed here.

5. Conclusion

In this article, the Fast Multipole Method has been sucdlséxtended to3 D
elastodynamics in the frequency domain. Combined with tB&Bormulation, it
permits to reduce the computational burden, in both CPU timé memory require-
ments, for the analysis of wave propagation (e. g. seisraitd,allows to run BEM
models of sizeéV = O(10°) on an ordinary PC. Comparisons with analytical or previ-
ously published numerical results show the efficiency ardecy of the present elas-
todynamic FM-BEM. Theoretical complexity estimates fottbthe single-level and
multi-level formulations were derived and corroboratedioynerical experiments.

Applications of the present FM-BEM to realistic cases irss@logy are under
way. Moreover, a natural extension of this work consistsanmulating multipole
expansions of other fundamental solutions, with the hadfeg elastodynamic funda-
mental solution being currently investigated.
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