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ABSTRACT. Joints between substructures play a significant role in the vibrational behavior of 
complex structures because they govern energy flow and most of the dissipative phenomena. 
In order to identify joint models, this paper proposes a robust updating method which was 
initially based on studies of the error in constitutive relation in relation to finite element 
model updating. Here, it is redesigned in order to focus on joint models in medium-frequency 
problems. In order to do that, we use an alternative numerical approach called the 
Variational Theory of Complex Rays (VTCR). After introducing the new formulation, the 
paper analyzes the effectiveness of the approach in identifying a joint’s stiffness and damping. 
RÉSUMÉ. Les liaisons entre sous-structures jouent un rôle crucial dans la réponse vibratoire 
d’une structure complexe, en régissant les transferts énergétiques ainsi qu’une grande partie 
de la dissipation. Pour identifier ces modèles de liaison, ce travail s’inspire d’une méthode de 
recalage robuste, initialement basée sur les travaux sur l’erreur en relation de comportement 
pour la correction de modèles éléments finis. La formulation est revisitée pour se concentrer 
sur le problème des jonctions en moyennes fréquences. Dans ce but une approche numérique 
alternative aux éléments finis, la théorie variationnelle des rayons complexes (TVRC) est 
utilisée. Après avoir présenté la nouvelle formulation, nous étudions l’efficacité de cette 
approche pour l’identification des paramètres de raideur et d’amortissement d’une liaison. 
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decomposition methods. 
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1. Introduction

The treatment of dissipation is of primary importance in seeking the numerical
response of vibrating structures. In many real systems, onecan decompose the struc-
ture into simple linear viscoelastic substructures and complex, coarsely modeled in-
terfaces. The behavior of joints, which usually involves complex dissipative phenom-
ena (micro/macro frictional contact, microshocks, heating, ...), must be accounted
for because in vibration problems energy losses affect the magnitude of the struc-
tural response directly. In addition, the stiffness of joints can significantly influence
how the injected power is distributed among the different substructures. Regarding
the low-frequency range, updating methods for joints have already been the subject
of much research (Mottersheadet al., 1993; Deraemaeker, 2001); for high frequen-
cies, the identification of coupling loss factors (Maxitet al., 2001) is an unavoidable
step of methods derived from Statistical Energy Analysis (SEA) (Lyon, 1975). Be-
tween these two extremes, medium frequencies present majordifficulties because of
their high modal density and their high sensitivity to boundary conditions. This pa-
per presents a method for updating joint parameters - in our case, joint stiffness and
damping - with special emphasis on the robustness of this technique.

Different methods are available in order to deal with various types of inverse phys-
ical problems (Bonnetet al., 2005). Our method uses themodified error in constitutive
relationapproach (Ladevèzeet al., 1999), which is derived from the well-known con-
cept of error in constitutive relation for the quantification of finite element discretiza-
tion errors (Ladevèzeet al., 1983). Starting with a complete set of available infor-
mation coming from the numerical model as well as experimental measurements, the
method consists in dividing the corresponding equations into two groups according to
their reliability. The reliable equations (in relation to both the numerical model and
the experimental model) are to be satisfied exactly, while the unreliable equations can
be solved approximately through the minimization of a cost function. In the case of a
joint modeling problem, the equations of the continuous model are divided as follows:
the substructures are considered to be reliable components, while the joint equations
- including the model parameters which need to be identified -are unreliable parts of
the structure. Regarding the experimental information, the locations and directions of
the sensors and the prescribed angular frequency and excitation force are assumed to
be reliable. The quantities measured by the sensors, which are unavoidably noisy, are
considered unreliable. Table 1 summarizes the characteristics of these different types
of information. The solution of the unreliable equations isachieved by minimizing a
cost function composed of two terms: amodeling errorwhich quantifies the satisfac-
tion of the joint equations, and anexperimental errorwhich represents the discrepancy
between the numerical solution and the experimental measurements.

Then, a numerical scheme must be applied in order to solve theproblem. In
dealing with medium-frequency problems, classical methods encounter serious dif-
ficulties. Finite element calculations require the use of a very refined mesh in order
to avoid what one callspollution errorsdue to the small-wavelength phenomena in-
volved (Ihlenburget al., 1997); this leads to sharp increases in computational costs.
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High-frequency methods must be modified in order to release some of the SEA as-
sumptions which are no longer valid in the medium-frequencyregime. Among the
various possible methods (Farhatet al., 2003; Stroubouliset al., 2006), we chose to
use the Variational Theory of Complex Rays (VTCR) (Ladevèzeet al., 2003), which
has been found to be easy to adapt to the separation of the equations discussed pre-
viously. This Trefftz method consists in building over eachsubstructure two-scale
shape functions which satisfy the dynamic equilibrium and the constitutive law of the
substructure exactly. (These equations are considered to be reliable.) The bound-
ary conditions of each subdomain are applied weakly througha variational equation
which can be viewed as a balance between virtual powers at theboundaries. In order
to distinguish joint equations from other boundary conditions, we use a substructured
formulation of the VTCR which was presented in (Dorivalet al., 2006). Further de-
tails of the formulation and its discretization can be foundin (Dorival et al., 2008).

This paper is organized as follows: Section 2 briefly describes the formulation.
Section 3 presents the identification of the joint’s stiffness and damping parameters
for a simple simulated structure, which illustrates the robustness of the method.

Table 1. The proposed method for carrying out joint updating
Continuous model Experimental model
- Geometry - Angular frequency

Reliable - Substructure equations: - Sensor locations
Information - local dynamic equilibrium - Sensor directions

- constitutive law - Prescribed forces
- Reliable boundary conditions
- Joint equations: - Measured amplitudes

Unreliable - constitutive law of the joint (with noise)
information - dynamic equilibrium of the joint

2. Formulation of the inverse problem using a substructuredTrefftz method

2.1. A substructured Trefftz method for the equations of the continuous model

This first section deals with the equations of the continuousmodel alone. The
experimental equations will be introduced in the next section in order to produce an
inverse problem. The approach is based on a substructured version of the VTCR which
was detailed in (Dorivalet al., 2006). For the sake of simplicity, let us consider two
substructuresΩi, i=1, 2 and denote the displacement field and the stress tensorui and
σ

i
respectively.

The substructuresΩi are distinct from the jointΓ to be identified (see Figure 1).
The joint is considered to be a real substructure with its ownequations and interface
unknowns denoted̂W i andF̂ i (which are distinct from the unknowns of the adjacent
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substructures). Interface forceŝF i are applied to each substructure. The equations
of the substructures are considered to be reliable and satisfied exactly. The numerical
treatment of each substructureΩi involves a classical formulation of the VTCR: the
solution within each substructure is sought as a linear combination of complex rays
(see Figure 2) which satisfies the local dynamic equilibriumand constitutive law ex-
actly. Boundary conditions are applied in variational form. In practice, the strong
physical meaning of the shape functions enables one to use only a very small number
of unknowns - about one hundred per substructure. It is important to observe that
the numerical cost does not increase with the frequency being considered. Additional
details on the VTCR can be found in (Ladevèzeet al., 2003). The problems in each
substructureΩi lead to admissibility constraints associated with admissibility spaces
Si

ad.
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Figure 1. Separation of the joint to be identified from the reliable substructures
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Figure 2. Examples of complex rays:(a) interior ray and(b) ray localized at an edge

Joint equations with joint unknownŝW i and F̂ i must be satisfied. In our case,
we assume that line spring-mass-dampers are distributed along the interfaceΓ. The
equations are satisfied by minimizing a residual, called themodeling error, which is
constructed as follows:

E2
mdl = 1

NN

∫
Γ
‖F̂ 1 + F̂ 2 + m ω2

2 (Ŵ 1 + Ŵ 2)‖
2dl

+ 1
NW

∫
Γ
‖Ŵ 1 − Ŵ 2 + k

2 (F̂ 1 − F̂ 2)‖
2 dl [1]
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The line massm and line stiffnessk can vary along the joint and dissipative behavior
can be represented as a complex part ofm and k. Then, the joint unknowns are
discretized in the same way as the matching substructure unknowns in order to obtain
a conforming discretization.

The continuous problem consists in minimizing the modelingerror E2
mdl under

the admissibility constraintsSi
ad. This is achieved by solving the corresponding la-

grangian problem.

2.2. Experimental information and the inverse problem

In order to produce an inverse problem, experiments are performed on the actual
structure. Let us designate measured quantities as•̃. When dealing with medium-
frequency vibrations, the hypersensitivity of the structure requires the use of non-
classical measurement techniques. Indeed, intrusive techniques modify the structure’s
mass and stiffness locally, and pointwise measurements provide only very local infor-
mation. Laser vibrometry, which is widely used in high-frequency measurements, is
an appealing technique to overcome these difficulties because it is nonintrusive and
can provide field measurements capable of capturing the verylocal phenomena which
occur in this frequency range.

Given a set of measurement pointsXm, let us define the followingmeasurement
error in order to quantify the distance between the simulation andthe experimental
results:

E2
mes =

1

Nmes

∑

m

‖u(X
m

) − ũ(X
m

)‖
2 [2]

The summation of the measurement error and the modeling error leads to themod-
ified error:

E2
mod = (1 − r)E2

mdl + r E2
mes [3]

wherer is used to balance the two terms according to one’s relative confidence in the
model and in the experiments. Ifr = 0 is chosen, the modified error only accounts
for the interface model. On the contrary ifr = 1, the interface equations have no
weight and the solution tries to satisfy the experimental results at best. Forr chosen
between0 and1, one obtains a solution which is a compromise between the measured
data and the joint model chosen by minimizing the modified error under admissibility
constraintsSi

ad , i = 1, 2 . A typical value of0.8 will be used in Section 3.

Since the modified error depends onk joint parameterspk, the inverse problem
consists in finding the optimum joint parametersp

opt
k :

(popt
k ) = arg min

(pk)
E2

mod (pk) [4]

The corresponding nonlinear optimization problem can be solved through classical
Newton-like methods.
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3. Example of the identification of a joint’s stiffness and damping

3.1. The experimental structure (simulated)

10 cm

10 cm

1 m

1 m

1 m

Figure 3. Simulated experimental structure consisting of two platesconnected by a
joint

Figure 3 presents a very simple structure consisting of two plates connected by a
joint. One plate is fixed along an edge and the other is subjected to a harmonic line
shear force with angular frequencyω = 155 Hz. The dots represent measurement
points. The experimental data were simulated by a classicalVTCR calculation using
the following plate properties: Young’s modulusE = 210e9 MPa, Poisson’s ratio
ν = 0.3, plate thicknessh = 0.0007 m, mass densityρ = 7, 800 kg.m−3, structural
dampingα = 0.01.

For the sake of simplicity, the shear behavior of the joint isassumed to be perfectly
rigid and, therefore, the rotational behavior of the joint alone needs to be identified. In
our case, the joint’s rotational stiffness of the “actual” structure wask0 = 101.5 N.m

and its mass was neglected. Viscous joint damping was assumed with two dissipation
levels: a slightly dissipative joint withη = 0.1 and a highly dissipative joint with
η = 10. At this frequency, the first case dissipated9 % of the total energy and the
second case68 %. The rotational joint equations are:

n1 M̂1 n1 + n2 M̂2 n2 = 0 moment equilibrium

n M̄n = −k0(1 + iη) ū,n constitutive law
[5]

whereM̂i andûi ,n respectively denote the bending moment and the normal rotation
over Γ. The overbar notation̄u,n (respectivelyM̄) represents the average value of
normal rotations (resp. bending moments) overΓ. In order to simulate measurement
noise, the experimental data were perturbed by± 20 % uniform random noise.
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In the identification process, a classical value of0.8 was assigned to the weighting
parameterr. The inverse problem was discretized using400 complex rays -64 inte-
rior complex rays and4 x 9 edge rays for each plate, and the same for the interface
DOFs. In the following section, we investigate the possibility of identifying the joint’s
stiffness and damping separately. Indeed, a real structurecan require the identifica-
tion of a large number of joints, and the optimization problem [4] can become very
costly. Therefore, separate identification can be useful. In addition, for identifiability
reasons (Wanget al., 1991), it is advisable to seek the stiffness first, then the damping
coefficient. The effectiveness of this approach is studied in the next section.

3.2. Identification of joint stiffness
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Figure 4. The negligible influence of an erroneousη on the minimum of the cost func-
tion E2

mod (k0)
for a slightly dissipative joint. The vertical dotted line represents the

exact parameter to be identified (where the minimum should belocated)

Figure 4 shows the evolution of the modified error when identifying the stiffness
of a slightly dissipative joint (η = 0.1). The cost function is sufficiently convex to
be minimized without difficulty both for exact and highly erroneous damping coef-
ficients. The errors onη have no impact: the identified stiffness is very close to the
exact stiffness represented by a vertical dotted line. Thisis easily explained by the
fact that for this slightly dissipative joint (in comparison with the substructures’ dis-
sipation) the joint’s damping coefficient does not play a significant role. Let us note
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that the minimum of the cost function is due to the measurement noise, which has no
influence on the location of the minimum because of the designof the cost function
and the field measurements.

Figure 5 shows the same results for a highly dissipative joint (η = 10). With an
exact damping coefficient (continuous line), the joint’s stiffness is correctly identified.
This is not true with an erroneous damping coefficient, in which case the identified
stiffness differs from the exact value (vertical dotted line). We conclude that for a
highly dissipative joint the damping parameterη plays a significant role and must be
modeled accurately in order to recover the correct stiffness.

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

Joint’s stiffness k
0

 (N.m)

M
o
d
if

ie
d
 e

rr
o
r 

E

E
mod

 − exact η

E
mod

 − η  +50%

E
mod

 − η  −50%

E
mod

 − η  +300%

E
mod

 − η  −95%

exact k
0

2 m
o
d

2

2

2

2

2

 Noise   20%+
-

 r = 0.8

Figure 5. The strong influence of an erroneousη on the minimum of the cost function
E2

mod (k0) for a highly dissipative joint. The vertical dotted line represents the exact
parameter to be identified (where the minimum should be located)

3.3. Identification of the joint damping

In this section, we address the identification of the joint’sdamping with particular
emphasis on the influence of an erroneous joint stiffness. Tounderstand this better,
the measurement noise was removed. The evolution of the modified error as a func-
tion of the damping parameterη in the case the highly dissipative joint is shown in
Figure 6. The minimization of the cost function leads to the exact damping parameter,
even if the stiffness is highly erroneous. The explanation is quite simple: in the case
of a highly dissipative joint (in comparison with the substructures’ dissipation), the
response is influenced mainly by the damping coefficient, which leads to a very robust
identification ofη.
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Figure 6. The negligible influence of an erroneousk0 on the minimum of the cost
functionE2

mod (η) for a highly dissipative joint. The vertical dotted line represents the
exact parameter to be identified (where the minimum should belocated)
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In the case of a slightly dissipative joint (see Figure 7), the evolution of the cost
function is less affected by the damping parameterη. If the stiffness is taken equal to
the exact value (continuous line), the damping parameter identified at the minimum of
the cost function is exact. Unfortunately, the existence oferroneous joint stiffnesses
perturbs this minimum, or even causes it to vanish, which makes the updating process
even trickier. In this case, the influence of the damping parameter is not significant
enough because the dissipation in the joint is negligible compared to the dissipation in
the substructures. Consequently, classical difficulties in the identification ofη (Wang
et al., 1991) seem unavoidable.

4. Concluding remarks

In this paper, we presented an updating method for joint models. This technique
uses a suitable separation of all information in order to circumvent the difficulties re-
lated to medium-frequency vibrations as well as emphasize the behavior of the joints.
The numerical approach for discretizing the inverse problem follows exactly the same
lines. The robustness of the method was briefly illustrated using a simulated structure.
We found that the identification of a joint’s stiffness and damping by a step-by-step
process cannot be successful if the joint’s dissipation is high. In this case, damping
should be identified first. This conclusion is a consequence of the sensitivity of the
response to the two parameters. At this stage, the experience of the engineer is of
great importance for industrial applications. Although the numerical framework de-
veloped here turns out to be effective and efficient, furtherstudies should focus on the
derivation of a physically consistent experimental part (in the cost function) suitable
for medium-frequency phenomena.
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