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ABSTRACT. This paper presents a new numerical approach to deal with fluid structure 
interaction problems where a thin structure is immersed in an incompressible fluid. Space-
time finite elements are used to discretized the equations using a discontinuous time scheme. 
In order to take into account the discontinuities due to the structure in the fluid domain, the 
approximation fluid fields are enriched with appropriate discontinuous functions through a 
partition of unity (XFEM). The method allows incompatible meshes between fluid and 
structure, the structure mesh can move freely in the fluid fixed Eulerian mesh. 
RÉSUMÉ. Une nouvelle approche pour traiter les problèmes d’interaction fluide structure 
spécifiques où la structure est mince et immergée dans un fluide incompressible est présentée. 
Les équations de Navier-Stokes sont discrétisées par des éléments finis espace-temps en 
utilisant un schéma de Galerkin discontinu en temps. Les différentes discontinuités introduites 
par la présence de la structure dans le fluide sont modélisées par enrichissement des champs 
d’approximations de vitesse et de pression par des fonctions appropriées sur le principe de la 
partition de l’unité (XFEM). Le maillage de la structure peut alors se déplacer librement 
dans le domaine fluide. 
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1. Introduction

The modelisation of thin walled structures immersed in fluid flow in computa-
tional mechanics is usually based on ALE approaches using moving mesh and/or
remeshing strategies. For large structural displacements or rotations these techniques
reach certain limitations. Therefore this paper presents a fixed mesh based method
utilizing proper enrichment of a space-time finite element approximation (Legay et
al., 2006a; Legay et al., 2006b; Kölke et al., 2006; Legay et al., 2007; Zilian et
al., 2007). The major conceptual advantage of the space-time finite element method
is the straight forward applicability of the enriched finite element technology (XFEM)
to describe the evolution of non-smooth solutions within the space-time domain more
accurately. The ability and accuracy of the presented method to deal with large body
deformations is shown by two applications.

2. Strong form

2.1. Fluid

The fluid in Eulerian description in the fluid domain Ω is formulated using the
incompressible Navier-Stokes equations:

ρvi,t + ρvi,jvj − σij,j − gi = 0 in Ω [1]

vi,i = 0 in Ω. [2]

where ρ is the density, vi is the Eulerian velocity and gi is the gravity force. The stress
tensor σij for the Newtonian fluid is given by

σij = −pδij + 2µeij [3]

where p is the pressure and µ is the viscosity. The rate of strain tensor eij is given by

eij =
1

2
(vi,j + vj,i) [4]

The boundary conditions, in terms of imposed velocity are

vi − vd
i = 0 on ∂vΩ [5]

and in terms of imposed stress state

σijnj − tdi = 0 on ∂tΩ [6]

where vd
i is the imposed velocity on ∂vΩ, tdi is the imposed stress vector on ∂tΩ and

ni is the unit outward normal vector to ∂tΩ.
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2.2. Coupling

Along the fluid-structure interface Γ, fluid and structure velocities have to match
as well as stress vectors. By noting vF

i fluid velocity, vS
i structure velocity, tFi fluid

stress vector and tSi structure stress vector, the continuity of velocity and stress vector
is expressed by

vF
i − vS

i = 0 and tFi + tSi = 0 on Γ. [7]

These conditions are written for a non-slip interface, for a slip interface only the nor-
mal parts have to be continuous.

2.3. Structure
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Figure 1. Two-dimensional model of a thin-walled plane structure

The thin structure is modeled as a Timoshenko beam for the two-dimensional ex-
amples presented in this paper (Figure 1), while it can be extended to more general
three-dimensional structures like membranes or shells. The beam model has to be able
to represent large structural motion and displacements, including infinite rigid body
rotations. From the kinematics, the Green-Lagrange strain tensor is then written as

E =

[

e1 + ye3
1
2e2

1
2e2 0

]

(~x,~y)

[8]

E =





e1

e2

e3



 =





ux,x + 1
2 (u2

x,x + u2
y,x)

uy,x cos θ − (1 + ux,x) sin θ
θ,x(cos θ + ux,x cos θ + uy,x sin θ)



 [9]
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Figure 2. Space-time domain for a thin immersed structure in a fluid flow

while its variation needed in the weak form is

δE = ( δe1 δe2 δe3 )T [10]

δe1 = δvx,x + δvx,xux,x + δvy,xuy,x

δe2 = −δvx,x sin θ + δvy,x cos θ
−δω(cos θ + ux,x cos θ + uy,x sin θ)

δe3 = δvx,xθ,x cos θ + δvy,xθ,x sin θ
+δω,x(cos θ + ux,x cos θ + uy,x sin θ)
−δωθ,x(sin θ + ux,x sin θ − uy,x cos θ)

[11]

where (ux, uy) is the displacement of the corresponding point on the middle line of
the beam in the local coordinates system (~x, ~y), θ is the rotation of the cross section,
(δvx, δvy) is the virtual velocity and δω is the virtual angular velocity.

The generalized force vector S and the sectional elasticity matrix are introduced
such that

S = CE with S =





N
Q
M



 and C =





EA 0 0
0 GA 0
0 0 EI



 . [12]

where N is the normal force, Q is the shear force, M is the bending moment, E is
the Young modulus, G is the shear modulus, A is the cross section area and I is the
moment of inertia.
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3. Weak form of the coupled system

A space-time finite element discretization is used (Figure 2) (Hughes et al., 1988)
(Tezduyar et al., 2005). The space-time domain is denoted by Q = Ω × [0 tf ] where
tf is the final time of the study. This space-time domain is cut into slabs from tn to
tn+1 and solved sequentially for each time slab denoted by Qn = Ω × [t+n t−n+1].
Initial conditions are given on the boundary of the space-time mesh for t = 0.

3.1. Fluid weak form

The weak form for the fluid domain is written on the space time slab Qn:
Find (vi, p) such that ∀(δvi, δp),

∫

Qn

δvi ρ
(

vi,t + vi,jvj

)

dQ−

∫

Qn

δvi,ip dQ +

∫

Qn

δvi,j2µeij dQ

−

∫

Qn

δviρgi dQ−

∫

∂Qn

δvit
d
i dS +

∫

Qn

δp vi,i dQ

+

∫

∂Q(t+n )

δvi(t
+
n )ρ(vi(t

+
n ) − vi(t

−
n ))dS = 0 [13]

The last term weakly enforces velocity continuity at time tn from a time slab to an
other where vi(t

−
n ) is the known velocity from the previous time slab and vi(t

+
n ) is

unknown (discontinuous Galerkin time scheme).

3.2. Structure weak form

The weak form for the structure domain is written in the space time domain Qs
0 =

Ω0 × [tn tn+1] where Ω0 denotes the initial configuration of the structure:
Find (V,S) such that ∀(δV, δS),

+

∫

Qs

0

δVT ρGV̇ dQ0 +

∫

Qs

0

δET
S dQ0 +

∫

Qs

0

δST (C−1
Ṡ − Ė) dQ0

+

∫

Ω0

δVT (t+n )ρ
(

V(t+n ) − V(t−n )
)

dΩ0

+

∫

Ω0

δST (t+n )C−1
(

S(t+n ) − S(t−n )
)

dΩ0 = 0 [14]

where

V =





vx

vy

ω



 and G =





A 0 0
0 A 0
0 0 I



 .
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where Ė has the same expression as δE replacing virtual velocities by real ones. The
displacement is computed from velocity by time integration. This leads to a mixed
formulation for the structure where S is solved at the structure element level. The
two last terms ensure velocity and stress continuity at time tn (discontinuous Galerkin
time scheme).

3.3. Interface weak form

Velocity continuity on the interface Γ is enforced by Lagrange multipliers λi which
are additional variables. The following terms are added to the weak form:

∫

Γ×[tn tn+1]

δλi

(

vF
i − vS

i

)

dΓdt +

∫

Γ×[tn tn+1]

δvF
i λi dΓdt

−

∫

Γ0×[tn tn+1]

δvS
i

dΓt

dΓ0
λi dΓdt [15]

The Lagrange multipliers are projected on the reference structural configuration.

4. Enriched space-time (EST) finite elements for fluid flow

4.1. Localization of the structure by level-sets

The structure is localized in the space-time domain by the zero iso-contour of a
level-set φ(x, t) (Sethian, 1999). This function is chosen equal to the signed distance
to the interface. Two other orthogonal level-sets φ1(x, t) and φ2(x, t) can be added to
defined the two tips of an open structure.

4.2. First choice of fluid approximation and enrichment

In this first choice the fluid velocity is approximated in space by quadratic 9 node
elements (Q2) while the pressure is approximated by linear 4 node elements (Q1).
For both velocity and pressure, the time direction is approximated by linear shape
functions. This choice satisfied the LBB condition.

The immersed structures involve a pressure discontinuity as well as a velocity
gradient discontinuity from one side to the other side of the structure. The pressure
approximation is enriched with a Heaviside function (Belytschko et al., 2001):

p(x, t) =
∑

I∈S

Np
I (x, t)PI +

∑

J∈Senr

Np
J (x, t) sign(φ(x, t))Ap

J [16]

where S is the set of fluid nodes, Np
I (x, t) is the shape function associated to the

pressure node I , PI is the pressure nodal value, Senr is the set of fluid enriched nodes,
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and Ap
J is the new unknown of node J . The enriched nodes are the nodes belonging

to the elements cut by the interface in the space-time domain (Figure 2).

Using the same notations, the velocity field is enriched by a ramp like function, for
instance the absolute value of φ(x, t):

vi(x, t) =
∑

I∈S

Nv
I (x, t)VIi +

∑

J∈Senr

Np
J (x, t) |φ(x, t)|Av

Ji [17]

4.3. Alternative choice of fluid fields enrichment

In this second choice the fluid velocity as well as the pressure are approximated in
space by linear 3 node elements (P1). This choice does not satisfy the LBB condition
and a stabilization term is added in the weak form (Masud et al., 1997) (T.E. Tezduyar
et al., 1992). Both pressure and velocity are enriched by a Heaviside function:

p(x, t) =
∑

I∈S

Np
I (x, t)PI +

∑

J∈Senr

Np
J (x, t) sign(φ(x, t))Ap

J [18]

vi(x, t) =
∑

I∈S

Nv
I (x, t)VIi +

∑

J∈Senr

Np
J (x, t) sign(φ(x, t))Av

Ji [19]

The Heaviside enrichment introduces a strong discontinuity in the velocity field
through the interface, the continuity is recover by using two Lagrange multipliers
fields λ+

i and λ−
i which enforce continuity from the positive and the negative sides

respectively of the interface (in the level-set sence) to the structure. Details of this
strategy can be found in reference (Zilian et al., 2007).

5. Applications

5.1. Vibration of a spring supported rigid piston in a fluid channel

A rigid piston supported by two springs (Figure 3) is immersed in a one dimen-
sional fluid channel. The system is initially at rest, a zero pressure (t̄R1 = 0) is
applied on the right boundary and a constant one is applied at the left boundary
(t̄L1 = 2g/cm/s2) at time t = 0. The geometrical dimensions of the system are
given by a = 1 cm, b = 8 cm, c = 2 cm and h = 0.02 cm. The material param-
eters are ρf = 1.25 · 10−1g/cm3, µ = 10−2g/cm/s, ρs = 5.0 · 10−2g/cm3, and
k = 0.5g/s2. The ratio ξ = mf/ms of total fluid mass mf = ρfab to total structural
mass ms = ρsah is ξ = 103.

The discontinuous pressure field is presented on Figure 4 for the EST approach
using the first enrichment strategy (Section 4.2) as well as for a standard ALE remesh-
ing strategy. The used mesh has ony 8 elements (8 × 1). The pressure profil is given
on Figure 5 and the analytical solution to the problem is exactly recovered.
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Figure 3. Immersed piston supported by springs in a channel

(a) EST approach (b) ALE approach

Figure 4. Pressure field for the rigid immersed piston for different time: 1s, 2s, 3s,
4s, 5s and 6s (from top)

Figure 5. Discontinuous pressure solution (g/cm/s2) during one period is given in
the whole channel



Enriched space-time F.E. for F.S.I. 733

b

a

c
u1

x1

x2

d

d

v̄L
1

v̄L
1

t̄R
1

t̄R
1

v̄2 = 0

v̄2 = 0

fluidA

B

Figure 6. Rotor system: channel flow with immersed flexible and rotating structure
(shapes A and B)

5.2. Two immersed rotating structures in a flow

Two differently shaped thin-walled structures of width h embedded in a flow chan-
nel of dimensions a = 0.2 cm and b = 2.0 cm as shown in Figure 6 are considered.
In horizontal direction each structure (ρs = 10.0 g/cm3) is supported by a linear
spring of stiffness k, and is coupled to the channel flow (ρf = 1.0 g/cm3, µf =
10−3 g/cm/s). The enclosed domain inside the solid is filled with fluid (ρ = ρf/2
and µ = µf/2). Both structures are free to rotate around their hinges (initial posi-
tions given by c = 0.2 cm and d = 0.05 cm) and are fixed in the vertical direction.
The stiffeners have no interaction with the enclosed fluid. At the left boundary of the
channel the horizontal velocity v̄L

1 = 1.0 cm/s is imposed while on the right the fluid
boundary tractions t̄R1 are zero (pR = 0).

The curved shapes A and B are generated using the superformula by (Gielis, 2003),

1

r
=

(

∣

∣

∣

1

α
cos(

γ

4
θ)

∣

∣

∣

λ2

+
∣

∣

∣

1

β
sin(

γ

4
θ)

∣

∣

∣

λ3

)
1

λ1

, [20]

where r and θ are polar coordinates, α, β, γ, λ1, λ2 and λ3 are real numbers. Table
5.2 lists the used parameters for the rigid (R) and the flexible (F) configurations. The
origin of each shape is identical to the hinge point that is connected to the thin-walled
structure by stiffeners as shown in Figure 6. Each shape is composed of nP = 120
nodes and linear thin-walled structure elements.

The narrow flow domain around the immersed shapes is regularly discretized by
prismatic space-time finite elements using the second choice for the enrichment (Sec-
tion 4.3) with equidistant nodes (∆h = 0.004 cm). The numerical analysis of the
coupled system is performed using a time slab width of ∆t = 0.001 s for the time
interval T = [0.0 s, 4.0 s].
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Table 1. Material and shape parameters (sets A and B) for rigid (R) and flexible (F)
rotating structures

setup E ν′ k h

[ g

cm s2 ] [−] [ g

s2 ] [cm]

R − − 1.0 1 · 10−2

F 104 10−4 1.0 2 · 10−3

shape α β γ λ1 λ2 λ3

A 1.0 1.0 3.0 0.1 1.8 1.8
B 1.0 1.0 4.0 0.8 4.0 4.0

(a) (b)

Figure 7. Horizontal displacement and angle of rotation of immersed rotor shapes A
(a) and B (b)

In the beginning of the simulation the inflow velocity is linearly increased from
zero to the final constant v̄L

1 within the time interval Tv = [0.0 s, 0.5 s]. As a conse-
quence the flow field develops (Re ≈ 50) and the asymmetric flow situation causes
rotational motion of both objects additional to motion in the horizontal direction. Fig-
ure 7 shows the solution to horizontal displacements and angle of rotation of the hinges
for the rigid and flexible case. The enriched solution fields of pressure and velocity
are given in Figure 8 for selected time instants of the configuration involving flexible
structures.

This fluid-structure interaction problem can be classified as: instability-induced
and movement-induced structural excitation. Initial motion and deformation is caused
by the developing fluid instabilities (shear flow) in the typical Kármàn vortex street.
Once the flexible structures are set in motion the fluid field changes and a strong
coupling of fluid and structure is present. The behavior of the whole system is highly
nonlinear due to the motion and deformations of the involved structures in the viscous
Navier-Stokes fluid.
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Figure 8. Enriched pressure (top) and velocity (bottom) fields for setup F at times
t = 1.0 s, t = 2.0 s and t = 3.0 s

The formulation and numerical algorithm of the EST method presented in this
paper is capable of handling this nonlinear fluid-structure interaction situation with
large structural motion/rotation and deformation.
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